/** * To test PWM, use the PCNT to calculateit to judge it work right or not. * e.g: judge the start and stop. * If started right, the PCNT will count the pulse. * If stopped right, the PCNT will count no pulse. * * * test environment UT_T1_MCPWM: * 1. connect GPIO4 to GPIO5 * 2. connect GPIO13 to GPIO12 * 3. connect GPIO27 to GPIO14 * * all of case separate different timer to test in case that one case cost too much time */ #include #include "esp_system.h" #include "driver/pcnt.h" #include "unity.h" #include "test_utils.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/queue.h" #include "esp_attr.h" #include "esp_log.h" #include "soc/rtc.h" #include "soc/soc_caps.h" #ifdef SOC_MCPWM_SUPPORTED #include "soc/mcpwm_periph.h" #include "driver/mcpwm.h" #define GPIO_PWMA_OUT 4 #define GPIO_PWMB_OUT 13 #define GPIO_CAP_IN 27 #define GPIO_SYNC_IN 27 #define GPIO_FAULT_IN 27 #define CAP_SIG_NUM 14 #define SYN_SIG_NUM 14 #define FAULT_SIG_NUM 14 #define GPIO_PWMA_PCNT_INPUT 5 #define GPIO_PWMB_PCNT_INPUT 12 #define PCNT_CTRL_FLOATING_IO1 25 #define PCNT_CTRL_FLOATING_IO2 26 #define CAP0_INT_EN BIT(27) #define CAP1_INT_EN BIT(28) #define CAP2_INT_EN BIT(29) #define INITIAL_DUTY 10.0 #define MCPWM_GPIO_INIT 0 #define HIGHEST_LIMIT 10000 #define LOWEST_LIMIT -10000 static mcpwm_dev_t *MCPWM[2] = {&MCPWM0, &MCPWM1}; static xQueueHandle cap_queue; static volatile int cap0_times = 0; static volatile int cap1_times = 0; static volatile int cap2_times = 0; typedef struct { uint32_t capture_signal; mcpwm_capture_signal_t sel_cap_signal; } capture; static const char TAG[] = "test_pwm"; const static mcpwm_io_signals_t pwma[] = {MCPWM0A, MCPWM1A, MCPWM2A}; const static mcpwm_io_signals_t pwmb[] = {MCPWM0B, MCPWM1B, MCPWM2B}; const static mcpwm_fault_signal_t fault_sig_array[] = {MCPWM_SELECT_F0, MCPWM_SELECT_F1, MCPWM_SELECT_F2}; const static mcpwm_io_signals_t fault_io_sig_array[] = {MCPWM_FAULT_0, MCPWM_FAULT_1, MCPWM_FAULT_2}; const static mcpwm_sync_signal_t sync_sig_array[] = {MCPWM_SELECT_SYNC0, MCPWM_SELECT_SYNC1, MCPWM_SELECT_SYNC2}; const static mcpwm_io_signals_t sync_io_sig_array[] = {MCPWM_SYNC_0, MCPWM_SYNC_1, MCPWM_SYNC_2}; const static mcpwm_capture_signal_t cap_sig_array[] = {MCPWM_SELECT_CAP0, MCPWM_SELECT_CAP1, MCPWM_SELECT_CAP2}; const static mcpwm_io_signals_t cap_io_sig_array[] = {MCPWM_CAP_0, MCPWM_CAP_1, MCPWM_CAP_2}; // universal settings of mcpwm static void mcpwm_basic_config(mcpwm_unit_t unit, mcpwm_timer_t timer) { mcpwm_io_signals_t mcpwm_a = pwma[timer]; mcpwm_io_signals_t mcpwm_b = pwmb[timer]; mcpwm_gpio_init(unit, mcpwm_a, GPIO_PWMA_OUT); mcpwm_gpio_init(unit, mcpwm_b, GPIO_PWMB_OUT); mcpwm_config_t pwm_config = { .frequency = 1000, .cmpr_a = 50.0, //duty cycle of PWMxA = 50.0% .cmpr_b = 50.0, //duty cycle of PWMxb = 50.0% .counter_mode = MCPWM_UP_COUNTER, .duty_mode = MCPWM_DUTY_MODE_0, }; mcpwm_init(unit, timer, &pwm_config); } static void pcnt_init(int pulse_gpio_num, int ctrl_gpio_num) { pcnt_config_t pcnt_config = { .pulse_gpio_num = pulse_gpio_num, .ctrl_gpio_num = ctrl_gpio_num, .channel = PCNT_CHANNEL_0, .unit = PCNT_UNIT_0, .pos_mode = PCNT_COUNT_INC, .neg_mode = PCNT_COUNT_DIS, .lctrl_mode = PCNT_MODE_REVERSE, .hctrl_mode = PCNT_MODE_KEEP, .counter_h_lim = HIGHEST_LIMIT, .counter_l_lim = LOWEST_LIMIT, }; TEST_ESP_OK(pcnt_unit_config(&pcnt_config)); } // initialize the PCNT // PCNT is used to count the MCPWM pulse static int16_t pcnt_count(int pulse_gpio_num, int