// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "esp_log.h" #include "esp_intr_alloc.h" #include "soc/sdmmc_struct.h" #include "soc/sdmmc_reg.h" #include "soc/io_mux_reg.h" #include "soc/gpio_sig_map.h" #include "rom/gpio.h" #include "driver/gpio.h" #include "driver/sdmmc_host.h" #include "sdmmc_private.h" #define SDMMC_EVENT_QUEUE_LENGTH 32 typedef struct { uint32_t clk; uint32_t cmd; uint32_t d0; uint32_t d1; uint32_t d2; uint32_t d3; uint32_t d4; uint32_t d5; uint32_t d6; uint32_t d7; uint8_t card_detect; uint8_t write_protect; uint8_t width; } sdmmc_slot_info_t; static void sdmmc_isr(void* arg); static void sdmmc_host_dma_init(); static const sdmmc_slot_info_t s_slot_info[2] = { { .clk = PERIPHS_IO_MUX_SD_CLK_U, .cmd = PERIPHS_IO_MUX_SD_CMD_U, .d0 = PERIPHS_IO_MUX_SD_DATA0_U, .d1 = PERIPHS_IO_MUX_SD_DATA1_U, .d2 = PERIPHS_IO_MUX_SD_DATA2_U, .d3 = PERIPHS_IO_MUX_SD_DATA3_U, .d4 = PERIPHS_IO_MUX_GPIO16_U, .d5 = PERIPHS_IO_MUX_GPIO17_U, .d6 = PERIPHS_IO_MUX_GPIO5_U, .d7 = PERIPHS_IO_MUX_GPIO18_U, .card_detect = HOST_CARD_DETECT_N_1_IDX, .write_protect = HOST_CARD_WRITE_PRT_1_IDX, .width = 8 }, { .clk = PERIPHS_IO_MUX_MTMS_U, .cmd = PERIPHS_IO_MUX_MTDO_U, .d0 = PERIPHS_IO_MUX_GPIO2_U, .d1 = PERIPHS_IO_MUX_GPIO4_U, .d2 = PERIPHS_IO_MUX_MTDI_U, .d3 = PERIPHS_IO_MUX_MTCK_U, .card_detect = HOST_CARD_DETECT_N_2_IDX, .write_protect = HOST_CARD_WRITE_PRT_2_IDX, .width = 4 } }; static const char* TAG = "sdmmc_periph"; static intr_handle_t s_intr_handle; static QueueHandle_t s_event_queue; void sdmmc_host_reset() { // Set reset bits SDMMC.ctrl.controller_reset = 1; SDMMC.ctrl.dma_reset = 1; SDMMC.ctrl.fifo_reset = 1; // Wait for the reset bits to be cleared by hardware while (SDMMC.ctrl.controller_reset || SDMMC.ctrl.fifo_reset || SDMMC.ctrl.dma_reset) { ; } } /* We have two clock divider stages: * - one is the clock generator which drives SDMMC peripheral, * it can be configured using SDMMC.clock register. It can generate * frequencies 160MHz/(N + 1), where 0 < N < 16, I.e. from 10 to 80 MHz. * - 4 clock dividers inside SDMMC peripheral, which can divide clock * from the first stage by 2 * M, where 0 < M < 255 * (they can also be bypassed). * * For cards which aren't UHS-1 or UHS-2 cards, which we don't support, * maximum bus frequency in high speed (HS) mode is 50 MHz. * Note: for non-UHS-1 cards, HS mode is optional. * Default speed (DS) mode is mandatory, it works up to 25 MHz. * Whether the card supports HS or not can be determined using TRAN_SPEED * field of card's CSD register. * * 50 MHz can not be obtained exactly, closest we can get is 53 MHz. * For now set the first stage divider to generate 40MHz, and then configure * the second stage dividers to generate the frequency requested. * * Of the second stage dividers, div0 is used for card 0, and div1 is used * for card 1. */ static void sdmmc_host_input_clk_enable() { // Set frequency to 160MHz / (p + 1) = 40MHz, duty cycle (h + 1)/(p + 1) = 1/2 SDMMC.clock.div_factor_p = 3; SDMMC.clock.div_factor_h = 1; SDMMC.clock.div_factor_m = 3; // Set phases for in/out clocks SDMMC.clock.phase_dout = 4; SDMMC.clock.phase_din = 4; SDMMC.clock.phase_core = 0; // Wait for the clock to propagate ets_delay_us(10); } static void sdmmc_host_input_clk_disable() { SDMMC.clock.val = 0; } static void sdmmc_host_clock_update_command(int slot) { // Clock update command (not a real command; just updates CIU registers) sdmmc_hw_cmd_t cmd_val = { .card_num = slot, .update_clk_reg = 1, .wait_complete = 1 }; bool repeat = true; while(repeat) { sdmmc_host_start_command(slot, cmd_val, 0); while (true) { // Sending clock update command to the CIU can generate HLE error. // According to the manual, this is okay and we must retry the command. if (SDMMC.rintsts.hle) { SDMMC.rintsts.hle = 1; repeat = true; break; } // When the command is accepted by CIU, start_command bit will be // cleared in SDMMC.cmd register. if (SDMMC.cmd.start_command == 0) { repeat = false; break; } } } } esp_err_t sdmmc_host_set_card_clk(int slot, uint32_t freq_khz) { if (!