// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include #include "sdkconfig.h" #include "esp_ipc.h" #include "esp_attr.h" #include "esp_intr_alloc.h" #include "esp_spi_flash.h" #include "esp_log.h" #include "esp_psram.h" static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t* saved_state); static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state); static uint32_t s_flash_op_cache_state[2]; #ifndef CONFIG_FREERTOS_UNICORE static SemaphoreHandle_t s_flash_op_mutex; static volatile bool s_flash_op_can_start = false; static volatile bool s_flash_op_complete = false; #ifndef NDEBUG static volatile int s_flash_op_cpu = -1; #endif void spi_flash_init_lock() { s_flash_op_mutex = xSemaphoreCreateMutex(); } void spi_flash_op_lock() { xSemaphoreTake(s_flash_op_mutex, portMAX_DELAY); } void spi_flash_op_unlock() { xSemaphoreGive(s_flash_op_mutex); } /* If you're going to modify this, keep in mind that while the flash caches of the pro and app cpu are separate, the psram cache is *not*. If one of the CPUs returns from a flash routine with its cache enabled but the other CPUs cache is not enabled yet, you will have problems when accessing psram from the former CPU. */ void IRAM_ATTR spi_flash_op_block_func(void* arg) { // Disable scheduler on this CPU vTaskSuspendAll(); // Restore interrupts that aren't located in IRAM esp_intr_noniram_disable(); uint32_t cpuid = (uint32_t) arg; // Disable cache so that flash operation can start s_flash_op_can_start = true; while (!s_flash_op_complete) { // until we have a way to use interrupts for inter-CPU communication, // busy loop here and wait for the other CPU to finish flash operation } // Restore interrupts that aren't located in IRAM esp_intr_noniram_enable(); // Re-enable scheduler xTaskResumeAll(); } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu() { spi_flash_op_lock(); const uint32_t cpuid = xPortGetCoreID(); const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0; #ifndef NDEBUG // For sanity check later: record the CPU which has started doing flash operation assert(s_flash_op_cpu == -1); s_flash_op_cpu = cpuid; #endif if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) { // Scheduler hasn't been started yet, it means that spi_flash API is being // called from the 2nd stage bootloader or from user_start_cpu0, i.e. from // PRO CPU. APP CPU is either in reset or spinning inside user_start_cpu1, // which is in IRAM. So it is safe to disable cache for the other_cpuid here. assert(other_cpuid == 1); spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]); } else { // Signal to the spi_flash_op_block_task on the other CPU that we need it to // disable cache there and block other tasks from executing. s_flash_op_can_start = false; s_flash_op_complete = false; esp_err_t ret = esp_ipc_call(other_cpuid, &spi_flash_op_block_func, (void*) other_cpuid); assert(ret == ESP_OK); while (!s_flash_op_can_start) { // Busy loop and wait for spi_flash_op_block_func to run so we can // disable cache of the other CPU } // Disable scheduler on the current CPU vTaskSuspendAll(); // This is guaranteed to run on CPU because the other CPU is now // occupied by highest priority task assert(xPortGetCoreID() == cpuid); } // Kill interrupts that aren't located in IRAM esp_intr_noniram_disable(); // Disable cache on both CPUs as well spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]); spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu() { const uint32_t cpuid = xPortGetCoreID(); const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0; #ifndef NDEBUG // Sanity check: flash operation ends on the same CPU as it has started assert(cpuid == s_flash_op_cpu); s_flash_op_cpu = -1; #endif // Re-enable cache on both CPUs spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]); spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]); if (xTaskGetSchedulerState() == taskSCHEDULER_NOT_STARTED) { // Scheduler is not running yet — this means we are running on PRO CPU. // other_cpuid is APP CPU, and it is either in reset or is spinning in // user_start_cpu1, which is in IRAM. So we can simply reenable cache. assert(other_cpuid == 1); spi_flash_restore_cache(other_cpuid, s_flash_op_cache_state[other_cpuid]); } else { // Signal to spi_flash_op_block_task that flash operation is complete s_flash_op_complete = true; } // Re-enable non-iram interrupts esp_intr_noniram_enable(); // Resume tasks on the current CPU, if the scheduler has started. // NOTE: enabling non-IRAM interrupts has to happen before this, // because once the scheduler has started, due to preemption the // current task can end up being moved to the other CPU. // But esp_intr_noniram_enable has to be called on the same CPU which // called esp_intr_noniram_disable if (xTaskGetSchedulerState() != taskSCHEDULER_NOT_STARTED) { xTaskResumeAll(); } // Release API lock spi_flash_op_unlock(); } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os() { const uint32_t cpuid = xPortGetCoreID(); const uint32_t other_cpuid = (cpuid == 0) ? 1 : 0; // do not care about other CPU, it was halted upon entering panic handler spi_flash_disable_cache(other_cpuid, &s_flash_op_cache_state[other_cpuid]); // Kill interrupts that aren't located in IRAM esp_intr_noniram_disable(); // Disable cache on this CPU as well spi_flash_disable_cache(cpuid, &s_flash_op_cache_state[cpuid]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os() { const uint32_t cpuid = xPortGetCoreID(); // Re-enable cache on this CPU spi_flash_restore_cache(cpuid, s_flash_op_cache_state[cpuid]); // Re-enable non-iram interrupts esp_intr_noniram_enable(); } #else // CONFIG_FREERTOS_UNICORE void spi_flash_init_lock() { } void spi_flash_op_lock() { vTaskSuspendAll(); } void spi_flash_op_unlock() { xTaskResumeAll(); } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu() { spi_flash_op_lock(); esp_intr_noniram_disable(); spi_flash_disable_cache(0, &s_flash_op_cache_state[0]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_and_other_cpu() { spi_flash_restore_cache(0, s_flash_op_cache_state[0]); esp_intr_noniram_enable(); spi_flash_op_unlock(); } void IRAM_ATTR spi_flash_disable_interrupts_caches_and_other_cpu_no_os() { // Kill interrupts that aren't located in IRAM esp_intr_noniram_disable(); // Disable cache on this CPU as well spi_flash_disable_cache(0, &s_flash_op_cache_state[0]); } void IRAM_ATTR spi_flash_enable_interrupts_caches_no_os() { // Re-enable cache on this CPU spi_flash_restore_cache(0, s_flash_op_cache_state[0]); // Re-enable non-iram interrupts esp_intr_noniram_enable(); } #endif // CONFIG_FREERTOS_UNICORE /** * The following two functions are replacements for Cache_Read_Disable and Cache_Read_Enable * function in ROM. They are used to work around a bug where Cache_Read_Disable requires a call to * Cache_Flush before Cache_Read_Enable, even if cached data was not modified. */ static const uint32_t cache_mask = DPORT_APP_CACHE_MASK_OPSDRAM | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 | DPORT_APP_CACHE_MASK_IROM0 | DPORT_APP_CACHE_MASK_IRAM1 | DPORT_APP_CACHE_MASK_IRAM0; static void IRAM_ATTR spi_flash_disable_cache(uint32_t cpuid, uint32_t* saved_state) { uint32_t ret = 0; if (cpuid == 0) { ret |= GET_PERI_REG_BITS2(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, 0); while (GET_PERI_REG_BITS2(DPORT_PRO_DCACHE_DBUG0_REG, DPORT_PRO_CACHE_STATE, DPORT_PRO_CACHE_STATE_S) != 1) { ; } SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 0, DPORT_PRO_CACHE_ENABLE_S); } else { ret |= GET_PERI_REG_BITS2(DPORT_APP_CACHE_CTRL1_REG, cache_mask, 0); while (GET_PERI_REG_BITS2(DPORT_APP_DCACHE_DBUG0_REG, DPORT_APP_CACHE_STATE, DPORT_APP_CACHE_STATE_S) != 1) { ; } SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 0, DPORT_APP_CACHE_ENABLE_S); } *saved_state = ret; } static void IRAM_ATTR spi_flash_restore_cache(uint32_t cpuid, uint32_t saved_state) { if (cpuid == 0) { SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL_REG, 1, 1, DPORT_PRO_CACHE_ENABLE_S); SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, cache_mask, saved_state, 0); } else { SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL_REG, 1, 1, DPORT_APP_CACHE_ENABLE_S); SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, cache_mask, saved_state, 0); } } IRAM_ATTR bool spi_flash_cache_enabled() { return REG_GET_BIT(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_CACHE_ENABLE) && REG_GET_BIT(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_CACHE_ENABLE); }