// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include "esp_vfs.h" #include "esp_vfs_dev.h" #include "esp_attr.h" #include "soc/uart_struct.h" #include "driver/uart.h" #include "sdkconfig.h" #include "driver/uart_select.h" // TODO: make the number of UARTs chip dependent #define UART_NUM 3 // Token signifying that no character is available #define NONE -1 // UART write bytes function type typedef void (*tx_func_t)(int, int); // UART read bytes function type typedef int (*rx_func_t)(int); // Basic functions for sending and receiving bytes over UART static void uart_tx_char(int fd, int c); static int uart_rx_char(int fd); // Functions for sending and receiving bytes which use UART driver static void uart_tx_char_via_driver(int fd, int c); static int uart_rx_char_via_driver(int fd); // Pointers to UART peripherals static uart_dev_t* s_uarts[UART_NUM] = {&UART0, &UART1, &UART2}; // per-UART locks, lazily initialized static _lock_t s_uart_read_locks[UART_NUM]; static _lock_t s_uart_write_locks[UART_NUM]; // One-character buffer used for newline conversion code, per UART static int s_peek_char[UART_NUM] = { NONE, NONE, NONE }; // Per-UART non-blocking flag. Note: default implementation does not honor this // flag, all reads are non-blocking. This option becomes effective if UART // driver is used. static bool s_non_blocking[UART_NUM]; /* Lock ensuring that uart_select is used from only one task at the time */ static _lock_t s_one_select_lock; static SemaphoreHandle_t *_signal_sem = NULL; static fd_set *_readfds = NULL; static fd_set *_writefds = NULL; static fd_set *_errorfds = NULL; static fd_set *_readfds_orig = NULL; static fd_set *_writefds_orig = NULL; static fd_set *_errorfds_orig = NULL; // Newline conversion mode when transmitting static esp_line_endings_t s_tx_mode = #if CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF ESP_LINE_ENDINGS_CRLF; #elif CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR ESP_LINE_ENDINGS_CR; #else ESP_LINE_ENDINGS_LF; #endif // Newline conversion mode when receiving static esp_line_endings_t s_rx_mode = #if CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF ESP_LINE_ENDINGS_CRLF; #elif CONFIG_NEWLIB_STDIN_LINE_ENDING_CR ESP_LINE_ENDINGS_CR; #else ESP_LINE_ENDINGS_LF; #endif static void uart_end_select(); // Functions used to write bytes to UART. Default to "basic" functions. static tx_func_t s_uart_tx_func[UART_NUM] = { &uart_tx_char, &uart_tx_char, &uart_tx_char }; // Functions used to read bytes from UART. Default to "basic" functions. static rx_func_t s_uart_rx_func[UART_NUM] = { &uart_rx_char, &uart_rx_char, &uart_rx_char }; static int uart_open(const char * path, int flags, int mode) { // this is fairly primitive, we should check if file is opened read only, // and error out if write is requested int fd = -1; if (strcmp(path, "/0") == 0) { fd = 0; } else if (strcmp(path, "/1") == 0) { fd = 1; } else if (strcmp(path, "/2") == 0) { fd = 2; } else { errno = ENOENT; return fd; } s_non_blocking[fd] = ((flags & O_NONBLOCK) == O_NONBLOCK); return fd; } static void uart_tx_char(int fd, int c) { uart_dev_t* uart = s_uarts[fd]; while (uart->status.txfifo_cnt >= 127) { ; } uart->fifo.rw_byte = c; } static void uart_tx_char_via_driver(int fd, int c) { char ch = (char) c; uart_write_bytes(fd, &ch, 1); } static int uart_rx_char(int fd) { uart_dev_t* uart = s_uarts[fd]; if (uart->status.rxfifo_cnt == 0) { return NONE; } return uart->fifo.rw_byte; } static int uart_rx_char_via_driver(int fd) { uint8_t c; int timeout = s_non_blocking[fd] ? 0 : portMAX_DELAY; int n = uart_read_bytes(fd, &c, 1, timeout); if (n <= 0) { return NONE; } return c; } static ssize_t uart_write(int fd, const void * data, size_t size) { assert(fd >=0 && fd < 3); const char *data_c = (const char *)data; /* Even though newlib does stream locking on each individual stream, we need * a dedicated UART lock if two streams (stdout and stderr) point to the * same UART. */ _lock_acquire_recursive(&s_uart_write_locks[fd]); for (size_t i = 0; i < size; i++) { int c = data_c[i]; if (c == '\n' && s_tx_mode != ESP_LINE_ENDINGS_LF) { s_uart_tx_func[fd](fd, '\r'); if (s_tx_mode == ESP_LINE_ENDINGS_CR) { continue; } } s_uart_tx_func[fd](fd, c); } _lock_release_recursive(&s_uart_write_locks[fd]); return size; } /* Helper function which returns a previous character or reads a new one from * UART. Previous character can be returned ("pushed back") using * uart_return_char function. */ static int uart_read_char(int fd) { /* return character from peek buffer, if it is there */ if (s_peek_char[fd] != NONE) { int c = s_peek_char[fd]; s_peek_char[fd] = NONE; return c; } return s_uart_rx_func[fd](fd); } /* Push back a character; it will be returned by next call to uart_read_char */ static void uart_return_char(int