(slot == 0 || slot == 1)) { return ESP_ERR_INVALID_ARG; } const int clk40m = 40000; // Disable clock first SDMMC.clkena.cclk_enable &= ~BIT(slot); sdmmc_host_clock_update_command(slot); // Calculate new dividers int div = 0; if (freq_khz < clk40m) { // round up; extra *2 is because clock divider divides by 2*n div = (clk40m + freq_khz * 2 - 1) / (freq_khz * 2); } ESP_LOGD(TAG, "slot=%d div=%d freq=%dkHz", slot, div, (div == 0) ? clk40m : clk40m / (2 * div)); // Program CLKDIV and CLKSRC, send them to the CIU switch(slot) { case 0: SDMMC.clksrc.card0 = 0; SDMMC.clkdiv.div0 = div; break; case 1: SDMMC.clksrc.card1 = 1; SDMMC.clkdiv.div1 = div; break; } sdmmc_host_clock_update_command(slot); // Re-enable clocks SDMMC.clkena.cclk_enable |= BIT(slot); SDMMC.clkena.cclk_low_power |= BIT(slot); sdmmc_host_clock_update_command(slot); return ESP_OK; } esp_err_t sdmmc_host_start_command(int slot, sdmmc_hw_cmd_t cmd, uint32_t arg) { if (!(slot == 0 || slot == 1)) { return ESP_ERR_INVALID_ARG; } while (SDMMC.cmd.start_command == 1) { ; } SDMMC.cmdarg = arg; cmd.card_num = slot; cmd.start_command = 1; SDMMC.cmd = cmd; return ESP_OK; } esp_err_t sdmmc_host_init() { if (s_intr_handle) { return ESP_ERR_INVALID_STATE; } // Enable clock to peripheral sdmmc_host_input_clk_enable(); // Reset sdmmc_host_reset(); ESP_LOGD(TAG, "peripheral version %x, hardware config %08x", SDMMC.verid, SDMMC.hcon); // Clear interrupt status and set interrupt mask to known state SDMMC.rintsts.val = 0xffffffff; SDMMC.intmask.val = 0; SDMMC.ctrl.int_enable = 0; // Allocate event queue s_event_queue = xQueueCreate(SDMMC_EVENT_QUEUE_LENGTH, sizeof(sdmmc_event_t)); if (!s_event_queue) { return ESP_ERR_NO_MEM; } // Attach interrupt handler esp_err_t ret = esp_intr_alloc(ETS_SDIO_HOST_INTR_SOURCE, 0, &sdmmc_isr, s_event_queue, &s_intr_handle); if (ret != ESP_OK) { vQueueDelete(s_event_queue); s_event_queue = NULL; return ret; } // Enable interrupts SDMMC.intmask.val = SDMMC_INTMASK_CD | SDMMC_INTMASK_CMD_DONE | SDMMC_INTMASK_DATA_OVER | SDMMC_INTMASK_RCRC | SDMMC_INTMASK_DCRC | SDMMC_INTMASK_RTO | SDMMC_INTMASK_DTO | SDMMC_INTMASK_HTO | SDMMC_INTMASK_SBE | SDMMC_INTMASK_EBE | SDMMC_INTMASK_RESP_ERR | SDMMC_INTMASK_HLE; SDMMC.ctrl.int_enable = 1; // Enable DMA sdmmc_host_dma_init(); // Initialize transaction handler ret = sdmmc_host_transaction_handler_init(); if (ret != ESP_OK) { vQueueDelete(s_event_queue); s_event_queue = NULL; esp_intr_free(s_intr_handle); s_intr_handle = NULL; return ret; } return ESP_OK; } static inline void configure_pin(uint32_t io_mux_reg) { const int sdmmc_func = 3; const int drive_strength = 3; PIN_INPUT_ENABLE(io_mux_reg); PIN_FUNC_SELECT(io_mux_reg, sdmmc_func); PIN_SET_DRV(io_mux_reg, drive_strength); } esp_err_t sdmmc_host_init_slot(int slot, const sdmmc_slot_config_t* slot_config) { if (!s_intr_handle) { return ESP_ERR_INVALID_STATE; } if (!(slot == 0 || slot == 1)) { return ESP_ERR_INVALID_ARG; } if (slot_config == NULL) { return ESP_ERR_INVALID_ARG; } int gpio_cd = slot_config->gpio_cd; int gpio_wp = slot_config->gpio_wp; // Configure pins const sdmmc_slot_info_t* pslot = &s_slot_info[slot]; if (slot_config->width > pslot->width) { return ESP_ERR_INVALID_ARG; } configure_pin(pslot->clk); configure_pin(pslot->cmd); configure_pin(pslot->d0); if (slot_config->width >= 4) { configure_pin(pslot->d1); configure_pin(pslot->d2); configure_pin(pslot->d3); if (slot_config->width == 8) { configure_pin(pslot->d4); configure_pin(pslot->d5); configure_pin(pslot->d6); configure_pin(pslot->d7); } } if (gpio_cd != -1) { gpio_set_direction(gpio_cd, GPIO_MODE_INPUT); gpio_matrix_in(gpio_cd, pslot->card_detect, 0); } if (gpio_wp != -1) { gpio_set_direction(gpio_wp, GPIO_MODE_INPUT); gpio_matrix_in(gpio_wp, pslot->write_protect, 0); } // By default, set probing frequency (400kHz) and 1-bit bus esp_err_t ret = sdmmc_host_set_card_clk(slot, 400); if (ret != ESP_OK) { return ret; } ret = sdmmc_host_set_bus_width(slot, 1); if (ret != ESP_OK) { return ret; } return ESP_OK; } esp_err_t sdmmc_host_deinit() { if (!s_intr_handle) { return ESP_ERR_INVALID_STATE; } esp_intr_free(s_intr_handle); s_intr_handle = NULL; vQueueDelete(s_event_queue); s_event_queue = NULL; sdmmc_host_input_clk_disable(); sdmmc_host_transaction_handler_deinit(); return ESP_OK; } esp_err_t sdmmc_host_wait_for_event(int tick_count, sdmmc_event_t* out_event) { if (!out_event) { return ESP_ERR_INVALID_ARG; } if (!s_event_queue) { return ESP_ERR_INVALID_STATE; } int ret = xQueueReceive(s_event_queue, out_event, tick_count); if (ret == pdFALSE) { return ESP_ERR_TIMEOUT; } return ESP_OK; } esp_err_t sdmmc_host_set_bus_width(int slot, size_t width) { if (!(slot == 0 || slot == 1)) { return ESP_ERR_INVALID_ARG; } if (s_slot_info[slot].width < width) { return ESP_ERR_INVALID_ARG; } const uint16_t mask = BIT(slot); if (width == 1) { SDMMC.ctype.card_width_8 &= ~mask; SDMMC.ctype.card_width &= ~mask; } else if (width == 4) { SDMMC.ctype.card_width_8 &= ~mask; SDMMC.ctype.card_width |= mask; } else if (width == 8){ SDMMC.ctype.card_width_8 |= mask; } else { return ESP_ERR_INVALID_ARG; } ESP_LOGD(TAG, "slot=%d width=%d", slot, width); return ESP_OK; } static void sdmmc_host_dma_init() { SDMMC.ctrl.dma_enable = 1; SDMMC.bmod.val = 0; SDMMC.bmod.sw_reset = 1; SDMMC.idinten.ni = 1; SDMMC.idinten.ri = 1; SDMMC.idinten.ti = 1; } void sdmmc_host_dma_stop() { SDMMC.ctrl.use_internal_dma = 0; SDMMC.ctrl.dma_reset = 1; SDMMC.bmod.fb = 0; SDMMC.bmod.enable = 0; } void sdmmc_host_dma_prepare(sdmmc_desc_t* desc, size_t block_size, size_t data_size) { // TODO: set timeout depending on data size SDMMC.tmout.val = 0xffffffff; // Set size of data and DMA descriptor pointer SDMMC.bytcnt = data_size; SDMMC.blksiz = block_size; SDMMC.dbaddr = desc; // Enable everything needed to use DMA SDMMC.ctrl.dma_enable = 1; SDMMC.ctrl.use_internal_dma = 1; SDMMC.bmod.enable = 1; SDMMC.bmod.fb = 1; sdmmc_host_dma_resume(); } void sdmmc_host_dma_resume() { SDMMC.pldmnd = 1; } /** * @brief SDMMC interrupt handler * * Ignoring SDIO and streaming read/writes for now (and considering just SD memory cards), * all communication is driven by the master, and the hardware handles things like stop * commands automatically. So the interrupt handler doesn't need to do much, we just push * interrupt status into a queue, clear interrupt flags, and let the task currently doing * communication figure out what to do next. * * Card detect interrupts pose a small issue though, because if a card is plugged in and * out a few times, while there is no task to process the events, event queue can become * full and some card detect events may be dropped. We ignore this problem for now, since * the there are no other interesting events which can get lost due to this. */ static void sdmmc_isr(void* arg) { QueueHandle_t queue = (QueueHandle_t) arg; sdmmc_event_t event; uint32_t pending = SDMMC.mintsts.val; SDMMC.rintsts.val = pending; event.sdmmc_status = pending; uint32_t dma_pending = SDMMC.idsts.val; SDMMC.idsts.val = dma_pending; event.dma_status = dma_pending & 0x1f; int higher_priority_task_awoken = pdFALSE; xQueueSendFromISR(queue, &event, &higher_priority_task_awoken); if (higher_priority_task_awoken == pdTRUE) { portYIELD_FROM_ISR(); } }