// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include // For MIN/MAX #include "spi_flash_chip_generic.h" #include "spi_flash_defs.h" #include "esp_log.h" static const char TAG[] = "chip_generic"; #define SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT 4000 #define SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT 500 #define SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT 1000 #define DEFAULT_IDLE_TIMEOUT 200 #define DEFAULT_PAGE_PROGRAM_TIMEOUT 500 esp_err_t spi_flash_chip_generic_probe(esp_flash_t *chip, uint32_t flash_id) { // This is the catch-all probe function, claim the chip always if nothing // else has claimed it yet. return ESP_OK; } esp_err_t spi_flash_chip_generic_reset(esp_flash_t *chip) { //this is written following the winbond spec.. spi_flash_trans_t t; t = (spi_flash_trans_t) { .command = CMD_RST_EN, }; esp_err_t err = chip->host->common_command(chip->host, &t); if (err != ESP_OK) { return err; } t = (spi_flash_trans_t) { .command = CMD_RST_DEV, }; err = chip->host->common_command(chip->host, &t); if (err != ESP_OK) { return err; } err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT); return err; } esp_err_t spi_flash_chip_generic_detect_size(esp_flash_t *chip, uint32_t *size) { uint32_t id = 0; *size = 0; esp_err_t err = chip->host->read_id(chip->host, &id); if (err != ESP_OK) { return err; } /* Can't detect size unless the high byte of the product ID matches the same convention, which is usually 0x40 or * 0xC0 or similar. */ if ((id & 0x0F00) != 0) { return ESP_ERR_FLASH_UNSUPPORTED_CHIP; } *size = 1 << (id & 0xFF); return ESP_OK; } esp_err_t spi_flash_chip_generic_erase_chip(esp_flash_t *chip) { esp_err_t err; err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT); } if (err == ESP_OK) { chip->host->erase_chip(chip->host); //to save time, flush cache here if (chip->host->flush_cache) { err = chip->host->flush_cache(chip->host, 0, chip->size); if (err != ESP_OK) { return err; } } err = chip->chip_drv->wait_idle(chip, SPI_FLASH_GENERIC_CHIP_ERASE_TIMEOUT); } return err; } esp_err_t spi_flash_chip_generic_erase_sector(esp_flash_t *chip, uint32_t start_address) { esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT); } if (err == ESP_OK) { chip->host->erase_sector(chip->host, start_address); //to save time, flush cache here if (chip->host->flush_cache) { err = chip->host->flush_cache(chip->host, start_address, chip->chip_drv->sector_size); if (err != ESP_OK) { return err; } } err = chip->chip_drv->wait_idle(chip, SPI_FLASH_GENERIC_SECTOR_ERASE_TIMEOUT); } return err; } esp_err_t spi_flash_chip_generic_erase_block(esp_flash_t *chip, uint32_t start_address) { esp_err_t err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT); } if (err == ESP_OK) { chip->host->erase_block(chip->host, start_address); //to save time, flush cache here if (chip->host->flush_cache) { err = chip->host->flush_cache(chip->host, start_address, chip->chip_drv->block_erase_size); if (err != ESP_OK) { return err; } } err = chip->chip_drv->wait_idle(chip, SPI_FLASH_GENERIC_BLOCK_ERASE_TIMEOUT); } return err; } esp_err_t spi_flash_chip_generic_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length) { esp_err_t err = ESP_OK; // Configure the host, and return spi_flash_chip_generic_config_host_read_mode(chip); while (err == ESP_OK && length > 0) { uint32_t read_len = MIN(length, chip->host->max_read_bytes); err = chip->host->read(chip->host, buffer, address, read_len); buffer += read_len; length -= read_len; address += read_len; } return