ctrl_gpio_num, int last_time) { pcnt_config_t pcnt_config = { .pulse_gpio_num = pulse_gpio_num, .ctrl_gpio_num = ctrl_gpio_num, .channel = PCNT_CHANNEL_0, .unit = PCNT_UNIT_0, .pos_mode = PCNT_COUNT_INC, .neg_mode = PCNT_COUNT_DIS, .lctrl_mode = PCNT_MODE_REVERSE, .hctrl_mode = PCNT_MODE_KEEP, .counter_h_lim = HIGHEST_LIMIT, .counter_l_lim = LOWEST_LIMIT, }; TEST_ESP_OK(pcnt_unit_config(&pcnt_config)); int16_t test_counter; TEST_ESP_OK(pcnt_counter_pause(PCNT_UNIT_0)); TEST_ESP_OK(pcnt_counter_clear(PCNT_UNIT_0)); TEST_ESP_OK(pcnt_counter_resume(PCNT_UNIT_0)); TEST_ESP_OK(pcnt_get_counter_value(PCNT_UNIT_0, &test_counter)); printf("COUNT (before): %d\n", test_counter); vTaskDelay(last_time / portTICK_RATE_MS); TEST_ESP_OK(pcnt_get_counter_value(PCNT_UNIT_0, &test_counter)); printf("COUNT (after): %d\n", test_counter); return test_counter; } // judge the counting value right or not in specific error static void judge_count_value(int allow_error ,int expect_freq) { int16_t countA, countB; countA = pcnt_count(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1, 1000); countB = pcnt_count(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO2, 1000); TEST_ASSERT_INT16_WITHIN(allow_error, countA, expect_freq); TEST_ASSERT_INT16_WITHIN(allow_error, countB, expect_freq); } // test the duty configuration static void timer_duty_test(mcpwm_unit_t unit, mcpwm_timer_t timer) { mcpwm_basic_config(unit, timer); vTaskDelay(1000 / portTICK_RATE_MS); // stay this status for a while so that can view its waveform by logic anylyzer TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_A, (INITIAL_DUTY * 1))); TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_B, (INITIAL_DUTY * 2))); TEST_ASSERT_EQUAL_INT(mcpwm_get_duty(unit, timer, MCPWM_OPR_A), INITIAL_DUTY * 1); TEST_ASSERT_EQUAL_INT(mcpwm_get_duty(unit, timer, MCPWM_OPR_B), INITIAL_DUTY * 2); vTaskDelay(100 / portTICK_RATE_MS); // stay this status for a while so that can view its waveform by logic anylyzer mcpwm_set_duty(unit, timer, MCPWM_OPR_A, 55.5f); mcpwm_set_duty_type(unit, timer, MCPWM_OPR_A, MCPWM_DUTY_MODE_0); printf("mcpwm check = %f\n", mcpwm_get_duty(unit, timer, MCPWM_OPR_A)); mcpwm_set_duty_in_us(unit, timer, MCPWM_OPR_B, 500); printf("mcpwm check = %f\n", mcpwm_get_duty(unit, timer, MCPWM_OPR_B)); vTaskDelay(100 / portTICK_RATE_MS); // stay this status for a while so that can view its waveform by logic anylyzer mcpwm_stop(unit, timer); } // test the start and stop function work or not static void start_stop_test(mcpwm_unit_t unit, mcpwm_timer_t timer) { mcpwm_basic_config(unit, timer); judge_count_value(2, 1000); TEST_ESP_OK(mcpwm_stop(unit, timer)); vTaskDelay(10 / portTICK_RATE_MS); // wait for a while, stop totally judge_count_value(0, 0); TEST_ESP_OK(mcpwm_start(unit, timer)); vTaskDelay(10 / portTICK_RATE_MS); // wait for a while, start totally judge_count_value(2, 1000); } // test the deadtime static void deadtime_test(mcpwm_unit_t unit, mcpwm_timer_t timer) { mcpwm_basic_config(unit, timer); mcpwm_deadtime_type_t deadtime_type[8] = {MCPWM_BYPASS_RED, MCPWM_BYPASS_FED, MCPWM_ACTIVE_HIGH_MODE, MCPWM_ACTIVE_LOW_MODE, MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE, MCPWM_ACTIVE_LOW_COMPLIMENT_MODE, MCPWM_ACTIVE_RED_FED_FROM_PWMXA, MCPWM_ACTIVE_RED_FED_FROM_PWMXB}; for(int i=0; i<8; i++) { mcpwm_deadtime_enable(unit, timer, deadtime_type[i], 1000, 1000); vTaskDelay(100 / portTICK_RATE_MS); mcpwm_deadtime_disable(unit, timer); //add a