// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "rom/ets_sys.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "soc/timer_group_reg.h" #define MHZ (1000000) /* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0. * This feature counts the number of XTAL clock cycles within a given number of * RTC_SLOW_CLK cycles. * * Slow clock calibration feature has two modes of operation: one-off and cycling. * In cycling mode (which is enabled by default on SoC reset), counting of XTAL * cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled * using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed * once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is * enabled using TIMG_RTC_CALI_START bit. */ /** * @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio * @param cal_clk which clock to calibrate * @param slowclk_cycles number of slow clock cycles to count * @return number of XTAL clock cycles within the given number of slow clock cycles */ static uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles) { /* Enable requested clock (150k clock is always on) */ if (cal_clk == RTC_CAL_32K_XTAL) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN); } if (cal_clk == RTC_CAL_8MD256) { SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN); } /* Prepare calibration */ REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk); CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING); REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles); /* Figure out how long to wait for calibration to finish */ uint32_t expected_freq; rtc_slow_freq_t slow_freq = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL); if (cal_clk == RTC_CAL_32K_XTAL || (cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_32K_XTAL)) { expected_freq = 32768; /* standard 32k XTAL */ } else if (cal_clk == RTC_CAL_8MD256 || (cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_8MD256)) { expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256; } else { expected_freq = 150000; /* 150k internal oscillator */ } uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq); /* Start calibration */ CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START); SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START); /* Wait the expected time calibration should take. * TODO: if running under RTOS, and us_time_estimate > RTOS tick, use the * RTOS delay function. */ ets_delay_us(us_time_estimate); /* Wait for calibration to finish up to another us_time_estimate */ int timeout_us = us_time_estimate; while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY) && timeout_us > 0) { timeout_us--; ets_delay_us(1); } if (cal_clk == RTC_CAL_32K_XTAL) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN); } if (cal_clk == RTC_CAL_8MD256) { CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN); } if (timeout_us == 0) { /* timed out waiting for calibration */ return 0; } return REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE); } uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles) { uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles); uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles; uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX); return ratio; } uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles) { rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get(); uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles); uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles; uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider; uint32_t period = (uint32_t)(period_64 & UINT32_MAX); return period; } uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period) { /* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days. * TODO: fix overflow. */ return (time_in_us << RTC_CLK_CAL_FRACT) / period; } uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period) { return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT; } uint64_t rtc_time_get() { SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE); while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) { ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus } SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR); uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG); t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32; return t; }