// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "driver/spi_common.h" #include "driver/spi_slave.h" #include "soc/gpio_sig_map.h" #include "soc/spi_reg.h" #include "soc/dport_reg.h" #include "soc/spi_struct.h" #include "rom/ets_sys.h" #include "esp_types.h" #include "esp_attr.h" #include "esp_intr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_err.h" #include "esp_pm.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "freertos/xtensa_api.h" #include "freertos/task.h" #include "freertos/ringbuf.h" #include "soc/soc.h" #include "soc/soc_memory_layout.h" #include "soc/dport_reg.h" #include "rom/lldesc.h" #include "driver/gpio.h" #include "driver/periph_ctrl.h" #include "esp_heap_caps.h" static const char *SPI_TAG = "spi_slave"; #define SPI_CHECK(a, str, ret_val) \ if (!(a)) { \ ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \ return (ret_val); \ } #define VALID_HOST(x) (x>SPI_HOST && x<=VSPI_HOST) typedef struct { spi_slave_interface_config_t cfg; intr_handle_t intr; spi_dev_t *hw; spi_slave_transaction_t *cur_trans; lldesc_t *dmadesc_tx; lldesc_t *dmadesc_rx; uint32_t flags; int max_transfer_sz; QueueHandle_t trans_queue; QueueHandle_t ret_queue; int dma_chan; #ifdef CONFIG_PM_ENABLE esp_pm_lock_handle_t pm_lock; #endif } spi_slave_t; static spi_slave_t *spihost[3]; static void IRAM_ATTR spi_intr(void *arg); esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *bus_config, const spi_slave_interface_config_t *slave_config, int dma_chan) { bool spi_chan_claimed, dma_chan_claimed; esp_err_t ret = ESP_OK; esp_err_t err; //We only support HSPI/VSPI, period. SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK( dma_chan >= 0 && dma_chan <= 2, "invalid dma channel", ESP_ERR_INVALID_ARG ); spi_chan_claimed=spicommon_periph_claim(host); SPI_CHECK(spi_chan_claimed, "host already in use", ESP_ERR_INVALID_STATE); if ( dma_chan != 0 ) { dma_chan_claimed=spicommon_dma_chan_claim(dma_chan); if ( !dma_chan_claimed ) { spicommon_periph_free( host ); SPI_CHECK(dma_chan_claimed, "dma channel already in use", ESP_ERR_INVALID_STATE); } } spihost[host] = malloc(sizeof(spi_slave_t)); if (spihost[host] == NULL) { ret = ESP_ERR_NO_MEM; goto cleanup; } memset(spihost[host], 0, sizeof(spi_slave_t)); memcpy(&spihost[host]->cfg, slave_config, sizeof(spi_slave_interface_config_t)); err = spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_SLAVE|bus_config->flags, &spihost[host]->flags); if (err!=ESP_OK) { ret = err; goto cleanup; } gpio_set_direction(slave_config->spics_io_num, GPIO_MODE_INPUT); spicommon_cs_initialize(host, slave_config->spics_io_num, 0, !(spihost[host]->flags&SPICOMMON_BUSFLAG_NATIVE_PINS)); spihost[host]->dma_chan = dma_chan; if (dma_chan != 0) { //See how many dma descriptors we need and allocate them int dma_desc_ct = (bus_config->max_transfer_sz + SPI_MAX_DMA_LEN - 1) / SPI_MAX_DMA_LEN; if (dma_desc_ct == 0) dma_desc_ct = 1; //default to 4k when max is not given spihost[host]->max_transfer_sz = dma_desc_ct * SPI_MAX_DMA_LEN; spihost[host]->dmadesc_tx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); spihost[host]->dmadesc_rx = heap_caps_malloc(sizeof(lldesc_t) * dma_desc_ct, MALLOC_CAP_DMA); if (!spihost[host]->dmadesc_tx || !spihost[host]->dmadesc_rx) { ret = ESP_ERR_NO_MEM; goto cleanup; } } else { //We're limited to non-DMA transfers: the SPI work registers can hold 64 bytes at most. spihost[host]->max_transfer_sz = 16 * 4; } #ifdef CONFIG_PM_ENABLE err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_slave", &spihost[host]->pm_lock); if (err != ESP_OK) { ret = err; goto cleanup; } // Lock APB frequency while SPI slave driver is in use esp_pm_lock_acquire(spihost[host]->pm_lock); #endif //CONFIG_PM_ENABLE //Create queues spihost[host]->trans_queue = xQueueCreate(slave_config->queue_size, sizeof(spi_slave_transaction_t *)); spihost[host]->ret_queue = xQueueCreate(slave_config->queue_size, sizeof(spi_slave_transaction_t *)); if (!spihost[host]->trans_queue || !spihost[host]->ret_queue) { ret = ESP_ERR_NO_MEM; goto cleanup; } err = esp_intr_alloc(spicommon_irqsource_for_host(host), ESP_INTR_FLAG_INTRDISABLED, spi_intr, (void *)spihost[host], &spihost[host]->intr); if (err != ESP_OK) { ret = err; goto cleanup; } spihost[host]->hw = spicommon_hw_for_host(host); //Configure slave spihost[host]->hw->clock.val = 0; spihost[host]->hw->user.val = 0; spihost[host]->hw->ctrl.val = 0; spihost[host]->hw->slave.wr_rd_buf_en = 1; //no sure if needed spihost[host]->hw->user.doutdin = 1; //we only support full duplex spihost[host]->hw->user.sio = 0; spihost[host]->hw->slave.slave_mode = 1; spihost[host]->hw->dma_conf.val |= SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST; spihost[host]->hw->dma_out_link.start = 0; spihost[host]->hw->dma_in_link.start = 0; spihost[host]->hw->dma_conf.val &= ~(SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST); spihost[host]->hw->dma_conf.out_data_burst_en = 1; spihost[host]->hw->slave.sync_reset = 1; spihost[host]->hw->slave.sync_reset = 0; bool nodelay = true; spihost[host]->hw->ctrl.rd_bit_order = (slave_config->flags & SPI_SLAVE_RXBIT_LSBFIRST) ? 1 : 0; spihost[host]->hw->ctrl.wr_bit_order = (slave_config->flags & SPI_SLAVE_TXBIT_LSBFIRST) ? 1 : 0; if (slave_config->mode == 0) { spihost[host]->hw->pin.ck_idle_edge = 0; spihost[host]->hw->user.ck_i_edge = 1; spihost[host]->hw->ctrl2.miso_delay_mode = nodelay ? 0 : 2; } else if (slave_config->mode == 1) { spihost[host]->hw->pin.ck_idle_edge = 0; spihost[host]->hw->user.ck_i_edge = 0; spihost[host]->hw->ctrl2.miso_delay_mode = nodelay ? 0 : 1; } else if (slave_config->mode == 2) { spihost[host]->hw->pin.ck_idle_edge = 1; spihost[host]->hw->user.ck_i_edge = 0; spihost[host]->hw->ctrl2.miso_delay_mode = nodelay ? 0 : 1; } else if (slave_config->mode == 3) { spihost[host]->hw->pin.ck_idle_edge = 1; spihost[host]->hw->user.ck_i_edge = 1; spihost[host]->hw->ctrl2.miso_delay_mode = nodelay ? 0 : 2; } //Reset DMA spihost[host]->hw->dma_conf.val |= SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST; spihost[host]->hw->dma_out_link.start = 0; spihost[host]->hw->dma_in_link.start = 0; spihost[host]->hw->dma_conf.val &= ~(SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST); //Disable unneeded ints spihost[host]->hw->slave.rd_buf_done = 0; spihost[host]->hw->slave.wr_buf_done = 0; spihost[host]->hw->slave.rd_sta_done = 0; spihost[host]->hw->slave.wr_sta_done = 0; spihost[host]->hw->slave.rd_buf_inten = 0; spihost[host]->hw->slave.wr_buf_inten = 0; spihost[host]->hw->slave.rd_sta_inten = 0; spihost[host]->hw->slave.wr_sta_inten = 0; //Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as //disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling //any transactions that are queued. spihost[host]->hw->slave.trans_inten = 1; spihost[host]->hw->slave.trans_done = 1; return ESP_OK; cleanup: if (spihost[host]) { if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue); if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue); free(spihost[host]->dmadesc_tx); free(spihost[host]->dmadesc_rx); #ifdef CONFIG_PM_ENABLE if (spihost[host]->pm_lock) { esp_pm_lock_release(spihost[host]->pm_lock); esp_pm_lock_delete(spihost[host]->pm_lock); } #endif } free(spihost[host]); spihost[host] = NULL; spicommon_periph_free(host); spicommon_dma_chan_free(dma_chan); return ret; } esp_err_t spi_slave_free(spi_host_device_t host) { SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); if (spihost[host]->trans_queue) vQueueDelete(spihost[host]->trans_queue); if (spihost[host]->ret_queue) vQueueDelete(spihost[host]->ret_queue); if ( spihost[host]->dma_chan > 0 ) { spicommon_dma_chan_free ( spihost[host]->dma_chan ); } free(spihost[host]->dmadesc_tx); free(spihost[host]->dmadesc_rx); esp_intr_free(spihost[host]->intr); #ifdef CONFIG_PM_ENABLE esp_pm_lock_release(spihost[host]->pm_lock); esp_pm_lock_delete(spihost[host]->pm_lock); #endif //CONFIG_PM_ENABLE free(spihost[host]); spihost[host] = NULL; spicommon_periph_free(host); return ESP_OK; } esp_err_t spi_slave_queue_trans(spi_host_device_t host, const spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait) { BaseType_t r; SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]->dma_chan == 0 || trans_desc->tx_buffer==NULL || esp_ptr_dma_capable(trans_desc->tx_buffer), "txdata not in DMA-capable memory", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host]->dma_chan == 0 || trans_desc->rx_buffer==NULL || esp_ptr_dma_capable(trans_desc->rx_buffer), "rxdata not in DMA-capable memory", ESP_ERR_INVALID_ARG); SPI_CHECK(trans_desc->length <= spihost[host]->max_transfer_sz * 8, "data transfer > host maximum", ESP_ERR_INVALID_ARG); r = xQueueSend(spihost[host]->trans_queue, (void *)&trans_desc, ticks_to_wait); if (!r) return ESP_ERR_TIMEOUT; esp_intr_enable(spihost[host]->intr); return ESP_OK; } esp_err_t spi_slave_get_trans_result(spi_host_device_t host, spi_slave_transaction_t **trans_desc, TickType_t ticks_to_wait) { BaseType_t r; SPI_CHECK(VALID_HOST(host), "invalid host", ESP_ERR_INVALID_ARG); SPI_CHECK(spihost[host], "host not slave", ESP_ERR_INVALID_ARG); r = xQueueReceive(spihost[host]->ret_queue, (void *)trans_desc, ticks_to_wait); if (!r) return ESP_ERR_TIMEOUT; return ESP_OK; } esp_err_t spi_slave_transmit(spi_host_device_t host, spi_slave_transaction_t *trans_desc, TickType_t ticks_to_wait) { esp_err_t ret; spi_slave_transaction_t *ret_trans; //ToDo: check if any spi transfers in flight ret = spi_slave_queue_trans(host, trans_desc, ticks_to_wait); if (ret != ESP_OK) return ret; ret = spi_slave_get_trans_result(host, &ret_trans, ticks_to_wait); if (ret != ESP_OK) return ret; assert(ret_trans == trans_desc); return ESP_OK; } #ifdef DEBUG_SLAVE static void dumpregs(spi_dev_t *hw) { ets_printf("***REG DUMP ***\n"); ets_printf("mosi_dlen : %08X\n", hw->mosi_dlen.val); ets_printf("miso_dlen : %08X\n", hw->miso_dlen.val); ets_printf("slv_wrbuf_dlen : %08X\n", hw->slv_wrbuf_dlen.val); ets_printf("slv_rdbuf_dlen : %08X\n", hw->slv_rdbuf_dlen.val); ets_printf("slave : %08X\n", hw->slave.val); ets_printf("slv_rdata_bit : %x\n", hw->slv_rd_bit.slv_rdata_bit); ets_printf("dma_rx_status : %08X\n", hw->dma_rx_status); ets_printf("dma_tx_status : %08X\n", hw->dma_tx_status); } static void dumpll(lldesc_t *ll) { ets_printf("****LL DUMP****\n"); ets_printf("Size %d\n", ll->size); ets_printf("Len: %d\n", ll->length); ets_printf("Owner: %s\n", ll->owner ? "dma" : "cpu"); } #endif static void IRAM_ATTR spi_slave_restart_after_dmareset(void *arg) { spi_slave_t *host = (spi_slave_t *)arg; esp_intr_enable(host->intr); } //This is run in interrupt context and apart from initialization and destruction, this is the only code //touching the host (=spihost[x]) variable. The rest of the data arrives in queues. That is why there are //no muxes in this code. static void IRAM_ATTR spi_intr(void *arg) { BaseType_t r; BaseType_t do_yield = pdFALSE; spi_slave_transaction_t *trans = NULL; spi_slave_t *host = (spi_slave_t *)arg; #ifdef DEBUG_SLAVE dumpregs(host->hw); if (host->dmadesc_rx) dumpll(&host->dmadesc_rx[0]); #endif //Ignore all but the trans_done int. if (!host->hw->slave.trans_done) return; if (host->cur_trans) { //when data of cur_trans->length are all sent, the slv_rdata_bit //will be the length sent-1 (i.e. cur_trans->length-1 ), otherwise //the length sent. host->cur_trans->trans_len = host->hw->slv_rd_bit.slv_rdata_bit; if ( host->cur_trans->trans_len == host->cur_trans->length - 1 ) { host->cur_trans->trans_len++; } if (host->dma_chan == 0 && host->cur_trans->rx_buffer) { //Copy result out uint32_t *data = host->cur_trans->rx_buffer; for (int x = 0; x < host->cur_trans->trans_len; x += 32) { uint32_t word; int len = host->cur_trans->trans_len - x; if (len > 32) len = 32; word = host->hw->data_buf[(x / 32)]; memcpy(&data[x / 32], &word, (len + 7) / 8); } } else if (host->dma_chan != 0 && host->cur_trans->rx_buffer) { int i; //In case CS goes high too soon, the transfer is aborted while the DMA channel still thinks it's going. This //leads to issues later on, so in that case we need to reset the channel. The state can be detected because //the DMA system doesn't give back the offending descriptor; the owner is still set to DMA. for (i = 0; host->dmadesc_rx[i].eof == 0 && host->dmadesc_rx[i].owner == 0; i++) ; if (host->dmadesc_rx[i].owner) { spicommon_dmaworkaround_req_reset(host->dma_chan, spi_slave_restart_after_dmareset, host); } } if (host->cfg.post_trans_cb) host->cfg.post_trans_cb(host->cur_trans); //Okay, transaction is done. //Return transaction descriptor. xQueueSendFromISR(host->ret_queue, &host->cur_trans, &do_yield); host->cur_trans = NULL; } if (host->dma_chan != 0) { spicommon_dmaworkaround_idle(host->dma_chan); if (spicommon_dmaworkaround_reset_in_progress()) { //We need to wait for the reset to complete. Disable int (will be re-enabled on reset callback) and exit isr. esp_intr_disable(host->intr); if (do_yield) portYIELD_FROM_ISR(); return; } } //Grab next transaction r = xQueueReceiveFromISR(host->trans_queue, &trans, &do_yield); if (!r) { //No packet waiting. Disable interrupt. esp_intr_disable(host->intr); } else { //We have a transaction. Send it. host->hw->slave.trans_done = 0; //clear int bit host->cur_trans = trans; if (host->dma_chan != 0) { spicommon_dmaworkaround_transfer_active(host->dma_chan); host->hw->dma_conf.val |= SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST; host->hw->dma_out_link.start = 0; host->hw->dma_in_link.start = 0; host->hw->dma_conf.val &= ~(SPI_OUT_RST | SPI_IN_RST | SPI_AHBM_RST | SPI_AHBM_FIFO_RST); host->hw->dma_conf.out_data_burst_en = 0; host->hw->dma_conf.indscr_burst_en = 0; host->hw->dma_conf.outdscr_burst_en = 0; //Fill DMA descriptors if (trans->rx_buffer) { host->hw->user.usr_miso_highpart = 0; spicommon_setup_dma_desc_links(host->dmadesc_rx, ((trans->length + 7) / 8), trans->rx_buffer, true); host->hw->dma_in_link.addr = (int)(&host->dmadesc_rx[0]) & 0xFFFFF; host->hw->dma_in_link.start = 1; } if (trans->tx_buffer) { spicommon_setup_dma_desc_links(host->dmadesc_tx, (trans->length + 7) / 8, trans->tx_buffer, false); host->hw->user.usr_mosi_highpart = 0; host->hw->dma_out_link.addr = (int)(&host->dmadesc_tx[0]) & 0xFFFFF; host->hw->dma_out_link.start = 1; } host->hw->slave.sync_reset = 1; host->hw->slave.sync_reset = 0; } else { //No DMA. Turn off SPI and copy data to transmit buffers. host->hw->cmd.usr = 0; host->hw->slave.sync_reset = 1; host->hw->slave.sync_reset = 0; host->hw->user.usr_miso_highpart = 0; host->hw->user.usr_mosi_highpart = 0; if (trans->tx_buffer) { const uint32_t *data = host->cur_trans->tx_buffer; for (int x = 0; x < trans->length; x += 32) { uint32_t word; memcpy(&word, &data[x / 32], 4); host->hw->data_buf[(x / 32)] = word; } } } host->hw->slv_rd_bit.slv_rdata_bit = 0; host->hw->slv_wrbuf_dlen.bit_len = trans->length - 1; host->hw->slv_rdbuf_dlen.bit_len = trans->length - 1; host->hw->mosi_dlen.usr_mosi_dbitlen = trans->length - 1; host->hw->miso_dlen.usr_miso_dbitlen = trans->length - 1; host->hw->user.usr_mosi = (trans->tx_buffer == NULL) ? 0 : 1; host->hw->user.usr_miso = (trans->rx_buffer == NULL) ? 0 : 1; //Kick off transfer host->hw->cmd.usr = 1; if (host->cfg.post_setup_cb) host->cfg.post_setup_cb(trans); } if (do_yield) portYIELD_FROM_ISR(); }