small gap between tests to make the waveform more clear mcpwm_stop(unit, timer); vTaskDelay(10); mcpwm_start(unit, timer); } } /** * there are two kind of methods to set the carrier: * 1. by mcpwm_carrier_init * 2. by different single setting function */ static void carrier_with_set_function_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_carrier_out_ivt_t invert_or_not, uint8_t period, uint8_t duty, uint8_t os_width) { // no inversion and no one shot mcpwm_basic_config(unit, timer); TEST_ESP_OK(mcpwm_carrier_enable(unit, timer)); TEST_ESP_OK(mcpwm_carrier_set_period(unit, timer, period)); //carrier revolution TEST_ESP_OK(mcpwm_carrier_set_duty_cycle(unit, timer, duty)); // carrier duty judge_count_value(500, 50000/5.6); // with invert TEST_ESP_OK(mcpwm_carrier_output_invert(unit, timer, invert_or_not)); vTaskDelay(2000 / portTICK_RATE_MS); } static void carrier_with_configuration_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_carrier_os_t oneshot_or_not, mcpwm_carrier_out_ivt_t invert_or_not, uint8_t period, uint8_t duty, uint8_t os_width) { mcpwm_basic_config(unit, timer); mcpwm_carrier_config_t chop_config; chop_config.carrier_period = period; //carrier period = (period + 1)*800ns chop_config.carrier_duty = duty; // carrier duty cycle, carrier_duty should be less then 8(increment every 12.5%). carrier duty = (3)*12.5% chop_config.carrier_os_mode = oneshot_or_not; //If one shot mode is enabled then set pulse width, if disabled no need to set pulse width chop_config.pulse_width_in_os = os_width; //pulse width of first pulse in one shot mode = (carrier period)*(pulse_width_in_os + 1), should be less then 16.first pulse width = (3 + 1)*carrier_period chop_config.carrier_ivt_mode = invert_or_not; //output signal inversion enable mcpwm_carrier_init(unit, timer, &chop_config); if(!oneshot_or_not) { // the pwm frequency is 1000 // the carrrier duration in one second is 500ms // the carrier wave count is: 500ms/carrier_period = 500ms/(period + 1)*800ns // = 62500/(period + 1) judge_count_value(500, 62500/(period + 1)); } else { judge_count_value(500, 40000/((period + 1))); // (500-500*0.125*3)/((period + 1)*800) } TEST_ESP_OK(mcpwm_carrier_disable(unit, timer)); judge_count_value(2, 1000); } static void get_action_level(mcpwm_fault_input_level_t input_sig, mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b, int freq, int allow_err) { if(action_a == MCPWM_NO_CHANGE_IN_MCPWMXA) { TEST_ASSERT_INT16_WITHIN(allow_err, pcnt_count(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1, 1000), freq); } else if(action_a == MCPWM_FORCE_MCPWMXA_LOW) { TEST_ASSERT(gpio_get_level(GPIO_PWMA_PCNT_INPUT) == 0); } else if(action_a == MCPWM_FORCE_MCPWMXA_HIGH) { TEST_ASSERT(gpio_get_level(GPIO_PWMA_PCNT_INPUT) == 1); }else { int level = gpio_get_level(GPIO_PWMA_PCNT_INPUT); vTaskDelay(100 / portTICK_RATE_MS); TEST_ASSERT(gpio_get_level(GPIO_PWMA_PCNT_INPUT) == level); } if(action_b == MCPWM_NO_CHANGE_IN_MCPWMXB) { TEST_ASSERT_INT16_WITHIN(allow_err, pcnt_count(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1, 1000), freq); } else if(action_b == MCPWM_FORCE_MCPWMXB_LOW) { TEST_ASSERT(gpio_get_level(GPIO_PWMB_PCNT_INPUT) == 0); } else if(action_b == MCPWM_FORCE_MCPWMXB_HIGH) { TEST_ASSERT(gpio_get_level(GPIO_PWMB_PCNT_INPUT) == 1); }else { int level = gpio_get_level(GPIO_PWMB_PCNT_INPUT); vTaskDelay(100 / portTICK_RATE_MS); TEST_ASSERT(gpio_get_level(GPIO_PWMB_PCNT_INPUT) == level); } } // test the