err; } esp_err_t spi_flash_chip_generic_page_program(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { esp_err_t err; err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT); if (err == ESP_OK) { // Perform the actual Page Program command chip->host->program_page(chip->host, buffer, address, length); err = chip->chip_drv->wait_idle(chip, DEFAULT_PAGE_PROGRAM_TIMEOUT); } return err; } esp_err_t spi_flash_chip_generic_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { esp_err_t err = ESP_OK; const uint32_t page_size = chip->chip_drv->page_size; while (err == ESP_OK && length > 0) { uint32_t page_len = MIN(chip->host->max_write_bytes, MIN(page_size, length)); if ((address + page_len) / page_size != address / page_size) { // Most flash chips can't page write across a page boundary page_len = page_size - (address % page_size); } err = chip->chip_drv->set_chip_write_protect(chip, false); if (err == ESP_OK) { err = chip->chip_drv->program_page(chip, buffer, address, page_len); address += page_len; buffer = (void *)((intptr_t)buffer + page_len); length -= page_len; } } if (err == ESP_OK && chip->host->flush_cache) { err = chip->host->flush_cache(chip->host, address, length); } return err; } esp_err_t spi_flash_chip_generic_write_encrypted(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { return ESP_ERR_FLASH_UNSUPPORTED_HOST; // TODO } esp_err_t spi_flash_chip_generic_set_write_protect(esp_flash_t *chip, bool write_protect) { esp_err_t err = ESP_OK; err = chip->chip_drv->wait_idle(chip, DEFAULT_IDLE_TIMEOUT); if (err == ESP_OK) { chip->host->set_write_protect(chip->host, write_protect); } bool wp_read; err = chip->chip_drv->get_chip_write_protect(chip, &wp_read); if (err == ESP_OK && wp_read != write_protect) { // WREN flag has not been set! err = ESP_ERR_NOT_FOUND; } return err; } esp_err_t spi_flash_chip_generic_get_write_protect(esp_flash_t *chip, bool *out_write_protect) { esp_err_t err = ESP_OK; uint8_t status; assert(out_write_protect!=NULL); err = chip->host->read_status(chip->host, &status); if (err != ESP_OK) { return err; } *out_write_protect = ((status & SR_WREN) == 0); return err; } esp_err_t spi_flash_generic_wait_host_idle(esp_flash_t *chip, uint32_t *timeout_ms) { while (chip->host->host_idle(chip->host) && *timeout_ms > 0) { if (*timeout_ms > 1) { chip->os_func->delay_ms(chip->os_func_data, 1); } (*timeout_ms)--; } return (*timeout_ms > 0) ? ESP_OK : ESP_ERR_TIMEOUT; } esp_err_t spi_flash_chip_generic_wait_idle(esp_flash_t *chip, uint32_t timeout_ms) { timeout_ms++; // allow at least one pass before timeout, last one has no sleep cycle uint8_t status = 0; while (timeout_ms > 0) { esp_err_t err = spi_flash_generic_wait_host_idle(chip, &timeout_ms); if (err != ESP_OK) { return err; } err = chip->host->read_status(chip->host, &status); if (err != ESP_OK) { return err; } if ((status & SR_WIP) == 0) { break; // Write in progress is complete } if (timeout_ms > 1) { chip->os_func->delay_ms(chip->os_func_data, 1); } timeout_ms--; } return (timeout_ms > 0) ? ESP_OK : ESP_ERR_TIMEOUT; } esp_err_t spi_flash_chip_generic_config_host_read_mode(esp_flash_t *chip) { uint32_t dummy_cyclelen_base; uint32_t addr_bitlen; uint32_t read_command; switch (chip->read_mode) { case SPI_FLASH_QIO: //for QIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that. addr_bitlen = 32; dummy_cyclelen_base = 4; read_command = CMD_FASTRD_QIO; break; case SPI_FLASH_QOUT: addr_bitlen = 24; dummy_cyclelen_base = 8; read_command = CMD_FASTRD_QUAD; break; case SPI_FLASH_DIO: //for