// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "esp_vfs.h" #include "esp_attr.h" #include "sys/errno.h" #include "sys/lock.h" #include "soc/uart_struct.h" #include "sdkconfig.h" static uart_dev_t* s_uarts[3] = {&UART0, &UART1, &UART2}; static _lock_t s_uart_locks[3]; // per-UART locks, lazily initialized static int IRAM_ATTR uart_open(const char * path, int flags, int mode) { // this is fairly primitive, we should check if file is opened read only, // and error out if write is requested if (strcmp(path, "/0") == 0) { return 0; } else if (strcmp(path, "/1") == 0) { return 1; } else if (strcmp(path, "/2") == 0) { return 2; } errno = ENOENT; return -1; } static void IRAM_ATTR uart_tx_char(uart_dev_t* uart, int c) { while (uart->status.txfifo_cnt >= 127) { ; } uart->fifo.rw_byte = c; } static size_t IRAM_ATTR uart_write(int fd, const void * data, size_t size) { assert(fd >=0 && fd < 3); const char *data_c = (const char *)data; uart_dev_t* uart = s_uarts[fd]; /* * Even though newlib does stream locking on each individual stream, we need * a dedicated UART lock if two streams (stdout and stderr) point to the * same UART. */ _lock_acquire_recursive(&s_uart_locks[fd]); for (size_t i = 0; i < size; i++) { #if CONFIG_NEWLIB_STDOUT_ADDCR if (data_c[i]=='\n') { uart_tx_char(uart, '\r'); } #endif uart_tx_char(uart, data_c[i]); } _lock_release_recursive(&s_uart_locks[fd]); return size; } static ssize_t IRAM_ATTR uart_read(int fd, void* data, size_t size) { assert(fd >=0 && fd < 3); uint8_t *data_c = (uint8_t *) data; uart_dev_t* uart = s_uarts[fd]; size_t received = 0; _lock_acquire_recursive(&s_uart_locks[fd]); while (uart->status.rxfifo_cnt > 0 && received < size) { uint8_t c = uart->fifo.rw_byte; #if CONFIG_NEWLIB_STDOUT_ADDCR /* Convert \r\n sequences to \n. * If \r is received, it is put into 'buffered_char' until the next * character is received. Then depending on the character, we either * drop \r (if the next one is \n) or output \r and then proceed to output * the new character. */ const int NONE = -1; static int buffered_char = NONE; if (buffered_char != NONE) { if (buffered_char == '\r' && c == '\n') { buffered_char = NONE; } else { data_c[received] = buffered_char; buffered_char = NONE; ++received; if (received == size) { /* We have placed the buffered character into the output buffer * but there won't be enough space for the newly received one. * Keep the new character in buffered_char until read is called * again. */ buffered_char = c; break; } } } if (c == '\r') { buffered_char = c; continue; } #endif //CONFIG_NEWLIB_STDOUT_ADDCR data_c[received] = c; ++received; } _lock_release_recursive(&s_uart_locks[fd]); if (received > 0) { return received; } errno = EWOULDBLOCK; return -1; } static int IRAM_ATTR uart_fstat(int fd, struct stat * st) { assert(fd >=0 && fd < 3); st->st_mode = S_IFCHR; return 0; } static int IRAM_ATTR uart_close(int fd) { assert(fd >=0 && fd < 3); return 0; } void esp_vfs_dev_uart_register() { esp_vfs_t vfs = { .fd_offset = 0, .flags = ESP_VFS_FLAG_DEFAULT, .write = &uart_write, .open = &uart_open, .fstat = &uart_fstat, .close = &uart_close, .read = &uart_read, .lseek = NULL, .stat = NULL, .link = NULL, .unlink = NULL, .rename = NULL }; ESP_ERROR_CHECK(esp_vfs_register("/dev/uart", &vfs, NULL)); }