fault event static void cycle_fault_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_fault_signal_t fault_sig, mcpwm_fault_input_level_t input_sig, mcpwm_io_signals_t fault_io, mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b) { gpio_config_t gp; gp.intr_type = GPIO_INTR_DISABLE; gp.mode = GPIO_MODE_OUTPUT; gp.pin_bit_mask = (1ULL << FAULT_SIG_NUM); gpio_config(&gp); // gpio configure should be more previous than mcpwm configuration gpio_set_level(FAULT_SIG_NUM, !input_sig); pcnt_init(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1); pcnt_init(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO2); mcpwm_basic_config(unit, timer); mcpwm_gpio_init(unit, fault_io, GPIO_FAULT_IN); // cycle mode, it can be triggered more than once printf("cyc test:\n"); gpio_set_level(FAULT_SIG_NUM, !input_sig); TEST_ESP_OK(mcpwm_fault_init(unit, input_sig, fault_sig)); TEST_ESP_OK(mcpwm_fault_set_cyc_mode(unit, timer, fault_sig, action_a, action_b)); vTaskDelay(1000 / portTICK_RATE_MS); gpio_set_level(FAULT_SIG_NUM, input_sig); // trigger the fault event vTaskDelay(1000 / portTICK_RATE_MS); get_action_level(input_sig, action_a, action_b, 1000, 5); TEST_ESP_OK(mcpwm_fault_deinit(unit, fault_sig)); } static void oneshot_fault_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_fault_signal_t fault_sig, mcpwm_fault_input_level_t input_sig, mcpwm_io_signals_t fault_io, mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b) { gpio_config_t gp; gp.intr_type = GPIO_INTR_DISABLE; gp.mode = GPIO_MODE_OUTPUT; gp.pin_bit_mask = (1ULL << FAULT_SIG_NUM); gpio_config(&gp); // gpio configure should be more previous than mcpwm configuration gpio_set_level(FAULT_SIG_NUM, !input_sig); pcnt_init(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1); pcnt_init(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO2); mcpwm_basic_config(unit, timer); mcpwm_gpio_init(unit, fault_io, GPIO_FAULT_IN); // one shot mode, it just can be triggered once TEST_ESP_OK(mcpwm_fault_init(unit, input_sig, fault_sig)); TEST_ESP_OK(mcpwm_fault_set_oneshot_mode(unit, timer, fault_sig, action_a, action_b)); vTaskDelay(10 / portTICK_RATE_MS); // trigger it gpio_set_level(FAULT_SIG_NUM, input_sig); vTaskDelay(10 / portTICK_RATE_MS); get_action_level(input_sig, action_a, action_b, 1000, 5); TEST_ESP_OK(mcpwm_fault_deinit(unit, fault_sig)); } // test the sync event static void sync_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_sync_signal_t sync_sig, mcpwm_io_signals_t sync_io) { gpio_config_t gp; gp.intr_type = GPIO_INTR_DISABLE; gp.mode = GPIO_MODE_OUTPUT; gp.pin_bit_mask = (1ULL << SYN_SIG_NUM); gpio_config(&gp); gpio_set_level(SYN_SIG_NUM, 0); mcpwm_io_signals_t mcpwm_a = pwma[timer]; mcpwm_io_signals_t mcpwm_b = pwmb[timer]; mcpwm_gpio_init(unit, mcpwm_a, GPIO_PWMA_OUT); mcpwm_gpio_init(unit, mcpwm_b, GPIO_PWMB_OUT); mcpwm_gpio_init(unit, sync_io, GPIO_SYNC_IN); mcpwm_config_t pwm_config = { .frequency = 1000, .cmpr_a = 50.0, //duty cycle of PWMxA = 50.0% .cmpr_b = 50.0, //duty cycle of PWMxb = 50.0% .counter_mode = MCPWM_UP_COUNTER, .duty_mode = MCPWM_DUTY_MODE_0, }; mcpwm_init(unit, timer, &pwm_config); gpio_pulldown_en(GPIO_SYNC_IN); mcpwm_sync_enable(unit, timer, sync_sig, 200); //wait for some pulses before sync vTaskDelay(10); gpio_set_level(SYN_SIG_NUM, 1); vTaskDelay(100 / portTICK_RATE_MS); gpio_set_level(SYN_SIG_NUM, 0); mcpwm_sync_disable(unit, timer); vTaskDelay(100 / portTICK_RATE_MS); } /** * use interruption