DIO mode, the 4 bit right after the address are used for continuous mode, should be set to 0 to avoid that. addr_bitlen = 28; dummy_cyclelen_base = 2; read_command = CMD_FASTRD_DIO; break; case SPI_FLASH_DOUT: addr_bitlen = 24; dummy_cyclelen_base = 8; read_command = CMD_FASTRD_DUAL; break; case SPI_FLASH_FASTRD: addr_bitlen = 24; dummy_cyclelen_base = 8; read_command = CMD_FASTRD; break; case SPI_FLASH_SLOWRD: addr_bitlen = 24; dummy_cyclelen_base = 0; read_command = CMD_READ; break; default: return ESP_ERR_FLASH_NOT_INITIALISED; } return chip->host->configure_host_read_mode(chip->host, chip->read_mode, addr_bitlen, dummy_cyclelen_base, read_command); } esp_err_t spi_flash_common_set_read_mode(esp_flash_t *chip, uint8_t qe_rdsr_command, uint8_t qe_wrsr_command, uint8_t qe_sr_bitwidth, unsigned qe_sr_bit) { if (spi_flash_is_quad_mode(chip)) { // Ensure quad modes are enabled, using the Quad Enable parameters supplied. spi_flash_trans_t t = { .command = qe_rdsr_command, .mosi_data = 0, .mosi_len = 0, .miso_len = qe_sr_bitwidth, }; chip->host->common_command(chip->host, &t); unsigned sr = t.miso_data[0]; ESP_EARLY_LOGV(TAG, "set_read_mode: status before 0x%x", sr); if ((sr & qe_sr_bit) == 0) { //some chips needs the write protect to be disabled before writing to Status Register chip->chip_drv->set_chip_write_protect(chip, false); sr |= qe_sr_bit; spi_flash_trans_t t = { .command = qe_wrsr_command, .mosi_data = sr, .mosi_len = qe_sr_bitwidth, .miso_len = 0, }; chip->host->common_command(chip->host, &t); /* Check the new QE bit has stayed set */ spi_flash_trans_t t_rdsr = { .command = qe_rdsr_command, .mosi_data = 0, .mosi_len = 0, .miso_len = qe_sr_bitwidth }; chip->host->common_command(chip->host, &t_rdsr); sr = t_rdsr.miso_data[0]; ESP_EARLY_LOGV(TAG, "set_read_mode: status after 0x%x", sr); if ((sr & qe_sr_bit) == 0) { return ESP_ERR_FLASH_NO_RESPONSE; } chip->chip_drv->set_chip_write_protect(chip, true); } } return ESP_OK; } esp_err_t spi_flash_chip_generic_set_read_mode(esp_flash_t *chip) { // On "generic" chips, this involves checking // bit 1 (QE) of RDSR2 (35h) result // (it works this way on GigaDevice & Fudan Micro chips, probably others...) const uint8_t BIT_QE = 1 << 1; return spi_flash_common_set_read_mode(chip, CMD_RDSR2, CMD_WRSR2, 8, BIT_QE); } static const char chip_name[] = "generic"; const spi_flash_chip_t esp_flash_chip_generic = { .name = chip_name, .probe = spi_flash_chip_generic_probe, .reset = spi_flash_chip_generic_reset, .detect_size = spi_flash_chip_generic_detect_size, .erase_chip = spi_flash_chip_generic_erase_chip, .erase_sector = spi_flash_chip_generic_erase_sector, .erase_block = spi_flash_chip_generic_erase_block, .sector_size = 4 * 1024, .block_erase_size = 64 * 1024, // TODO: figure out if generic chip-wide protection bits exist across some manufacturers .get_chip_write_protect = spi_flash_chip_generic_get_write_protect, .set_chip_write_protect = spi_flash_chip_generic_set_write_protect, // Chip write protection regions do not appear to be standardised // at all, this is implemented in chip-specific drivers only. .num_protectable_regions = 0, .protectable_regions = NULL, .get_protected_regions = NULL, .set_protected_regions = NULL, .read = spi_flash_chip_generic_read, .write = spi_flash_chip_generic_write, .program_page = spi_flash_chip_generic_page_program, .page_size = 256, .write_encrypted = spi_flash_chip_generic_write_encrypted, .wait_idle = spi_flash_chip_generic_wait_idle, .set_read_mode = spi_flash_chip_generic_set_read_mode, };