// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "esp32/rom/ets_sys.h" #include "esp32/rom/rtc.h" #include "soc/rtc.h" #include "esp_err.h" #include "esp_phy_init.h" #include "esp_system.h" #include "esp_log.h" #include "nvs.h" #include "nvs_flash.h" #include "sdkconfig.h" #include "freertos/FreeRTOS.h" #include "freertos/portmacro.h" #include "phy.h" #include "phy_init_data.h" #include "esp_coexist_internal.h" #include "driver/periph_ctrl.h" #include "esp_private/wifi.h" extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb; static const char* TAG = "phy_init"; static _lock_t s_phy_rf_init_lock; /* Bit mask of modules needing to call phy_rf_init */ static uint32_t s_module_phy_rf_init = 0; /* Whether modem sleep is turned on */ static volatile bool s_is_phy_rf_en = false; /* Whether WiFi/BT common clock enabled reference */ static volatile int32_t s_common_clock_enable_ref = 0; /* PHY spinlock mux */ static portMUX_TYPE s_phy_spin_lock = portMUX_INITIALIZER_UNLOCKED; /* Bit mask of modules needing to enter modem sleep mode */ static uint32_t s_modem_sleep_module_enter = 0; /* Bit mask of modules which might use RF, system can enter modem * sleep mode only when all modules registered require to enter * modem sleep*/ static uint32_t s_modem_sleep_module_register = 0; /* Whether modern sleep is turned on */ static volatile bool s_is_modem_sleep_en = false; static _lock_t s_modem_sleep_lock; /* time stamp updated when the PHY/RF is turned on */ static int64_t s_phy_rf_en_ts = 0; static DRAM_ATTR portMUX_TYPE s_phy_int_mux = portMUX_INITIALIZER_UNLOCKED; uint32_t IRAM_ATTR phy_enter_critical(void) { if (xPortInIsrContext()) { portENTER_CRITICAL_ISR(&s_phy_int_mux); } else { portENTER_CRITICAL(&s_phy_int_mux); } // Interrupt level will be stored in current tcb, so always return zero. return 0; } void IRAM_ATTR phy_exit_critical(uint32_t level) { // Param level don't need any more, ignore it. if (xPortInIsrContext()) { portEXIT_CRITICAL_ISR(&s_phy_int_mux); } else { portEXIT_CRITICAL(&s_phy_int_mux); } } int64_t esp_phy_rf_get_on_ts(void) { return s_phy_rf_en_ts; } static inline void phy_update_wifi_mac_time(bool en_clock_stopped, int64_t now) { static uint32_t s_common_clock_disable_time = 0; if (en_clock_stopped) { s_common_clock_disable_time = (uint32_t)now; } else { if (s_common_clock_disable_time) { uint32_t diff = (uint64_t)now - s_common_clock_disable_time; if (s_wifi_mac_time_update_cb) { s_wifi_mac_time_update_cb(diff); } s_common_clock_disable_time = 0; } } } IRAM_ATTR static inline void phy_spin_lock(void) { if (xPortInIsrContext()) { portENTER_CRITICAL_ISR(&s_phy_spin_lock); } else { portENTER_CRITICAL(&s_phy_spin_lock); } } IRAM_ATTR static inline void phy_spin_unlock(void) { if (xPortInIsrContext()) { portEXIT_CRITICAL_ISR(&s_phy_spin_lock); } else { portEXIT_CRITICAL(&s_phy_spin_lock); } } IRAM_ATTR void esp_phy_common_clock_enable(void) { phy_spin_lock(); if (s_common_clock_enable_ref == 0) { // Enable WiFi/BT common clock periph_module_enable(PERIPH_WIFI_BT_COMMON_MODULE); } s_common_clock_enable_ref++; phy_spin_unlock(); } IRAM_ATTR void esp_phy_common_clock_disable(void) { phy_spin_lock(); if (s_common_clock_enable_ref > 0) { s_common_clock_enable_ref --; if (s_common_clock_enable_ref == 0) { // Disable WiFi/BT common clock periph_module_disable(PERIPH_WIFI_BT_COMMON_MODULE); } } else { abort(); } phy_spin_unlock(); } esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode, esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module) { /* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */ if (module >= PHY_MODULE_COUNT){ ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \ module count(%d)", __func__, module, PHY_MODULE_COUNT); return ESP_ERR_INVALID_ARG; } _lock_acquire(&s_phy_rf_init_lock); uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init; bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & (BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE))); esp_err_t status = ESP_OK; s_module_phy_rf_init |= BIT(module); if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){ status = ESP_FAIL; } else if (s_is_phy_rf_en == true) { } else { /* If Wi-Fi, BT all disabled, modem sleep should not take effect; * If either Wi-Fi or BT is enabled, should allow modem sleep requires * to enter sleep; * If Wi-Fi, BT co-exist, it is disallowed that only one module * support modem sleep, E,g. BT support modem sleep but Wi-Fi not * support modem sleep; */ if (is_wifi_or_bt_enabled == false){ if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){ s_is_phy_rf_en = true; } } else { if (module == PHY_MODEM_MODULE){ s_is_phy_rf_en = true; } else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){ /* New module (BT or Wi-Fi) can init RF according to modem_sleep_exit */ } } if (s_is_phy_rf_en == true){ // Update time stamp s_phy_rf_en_ts = esp_timer_get_time(); // Update WiFi MAC time before WiFi/BT common clock is enabled phy_update_wifi_mac_time(false, s_phy_rf_en_ts); esp_phy_common_clock_enable(); phy_set_wifi_mode_only(0); if (ESP_CAL_DATA_CHECK_FAIL == register_chipv7_phy(init_data, calibration_data, mode)) { ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", mode); #ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE if (mode != PHY_RF_CAL_FULL) { esp_phy_store_cal_data_to_nvs(calibration_data); } #endif } coex_bt_high_prio(); } } #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){ uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE); if ((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) { //both wifi & bt enabled coex_init(); coex_resume(); } } #endif _lock_release(&s_phy_rf_init_lock); return status; } esp_err_t esp_phy_rf_deinit(phy_rf_module_t module) { /* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */ if (module >= PHY_MODULE_COUNT){ ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \ module count(%d)", __func__, module, PHY_MODULE_COUNT); return ESP_ERR_INVALID_ARG; } _lock_acquire(&s_phy_rf_init_lock); uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init; uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE); bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & phy_bt_wifi_mask); bool is_both_wifi_bt_enabled = ((s_module_phy_rf_init_old & phy_bt_wifi_mask) == phy_bt_wifi_mask); s_module_phy_rf_init &= ~BIT(module); esp_err_t status = ESP_OK; #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){ if (is_both_wifi_bt_enabled == true) { coex_deinit(); } } #endif if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){ /* Modem sleep should not take effect in this case */ status = ESP_FAIL; } else if (s_is_phy_rf_en == false) { //do nothing } else { if (is_wifi_or_bt_enabled == false){ if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){ s_is_phy_rf_en = false; ESP_LOGE(TAG, "%s, RF should not be in enabled state if both Wi-Fi and BT are disabled", __func__); } } else { if (module == PHY_MODEM_MODULE){ s_is_phy_rf_en = false; } else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){ s_is_phy_rf_en = is_both_wifi_bt_enabled ? true : false; } } if (s_is_phy_rf_en == false) { // Disable PHY and RF. phy_close_rf(); // Update WiFi MAC time before disalbe WiFi/BT common peripheral clock phy_update_wifi_mac_time(true, esp_timer_get_time()); // Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG esp_phy_common_clock_disable(); } } _lock_release(&s_phy_rf_init_lock); return status; } esp_err_t esp_modem_sleep_enter(modem_sleep_module_t module) { #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE); #endif if (module >= MODEM_MODULE_COUNT){ ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \ module count(%d)", __func__, module, MODEM_MODULE_COUNT); return ESP_ERR_INVALID_ARG; } else if (!(s_modem_sleep_module_register & BIT(module))){ ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module); return ESP_ERR_INVALID_ARG; } else { _lock_acquire(&s_modem_sleep_lock); s_modem_sleep_module_enter |= BIT(module); #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE _lock_acquire(&s_phy_rf_init_lock); if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled && (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) != 0){ coex_pause(); } _lock_release(&s_phy_rf_init_lock); #endif if (!s_is_modem_sleep_en && (s_modem_sleep_module_enter == s_modem_sleep_module_register)){ esp_err_t status = esp_phy_rf_deinit(PHY_MODEM_MODULE); if (status == ESP_OK){ s_is_modem_sleep_en = true; } } _lock_release(&s_modem_sleep_lock); return ESP_OK; } } esp_err_t esp_modem_sleep_exit(modem_sleep_module_t module) { #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE); #endif if (module >= MODEM_MODULE_COUNT){ ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \ module count(%d)", __func__, module, MODEM_MODULE_COUNT); return ESP_ERR_INVALID_ARG; } else if (!(s_modem_sleep_module_register & BIT(module))){ ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module); return ESP_ERR_INVALID_ARG; } else { _lock_acquire(&s_modem_sleep_lock); s_modem_sleep_module_enter &= ~BIT(module); if (s_is_modem_sleep_en){ esp_err_t status = esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE); if (status == ESP_OK){ s_is_modem_sleep_en = false; } } #if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE _lock_acquire(&s_phy_rf_init_lock); if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled && (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) == 0){ coex_resume(); } _lock_release(&s_phy_rf_init_lock); #endif _lock_release(&s_modem_sleep_lock); return ESP_OK; } return ESP_OK; } esp_err_t esp_modem_sleep_register(modem_sleep_module_t module) { if (module >= MODEM_MODULE_COUNT){ ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \ module count(%d)", __func__, module, MODEM_MODULE_COUNT); return ESP_ERR_INVALID_ARG; } else if (s_modem_sleep_module_register & BIT(module)){ ESP_LOGI(TAG, "%s, multiple registration of module (%d)", __func__, module); return ESP_OK; } else{ _lock_acquire(&s_modem_sleep_lock); s_modem_sleep_module_register |= BIT(module); /* The module is set to enter modem sleep by default, otherwise will prevent * other modules from entering sleep mode if this module never call enter sleep function * in the future */ s_modem_sleep_module_enter |= BIT(module); _lock_release(&s_modem_sleep_lock); return ESP_OK; } } esp_err_t esp_modem_sleep_deregister(modem_sleep_module_t module) { if (module >= MODEM_MODULE_COUNT){ ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \ module count(%d)", __func__, module, MODEM_MODULE_COUNT); return ESP_ERR_INVALID_ARG; } else if (!(s_modem_sleep_module_register & BIT(module))){ ESP_LOGI(TAG, "%s, module (%d) has not been registered", __func__, module); return ESP_OK; } else{ _lock_acquire(&s_modem_sleep_lock); s_modem_sleep_module_enter &= ~BIT(module); s_modem_sleep_module_register &= ~BIT(module); if (s_modem_sleep_module_register == 0){ s_modem_sleep_module_enter = 0; /* Once all module are de-registered and current state * is modem sleep mode, we need to turn off modem sleep */ if (s_is_modem_sleep_en == true){ s_is_modem_sleep_en = false; esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE); } } _lock_release(&s_modem_sleep_lock); return ESP_OK; } } // PHY init data handling functions #if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION #include "esp_partition.h" const esp_phy_init_data_t* esp_phy_get_init_data() { const esp_partition_t* partition = esp_partition_find_first( ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL); if (partition == NULL) { ESP_LOGE(TAG, "PHY data partition not found"); return NULL; } ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address); size_t init_data_store_length = sizeof(phy_init_magic_pre) + sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post); uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length); if (init_data_store == NULL) { ESP_LOGE(TAG, "failed to allocate memory for PHY init data"); return NULL; } esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length); if (err != ESP_OK) { ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err); return NULL; } if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 || memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post), PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) { ESP_LOGE(TAG, "failed to validate PHY data partition"); return NULL; } ESP_LOGD(TAG, "PHY data partition validated"); return (const esp_phy_init_data_t*) (init_data_store + sizeof(phy_init_magic_pre)); } void esp_phy_release_init_data(const esp_phy_init_data_t* init_data) { free((uint8_t*) init_data - sizeof(phy_init_magic_pre)); } #else // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION // phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data const esp_phy_init_data_t* esp_phy_get_init_data() { ESP_LOGD(TAG, "loading PHY init data from application binary"); return &phy_init_data; } void esp_phy_release_init_data(const esp_phy_init_data_t* init_data) { // no-op } #endif // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION // PHY calibration data handling functions static const char* PHY_NAMESPACE = "phy"; static const char* PHY_CAL_VERSION_KEY = "cal_version"; static const char* PHY_CAL_MAC_KEY = "cal_mac"; static const char* PHY_CAL_DATA_KEY = "cal_data"; static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle, esp_phy_calibration_data_t* out_cal_data); static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle, const esp_phy_calibration_data_t* cal_data); esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data) { nvs_handle_t handle; esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle); if (err == ESP_ERR_NVS_NOT_INITIALIZED) { ESP_LOGE(TAG, "%s: NVS has not been initialized. " "Call nvs_flash_init before starting WiFi/BT.", __func__); return err; } else if (err != ESP_OK) { ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err); return err; } err = load_cal_data_from_nvs_handle(handle, out_cal_data); nvs_close(handle); return err; } esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data) { nvs_handle_t handle; esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err); return err; } else { err = store_cal_data_to_nvs_handle(handle, cal_data); nvs_close(handle); return err; } } esp_err_t esp_phy_erase_cal_data_in_nvs(void) { nvs_handle_t handle; esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: failed to open NVS phy namespace (0x%x)", __func__, err); return err; } else { err = nvs_erase_all(handle); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: failed to erase NVS phy namespace (0x%x)", __func__, err); } else { err = nvs_commit(handle); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: failed to commit NVS phy namespace (0x%x)", __func__, err); } } } nvs_close(handle); return err; } static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle, esp_phy_calibration_data_t* out_cal_data) { esp_err_t err; uint32_t cal_data_version; err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: failed to get cal_version (0x%x)", __func__, err); return err; } uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16)); ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version); if (cal_data_version != cal_format_version) { ESP_LOGD(TAG, "%s: expected calibration data format %d, found %d", __func__, cal_format_version, cal_data_version); return ESP_FAIL; } uint8_t cal_data_mac[6]; size_t length = sizeof(cal_data_mac); err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length); if (err != ESP_OK) { ESP_LOGD(TAG, "%s: failed to get cal_mac (0x%x)", __func__, err); return err; } if (length != sizeof(cal_data_mac)) { ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length); return ESP_ERR_INVALID_SIZE; } uint8_t sta_mac[6]; esp_efuse_mac_get_default(sta_mac); if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) { ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \ MACSTR ", found " MACSTR, __func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac)); return ESP_FAIL; } length = sizeof(*out_cal_data); err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err); return err; } if (length != sizeof(*out_cal_data)) { ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length); return ESP_ERR_INVALID_SIZE; } return ESP_OK; } static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle, const esp_phy_calibration_data_t* cal_data) { esp_err_t err; err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data)); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)\n", __func__, err); return err; } uint8_t sta_mac[6]; esp_efuse_mac_get_default(sta_mac); err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac)); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store calibration mac failed(0x%x)\n", __func__, err); return err; } uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16)); ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version); err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store calibration version failed(0x%x)\n", __func__, err); return err; } err = nvs_commit(handle); if (err != ESP_OK) { ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err); } return err; } #if CONFIG_ESP32_REDUCE_PHY_TX_POWER static void esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data) { uint8_t i; for(i = 0; i < PHY_TX_POWER_NUM; i++) { // LOWEST_PHY_TX_POWER is the lowest tx power init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST; } } #endif void esp_phy_load_cal_and_init(phy_rf_module_t module) { esp_phy_calibration_data_t* cal_data = (esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1); if (cal_data == NULL) { ESP_LOGE(TAG, "failed to allocate memory for RF calibration data"); abort(); } #if CONFIG_ESP32_REDUCE_PHY_TX_POWER const esp_phy_init_data_t* phy_init_data = esp_phy_get_init_data(); if (phy_init_data == NULL) { ESP_LOGE(TAG, "failed to obtain PHY init data"); abort(); } esp_phy_init_data_t* init_data = (esp_phy_init_data_t*) malloc(sizeof(esp_phy_init_data_t)); if (init_data == NULL) { ESP_LOGE(TAG, "failed to allocate memory for phy init data"); abort(); } memcpy(init_data, phy_init_data, sizeof(esp_phy_init_data_t)); if (esp_reset_reason() == ESP_RST_BROWNOUT) { esp_phy_reduce_tx_power(init_data); } #else const esp_phy_init_data_t* init_data = esp_phy_get_init_data(); if (init_data == NULL) { ESP_LOGE(TAG, "failed to obtain PHY init data"); abort(); } #endif #ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL; uint8_t sta_mac[6]; if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) { calibration_mode = PHY_RF_CAL_NONE; } esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data); if (err != ESP_OK) { ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err); calibration_mode = PHY_RF_CAL_FULL; } esp_efuse_mac_get_default(sta_mac); memcpy(cal_data->mac, sta_mac, 6); esp_phy_rf_init(init_data, calibration_mode, cal_data, module); if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) { err = esp_phy_store_cal_data_to_nvs(cal_data); } else { err = ESP_OK; } #else esp_phy_rf_init(init_data, PHY_RF_CAL_FULL, cal_data, module); #endif #if CONFIG_ESP32_REDUCE_PHY_TX_POWER esp_phy_release_init_data(phy_init_data); free(init_data); #else esp_phy_release_init_data(init_data); #endif free(cal_data); // PHY maintains a copy of calibration data, so we can free this }