to test the capture event * there are two kinds of methods to trigger the capture event: * 1. high level trigger * 2. low level trigger */ static volatile int flag = 0; // once capture event happens, will show it static void disp_captured_signal(void *arg) { uint32_t *current_cap_value = (uint32_t *)malloc(sizeof(uint32_t) * CAP_SIG_NUM); uint32_t *previous_cap_value = (uint32_t *)malloc(sizeof(uint32_t) * CAP_SIG_NUM); capture evt; for (int i=0; i<1000; i++) { xQueueReceive(cap_queue, &evt, portMAX_DELAY); if (evt.sel_cap_signal == MCPWM_SELECT_CAP0) { current_cap_value[0] = evt.capture_signal - previous_cap_value[0]; previous_cap_value[0] = evt.capture_signal; current_cap_value[0] = (current_cap_value[0] / 10000) * (10000000000 / rtc_clk_apb_freq_get()); printf("CAP0 : %d us\n", current_cap_value[0]); cap0_times++; } if (evt.sel_cap_signal == MCPWM_SELECT_CAP1) { current_cap_value[1] = evt.capture_signal - previous_cap_value[1]; previous_cap_value[1] = evt.capture_signal; current_cap_value[1] = (current_cap_value[1] / 10000) * (10000000000 / rtc_clk_apb_freq_get()); printf("CAP1 : %d us\n", current_cap_value[1]); cap1_times++; } if (evt.sel_cap_signal == MCPWM_SELECT_CAP2) { current_cap_value[2] = evt.capture_signal - previous_cap_value[2]; previous_cap_value[2] = evt.capture_signal; current_cap_value[2] = (current_cap_value[2] / 10000) * (10000000000 / rtc_clk_apb_freq_get()); printf("CAP2 : %d us\n", current_cap_value[2]); cap2_times++; } } free(current_cap_value); free(previous_cap_value); vTaskDelete(NULL); } // mcpwm event static void IRAM_ATTR isr_handler(void *arg) { mcpwm_unit_t unit = (mcpwm_unit_t)arg; uint32_t mcpwm_intr_status; capture evt; mcpwm_intr_status = MCPWM[unit]->int_st.val; //Read interrupt status if (mcpwm_intr_status & CAP0_INT_EN) { //Check for interrupt on rising edge on CAP0 signal evt.capture_signal = mcpwm_capture_signal_get_value(unit, MCPWM_SELECT_CAP0); //get capture signal counter value evt.sel_cap_signal = MCPWM_SELECT_CAP0; xQueueSendFromISR(cap_queue, &evt, NULL); } if (mcpwm_intr_status & CAP1_INT_EN) { //Check for interrupt on rising edge on CAP0 signal evt.capture_signal = mcpwm_capture_signal_get_value(unit, MCPWM_SELECT_CAP1); //get capture signal counter value evt.sel_cap_signal = MCPWM_SELECT_CAP1; xQueueSendFromISR(cap_queue, &evt, NULL); } if (mcpwm_intr_status & CAP2_INT_EN) { //Check for interrupt on rising edge on CAP0 signal evt.capture_signal = mcpwm_capture_signal_get_value(unit, MCPWM_SELECT_CAP2); //get capture signal counter value evt.sel_cap_signal = MCPWM_SELECT_CAP2; xQueueSendFromISR(cap_queue, &evt, NULL); } MCPWM[unit]->int_clr.val = mcpwm_intr_status; } // the produce the capture triggering signal to trigger the capture event static void gpio_test_signal(void *arg) { printf("intializing test signal...\n"); gpio_config_t gp = {}; gp.intr_type = GPIO_INTR_DISABLE; gp.mode = GPIO_MODE_OUTPUT; gp.pin_bit_mask = 1ULL << CAP_SIG_NUM; gpio_config(&gp); for (int i=0; i<1000; i++) { //here the period of test signal is 20ms gpio_set_level(CAP_SIG_NUM, 1); //Set high vTaskDelay(10); //delay of 10ms gpio_set_level(CAP_SIG_NUM, 0); //Set low vTaskDelay(10); //delay of 10ms } flag = 1; vTaskDelete(NULL); } // capture event test function static void capture_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_capture_on_edge_t cap_edge) { // initialize the capture times cap0_times = 0; cap1_times = 0; cap2_times = 0; //each timer test the capture