/* * ESP32 hardware accelerated SHA1/256/512 implementation * based on mbedTLS FIPS-197 compliant version. * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * Additions Copyright (C) 2016-2020, Espressif Systems (Shanghai) PTE Ltd * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ /* * The SHA-1 standard was published by NIST in 1993. * * http://www.itl.nist.gov/fipspubs/fip180-1.htm */ #include #include #include #include "esp_log.h" #include "esp32s2/rom/ets_sys.h" #include "soc/dport_reg.h" #include "soc/hwcrypto_reg.h" #include "esp32s2/rom/cache.h" #include "soc/cache_memory.h" #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "esp32s2/sha.h" #include "esp32s2/crypto_dma.h" #include "esp32s2/rom/lldesc.h" #include "soc/periph_defs.h" #include "soc/crypto_dma_reg.h" #include "driver/periph_ctrl.h" #include "sys/param.h" /* Max amount of bytes in a single DMA operation is 4095, for SHA this means that the biggest safe amount of bytes is 31 blocks of 128 bytes = 3968 */ #define SHA_DMA_MAX_BYTES 3968 /* Lock for SHA engine */ static _lock_t s_sha_lock; const static char *TAG = "esp-sha"; /* Return block size (in bytes) for a given SHA type */ inline static size_t block_length(esp_sha_type type) { switch (type) { case SHA1: case SHA2_224: case SHA2_256: return 64; case SHA2_384: case SHA2_512: case SHA2_512224: case SHA2_512256: case SHA2_512T: return 128; default: return 0; } } /* Return state size (in bytes) for a given SHA type */ inline static size_t state_length(esp_sha_type type) { switch (type) { case SHA1: return 160 / 8; case SHA2_224: case SHA2_256: return 256 / 8; case SHA2_384: case SHA2_512: case SHA2_512224: case SHA2_512256: case SHA2_512T: return 512 / 8; default: return 0; } } /* Enable SHA peripheral and then lock it */ void esp_sha_acquire_hardware() { /* Need to lock DMA since it is shared with AES block */ _lock_acquire(&crypto_dma_lock); _lock_acquire(&s_sha_lock); /* Enable SHA and DMA hardware */ periph_module_enable(PERIPH_SHA_DMA_MODULE); /* DMA for SHA */ REG_WRITE(CRYPTO_DMA_AES_SHA_SELECT_REG, 1); } /* Disable SHA peripheral block and then release it */ void esp_sha_release_hardware() { /* Disable SHA and DMA hardware */ periph_module_disable(PERIPH_SHA_DMA_MODULE); /* Need to lock DMA since it is shared with AES block */ _lock_release(&s_sha_lock); _lock_release(&crypto_dma_lock); } /* Busy wait until SHA is idle */ static void esp_sha_wait_idle(void) { while (DPORT_REG_READ(SHA_BUSY_REG) != 0) { } } void esp_sha_write_digest_state(esp_sha_type sha_type, void *digest_state) { uint32_t *digest_state_words = (uint32_t *)digest_state; uint32_t *reg_addr_buf = (uint32_t *)(SHA_H_BASE); for (int i = 0; i < state_length(sha_type) / 4; i++) { REG_WRITE(®_addr_buf[i], digest_state_words[i]); } } /* Read the SHA digest from hardware */ void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state) { uint32_t *digest_state_words = (uint32_t *)digest_state; int word_len = state_length(sha_type) / 4; esp_dport_access_read_buffer(digest_state_words, SHA_H_BASE, word_len); /* Fault injection check: verify SHA engine actually ran, state is not all zeroes. */ for (int i = 0; i < word_len; i++) { if (digest_state_words[i] != 0) { return; } } abort(); // SHA peripheral returned all zero state, probably due to fault injection } /* The initial hash value for SHA512/t is generated according to the algorithm described in the TRM, chapter SHA-Accelerator */ int esp_sha_512_t_init_hash(uint16_t t) { uint32_t t_string = 0; uint8_t t0, t1, t2, t_len; if (t == 384) { ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u,cannot be 384", t); return -1; } if (t <= 9) { t_string = (uint32_t)((1 << 23) | ((0x30 + t) << 24)); t_len = 0x48; } else if (t <= 99) { t0 = t % 10; t1 = (t / 10) % 10; t_string = (uint32_t)((1 << 15) | ((0x30 + t0) << 16) | (((0x30 + t1) << 24))); t_len = 0x50; } else if (t <= 512) { t0 = t % 10; t1 = (t / 10) % 10; t2 = t / 100; t_string = (uint32_t)((1 << 7) | ((0x30 + t0) << 8) | (((0x30 + t1) << 16) + ((0x30 + t2) << 24))); t_len = 0x58; } else { ESP_LOGE(TAG, "Invalid t for SHA512/t, t = %u, must equal or less than 512", t); return -1; } REG_WRITE(SHA_T_LENGTH_REG, t_len); REG_WRITE(SHA_T_STRING_REG, t_string); REG_WRITE(SHA_MODE_REG, SHA2_512T); REG_WRITE(SHA_START_REG, 1); esp_sha_wait_idle(); return 0; } static int esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen, const void *buf, uint32_t buf_len, bool is_first_block); /* Performs SHA on multiple blocks at a time using DMA splits up into smaller operations for inputs that exceed a single DMA list */ int esp_sha_dma(esp_sha_type sha_type, const void *input, uint32_t ilen, const void *buf, uint32_t buf_len, bool is_first_block) { int ret = 0; const void *dma_input; unsigned char *non_icache_input = NULL; unsigned char *non_icache_buf = NULL; int dma_op_num = ( ilen / (SHA_DMA_MAX_BYTES + 1) ) + 1; if (buf_len > 128) { ESP_LOGE(TAG, "SHA DMA buf_len cannot exceed max size for a single block"); return -1; } #if (CONFIG_SPIRAM_USE_CAPS_ALLOC || CONFIG_SPIRAM_USE_MALLOC) if (esp_ptr_external_ram(input) || esp_ptr_external_ram(buf)) { Cache_WriteBack_All(); } #endif /* DMA cannot access memory in the iCache range, copy data to temporary buffers before transfer */ if (!esp_ptr_dma_ext_capable(input) && !esp_ptr_dma_capable(input)) { non_icache_input = malloc(sizeof(unsigned char) * MIN(ilen, SHA_DMA_MAX_BYTES)); if (non_icache_input == NULL) { ESP_LOGE(TAG, "Failed to allocate memory"); ret = ESP_ERR_NO_MEM; goto cleanup; } } if (!esp_ptr_dma_ext_capable(buf) && !esp_ptr_dma_capable(buf)) { non_icache_buf = malloc(sizeof(unsigned char) * buf_len); if (non_icache_buf == NULL) { ESP_LOGE(TAG, "Failed to allocate memory"); ret = ESP_ERR_NO_MEM; goto cleanup; } memcpy(non_icache_buf, buf, buf_len); buf = non_icache_buf; } /* The max amount of blocks in a single hardware operation is 2^6 - 1 = 63 Thus we only do a single DMA input list + dma buf list, which is max 3968/64 + 64/64 = 63 blocks */ for (int i = 0; i < dma_op_num; i++) { int dma_chunk_len = MIN(ilen, SHA_DMA_MAX_BYTES); /* Input depends on if it's a temp alloc buffer or supplied by user */ if (non_icache_input != NULL) { memcpy(non_icache_input, input, dma_chunk_len); dma_input = non_icache_input; } else { dma_input = input; } ret = esp_sha_dma_process(sha_type, dma_input, dma_chunk_len, buf, buf_len, is_first_block); if (ret != 0) { return ret; } is_first_block = false; ilen -= dma_chunk_len; input += dma_chunk_len; // Only append buf to the first operation buf_len = 0; } cleanup: free(non_icache_input); free(non_icache_buf); return ret; } static void esp_sha_dma_init(lldesc_t *input) { /* Reset DMA */ SET_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST); CLEAR_PERI_REG_MASK(CRYPTO_DMA_CONF0_REG, CONF0_REG_AHBM_RST | CONF0_REG_OUT_RST | CONF0_REG_AHBM_FIFO_RST); /* Set descriptors */ CLEAR_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_ADDR); SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, ((uint32_t)(input))&OUT_LINK_REG_OUTLINK_ADDR); /* Start transfer */ SET_PERI_REG_MASK(CRYPTO_DMA_OUT_LINK_REG, OUT_LINK_REG_OUTLINK_START); } /* Performs SHA on multiple blocks at a time */ static esp_err_t esp_sha_dma_process(esp_sha_type sha_type, const void *input, uint32_t ilen, const void *buf, uint32_t buf_len, bool is_first_block) { size_t blk_len = 0; int ret = 0; lldesc_t dma_descr_input = {}; lldesc_t dma_descr_buf = {}; lldesc_t *dma_descr_head; blk_len = block_length(sha_type); REG_WRITE(SHA_MODE_REG, sha_type); REG_WRITE(SHA_BLOCK_NUM_REG, ((ilen + buf_len) / blk_len)); /* DMA descriptor for Memory to DMA-SHA transfer */ if (ilen) { dma_descr_input.length = ilen; dma_descr_input.size = ilen; dma_descr_input.owner = 1; dma_descr_input.eof = 1; dma_descr_input.buf = input; dma_descr_head = &dma_descr_input; } /* Check after input to overide head if there is any buf*/ if (buf_len) { dma_descr_buf.length = buf_len; dma_descr_buf.size = buf_len; dma_descr_buf.owner = 1; dma_descr_buf.eof = 1; dma_descr_buf.buf = buf; dma_descr_head = &dma_descr_buf; } /* Link DMA lists */ if (buf_len && ilen) { dma_descr_buf.eof = 0; dma_descr_buf.empty = (uint32_t)(&dma_descr_input); } esp_sha_dma_init(dma_descr_head); /* Start hashing */ if (is_first_block) { REG_WRITE(SHA_DMA_START_REG, 1); } else { REG_WRITE(SHA_DMA_CONTINUE_REG, 1); } esp_sha_wait_idle(); return ret; }