sig with the same id with it. mcpwm_io_signals_t cap_io = cap_io_sig_array[timer]; mcpwm_capture_signal_t cap_sig = cap_sig_array[timer]; mcpwm_gpio_init(unit, cap_io, GPIO_CAP_IN); cap_queue = xQueueCreate(1, sizeof(capture)); xTaskCreate(disp_captured_signal, "mcpwm_config", 4096, (void *)unit, 5, NULL); xTaskCreate(gpio_test_signal, "gpio_test_signal", 4096, NULL, 5, NULL); mcpwm_capture_enable(unit, cap_sig, cap_edge, 0); MCPWM[unit]->int_ena.val = CAP0_INT_EN | CAP1_INT_EN | CAP2_INT_EN; //Enable interrupt on CAP0, CAP1 and CAP2 signal mcpwm_isr_register(unit, isr_handler, (void *)unit, ESP_INTR_FLAG_IRAM, NULL); while(flag != 1) { vTaskDelay(10 / portTICK_RATE_MS); } if(cap_sig == MCPWM_SELECT_CAP0) { TEST_ASSERT(1000 == cap0_times); } else if(cap_sig == MCPWM_SELECT_CAP1) { TEST_ASSERT(1000 == cap1_times); }else { TEST_ASSERT(1000 == cap2_times); } flag = 0; // set flag to 0 that it can be used in other case mcpwm_capture_disable(unit, cap_sig); } /** * duty test: * 1. mcpwm_set_duty * 2. mcpwm_get_duty * * This case's phenomenon should be viewed by logic analyzer * so set it ignore */ TEST_CASE("MCPWM timer0 duty test and each timer works or not test(logic analyzer)", "[mcpwm][ignore]") { timer_duty_test(MCPWM_UNIT_0, MCPWM_TIMER_0); timer_duty_test(MCPWM_UNIT_1, MCPWM_TIMER_0); } TEST_CASE("MCPWM timer1 duty test and each timer works or not test(logic analyzer)", "[mcpwm][ignore]") { timer_duty_test(MCPWM_UNIT_0, MCPWM_TIMER_1); timer_duty_test(MCPWM_UNIT_1, MCPWM_TIMER_1); } TEST_CASE("MCPWM timer2 duty test and each timer works or not test(logic analyzer)", "[mcpwm][ignore]") { timer_duty_test(MCPWM_UNIT_0, MCPWM_TIMER_2); timer_duty_test(MCPWM_UNIT_1, MCPWM_TIMER_2); } // the deadtime configuration test // use the logic analyzer to make sure it goes right TEST_CASE("MCPWM timer0 deadtime configuration(logic analyzer)", "[mcpwm][ignore]") { deadtime_test(MCPWM_UNIT_0, MCPWM_TIMER_0); deadtime_test(MCPWM_UNIT_1, MCPWM_TIMER_0); } TEST_CASE("MCPWM timer1 deadtime configuration(logic analyzer)", "[mcpwm][ignore]") { deadtime_test(MCPWM_UNIT_0, MCPWM_TIMER_1); deadtime_test(MCPWM_UNIT_1, MCPWM_TIMER_1); } TEST_CASE("MCPWM timer2 deadtime configuration(logic analyzer)", "[mcpwm][ignore]") { deadtime_test(MCPWM_UNIT_0, MCPWM_TIMER_2); deadtime_test(MCPWM_UNIT_1, MCPWM_TIMER_2); } TEST_CASE("MCPWM timer0 start and stop test", "[mcpwm][test_env=UT_T1_MCPWM]") { start_stop_test(MCPWM_UNIT_0, MCPWM_TIMER_0); start_stop_test(MCPWM_UNIT_1, MCPWM_TIMER_0); } // mcpwm start and stop test TEST_CASE("MCPWM timer1 start and stop test", "[mcpwm][test_env=UT_T1_MCPWM]") { start_stop_test(MCPWM_UNIT_0, MCPWM_TIMER_1); start_stop_test(MCPWM_UNIT_1, MCPWM_TIMER_1); } TEST_CASE("MCPWM timer2 start and stop test", "[mcpwm][test_env=UT_T1_MCPWM]") { start_stop_test(MCPWM_UNIT_0, MCPWM_TIMER_2); start_stop_test(MCPWM_UNIT_1, MCPWM_TIMER_2); } TEST_CASE("MCPWM timer0 carrier test with set function", "[mcpwm][test_env=UT_T1_MCPWM]") { carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_0, MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_0, MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3); } TEST_CASE("MCPWM timer1 carrier test with set function", "[mcpwm][test_env=UT_T1_MCPWM]") { carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_1, MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_1, MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3); } TEST_CASE("MCPWM timer2 carrier test with set function", "[mcpwm][test_env=UT_T1_MCPWM]") { carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_2, MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3); carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_2, MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3); } static void test_carrier_with_config_func(mcpwm_unit_t unit, mcpwm_timer_t timer) { mcpwm_carrier_os_t oneshot[2] = {MCPWM_ONESHOT_MODE_DIS, MCPWM_ONESHOT_MODE_EN}; mcpwm_carrier_out_ivt_t invert[2] = {MCPWM_CARRIER_OUT_IVT_DIS, MCPWM_CARRIER_OUT_IVT_EN}; ESP_LOGI(TAG, "test unit%d timer%d", unit, timer); for(int i=0; i<2; i++){ for(int j=0; j<2; j++) { printf("i=%d, j=%d\n", i, j); carrier_with_configuration_test(unit, timer, oneshot[i], invert[j], 6, 3, 3); } } } TEST_CASE("MCPWM timer0 carrier test with configuration function", "[mcpwm][test_env=UT_T1_MCPWM][timeout=120]") { test_carrier_with_config_func(MCPWM_UNIT_0, MCPWM_TIMER_0); test_carrier_with_config_func(MCPWM_UNIT_1, MCPWM_TIMER_0); } TEST_CASE("MCPWM timer1 carrier test with configuration function", "[mcpwm][test_env=UT_T1_MCPWM][timeout=120]") { test_carrier_with_config_func(MCPWM_UNIT_0, MCPWM_TIMER_1); test_carrier_with_config_func(MCPWM_UNIT_1, MCPWM_TIMER_1); } TEST_CASE("MCPWM timer2 carrier test with configuration function", "[mcpwm][test_env=UT_T1_MCPWM][timeout=120]") { test_carrier_with_config_func(MCPWM_UNIT_0, MCPWM_TIMER_2); test_carrier_with_config_func(MCPWM_UNIT_1, MCPWM_TIMER_2); } /** * Fault event: * Just support high level triggering * There are two types fault event: * 1. one-shot: it just can be triggered once, its effect is forever and it will never be changed although the fault signal change * 2. cycle: it can be triggered more than once, it will changed just as the fault signal changes. If set it triggered by high level, * when the fault signal is high level, the event will be triggered. But the event will disappear as the fault signal disappears */ void test_cycle_fault(mcpwm_unit_t unit, mcpwm_timer_t timer) { // API just supports the high level trigger now, so comment it // mcpwm_fault_input_level_t fault_input[2] = {MCPWM_LOW_LEVEL_TGR, MCPWM_HIGH_LEVEL_TGR}; mcpwm_action_on_pwmxa_t action_a[4] = {MCPWM_NO_CHANGE_IN_MCPWMXA, MCPWM_FORCE_MCPWMXA_LOW, MCPWM_FORCE_MCPWMXA_HIGH, MCPWM_TOG_MCPWMXA}; mcpwm_action_on_pwmxb_t action_b[4] = {MCPWM_NO_CHANGE_IN_MCPWMXB, MCPWM_FORCE_MCPWMXB_LOW, MCPWM_FORCE_MCPWMXB_HIGH, MCPWM_TOG_MCPWMXB}; ESP_LOGI(TAG, "test unit%d timer%d", unit, timer); //each timer test the fault sig with the same id with it. mcpwm_fault_signal_t fault_sig = fault_sig_array[timer]; mcpwm_io_signals_t fault_io_sig = fault_io_sig_array[timer]; for(int i=0; i<4; i++){ for(int j=0; j<4; j++) { printf("i=%d, j=%d\n",i, j); cycle_fault_test(unit, timer, fault_sig, MCPWM_HIGH_LEVEL_TGR, fault_io_sig, action_a[i], action_b[j]); } } } TEST_CASE("MCPWM timer0 cycle fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=180]") { test_cycle_fault(MCPWM_UNIT_0, MCPWM_TIMER_0); test_cycle_fault(MCPWM_UNIT_1, MCPWM_TIMER_0); } TEST_CASE("MCPWM timer1 cycle fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=180]") { test_cycle_fault(MCPWM_UNIT_0, MCPWM_TIMER_1); test_cycle_fault(MCPWM_UNIT_1, MCPWM_TIMER_1); } TEST_CASE("MCPWM timer2 cycle fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=180]") { test_cycle_fault(MCPWM_UNIT_0, MCPWM_TIMER_2); test_cycle_fault(MCPWM_UNIT_1, MCPWM_TIMER_2); } static void test_oneshot_fault(mcpwm_unit_t unit, mcpwm_timer_t timer) { // API just supports the high level trigger now, so comment it // mcpwm_fault_input_level_t fault_input[2] = {MCPWM_LOW_LEVEL_TGR, MCPWM_HIGH_LEVEL_TGR}; mcpwm_action_on_pwmxa_t action_a[4] = {MCPWM_NO_CHANGE_IN_MCPWMXA, MCPWM_FORCE_MCPWMXA_LOW, MCPWM_FORCE_MCPWMXA_HIGH, MCPWM_TOG_MCPWMXA}; mcpwm_action_on_pwmxb_t action_b[4] = {MCPWM_NO_CHANGE_IN_MCPWMXB, MCPWM_FORCE_MCPWMXB_LOW, MCPWM_FORCE_MCPWMXB_HIGH, MCPWM_TOG_MCPWMXB}; //each timer test the fault sig with the same id with it. mcpwm_fault_signal_t fault_sig = fault_sig_array[timer]; mcpwm_io_signals_t fault_io_sig = fault_io_sig_array[timer]; ESP_LOGI(TAG, "test pwm unit%d, timer%d fault_sig%d", unit, timer, fault_sig); for(int i=0; i<4; i++){ for(int j=0; j<4; j++) { printf("action (%d, %d)\n", i, j); oneshot_fault_test(unit, timer, fault_sig, MCPWM_HIGH_LEVEL_TGR, fault_io_sig, action_a[i], action_b[j]); } } } TEST_CASE("MCPWM timer0 one shot fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { test_oneshot_fault(MCPWM_UNIT_0, MCPWM_TIMER_0); test_oneshot_fault(MCPWM_UNIT_1, MCPWM_TIMER_0); } TEST_CASE("MCPWM timer1 one shot fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { test_oneshot_fault(MCPWM_UNIT_0, MCPWM_TIMER_1); test_oneshot_fault(MCPWM_UNIT_1, MCPWM_TIMER_1); } TEST_CASE("MCPWM timer2 one shot fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { test_oneshot_fault(MCPWM_UNIT_0, MCPWM_TIMER_2); test_oneshot_fault(MCPWM_UNIT_1, MCPWM_TIMER_2); } static void test_sync(mcpwm_timer_t timer) { //each timer test the sync sig with the same id with it. mcpwm_sync_signal_t sync_sig = sync_sig_array[timer]; mcpwm_io_signals_t sync_io_sig = sync_io_sig_array[timer]; sync_test(MCPWM_UNIT_0, timer, sync_sig, sync_io_sig); TEST_ESP_OK(mcpwm_stop(MCPWM_UNIT_0, timer)); // make sure can view the next sync signal clearly vTaskDelay(100 / portTICK_RATE_MS); TEST_ESP_OK(mcpwm_start(MCPWM_UNIT_0, timer)); sync_test(MCPWM_UNIT_1, timer, sync_sig, sync_io_sig); } // need to view its phenomenon in logic analyzer // set it ignore TEST_CASE("MCPWM timer0 sync test(logic analyzer)", "[mcpwm][ignore]") { test_sync(MCPWM_TIMER_0); } // need to view its phenomenon in logic analyzer // set it ignore TEST_CASE("MCPWM timer1 sync test(logic analyzer)", "[mcpwm][ignore]") { test_sync(MCPWM_TIMER_1); } // need to view its phenomenon in logic analyzer // set it ignore TEST_CASE("MCPWM timer2 sync test(logic analyzer)", "[mcpwm][ignore]") { test_sync(MCPWM_TIMER_2); } TEST_CASE("MCPWM unit0, timer0 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { capture_test(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_POS_EDGE); } TEST_CASE("MCPWM unit0, timer1 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { capture_test(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_POS_EDGE); } TEST_CASE("MCPWM unit0, timer2 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { capture_test(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_POS_EDGE); } TEST_CASE("MCPWM unit1, timer0 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { capture_test(MCPWM_UNIT_1, MCPWM_TIMER_0, MCPWM_NEG_EDGE); } TEST_CASE("MCPWM unit1, timer1 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { capture_test(MCPWM_UNIT_1, MCPWM_TIMER_1, MCPWM_POS_EDGE); } TEST_CASE("MCPWM unit1, timer2 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]") { capture_test(MCPWM_UNIT_1, MCPWM_TIMER_2, MCPWM_POS_EDGE); } #endif