fd, int c) { assert(s_peek_char[fd] == NONE); s_peek_char[fd] = c; } static ssize_t uart_read(int fd, void* data, size_t size) { assert(fd >=0 && fd < 3); char *data_c = (char *) data; size_t received = 0; _lock_acquire_recursive(&s_uart_read_locks[fd]); while (received < size) { int c = uart_read_char(fd); if (c == '\r') { if (s_rx_mode == ESP_LINE_ENDINGS_CR) { c = '\n'; } else if (s_rx_mode == ESP_LINE_ENDINGS_CRLF) { /* look ahead */ int c2 = uart_read_char(fd); if (c2 == NONE) { /* could not look ahead, put the current character back */ uart_return_char(fd, c); break; } if (c2 == '\n') { /* this was \r\n sequence. discard \r, return \n */ c = '\n'; } else { /* \r followed by something else. put the second char back, * it will be processed on next iteration. return \r now. */ uart_return_char(fd, c2); } } } else if (c == NONE) { break; } data_c[received] = (char) c; ++received; if (c == '\n') { break; } } _lock_release_recursive(&s_uart_read_locks[fd]); if (received > 0) { return received; } errno = EWOULDBLOCK; return -1; } static int uart_fstat(int fd, struct stat * st) { assert(fd >=0 && fd < 3); st->st_mode = S_IFCHR; return 0; } static int uart_close(int fd) { assert(fd >=0 && fd < 3); return 0; } static int uart_fcntl(int fd, int cmd, va_list args) { assert(fd >=0 && fd < 3); int result = 0; if (cmd == F_GETFL) { if (s_non_blocking[fd]) { result |= O_NONBLOCK; } } else if (cmd == F_SETFL) { int arg = va_arg(args, int); s_non_blocking[fd] = (arg & O_NONBLOCK) != 0; } else { // unsupported operation result = -1; errno = ENOSYS; } return result; } static int uart_access(const char *path, int amode) { int ret = -1; if (strcmp(path, "/0") == 0 || strcmp(path, "/1") == 0 || strcmp(path, "/2") == 0) { if (F_OK == amode) { ret = 0; //path exists } else { if ((((amode & R_OK) == R_OK) || ((amode & W_OK) == W_OK)) && ((amode & X_OK) != X_OK)) { ret = 0; //path is readable and/or writable but not executable } else { errno = EACCES; } } } else { errno = ENOENT; } return ret; } static void select_notif_callback(uart_port_t uart_num, uart_select_notif_t uart_select_notif, BaseType_t *task_woken) { switch (uart_select_notif) { case UART_SELECT_READ_NOTIF: if (FD_ISSET(uart_num, _readfds_orig)) { FD_SET(uart_num, _readfds); esp_vfs_select_triggered_isr(_signal_sem, task_woken); } break; case UART_SELECT_WRITE_NOTIF: if (FD_ISSET(uart_num, _writefds_orig)) { FD_SET(uart_num, _writefds); esp_vfs_select_triggered_isr(_signal_sem, task_woken); } break; case UART_SELECT_ERROR_NOTIF: if (FD_ISSET(uart_num, _errorfds_orig)) { FD_SET(uart_num, _errorfds); esp_vfs_select_triggered_isr(_signal_sem, task_woken); } break; } } static esp_err_t uart_start_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, SemaphoreHandle_t *signal_sem) { if (_lock_try_acquire(&s_one_select_lock)) { return ESP_ERR_INVALID_STATE; } const int max_fds = MIN(nfds, UART_NUM); portENTER_CRITICAL(uart_get_selectlock()); if (_readfds || _writefds || _errorfds || _readfds_orig || _writefds_orig || _errorfds_orig || _signal_sem) { portEXIT_CRITICAL(uart_get_selectlock()); uart_end_select(); return ESP_ERR_INVALID_STATE; } if ((_readfds_orig = malloc(sizeof(fd_set))) == NULL) { portEXIT_CRITICAL(uart_get_selectlock()); uart_end_select(); return ESP_ERR_NO_MEM; } if ((_writefds_orig = malloc(sizeof(fd_set))) == NULL) { portEXIT_CRITICAL(uart_get_selectlock()); uart_end_select(); return ESP_ERR_NO_MEM; } if ((_errorfds_orig = malloc(sizeof(fd_set))) == NULL) { portEXIT_CRITICAL(uart_get_selectlock()); uart_end_select(); return ESP_ERR_NO_MEM; } //uart_set_select_notif_callback set the callbacks in UART ISR for (int i = 0; i < max_fds; ++i) { if (FD_ISSET(i, readfds) || FD_ISSET(i, writefds) || FD_ISSET(i, exceptfds)) { uart_set_select_notif_callback(i, select_notif_callback); } } _signal_sem = signal_sem; _readfds = readfds; _writefds = writefds; _errorfds = exceptfds; *_readfds_orig = *readfds; *_writefds_orig = *writefds; *_errorfds_orig = *exceptfds; FD_ZERO(readfds); FD_ZERO(writefds); FD_ZERO(exceptfds); portEXIT_CRITICAL(uart_get_selectlock()); // s_one_select_lock is not released on successfull exit - will be // released in uart_end_select() return ESP_OK; } static void uart_end_select() { portENTER_CRITICAL(uart_get_selectlock()); for (int i = 0; i < UART_NUM; ++i) { uart_set_select_notif_callback(i, NULL); } _signal_sem = NULL; _readfds = NULL; _writefds = NULL; _errorfds = NULL; if (_readfds_orig) { free(_readfds_orig); _readfds_orig = NULL; } if (_writefds_orig) { free(_writefds_orig); _writefds_orig = NULL; } if (_errorfds_orig) { free(_errorfds_orig); _errorfds_orig = NULL; } portEXIT_CRITICAL(uart_get_selectlock()); _lock_release(&s_one_select_lock); } void esp_vfs_dev_uart_register() { esp_vfs_t vfs = { .flags = ESP_VFS_FLAG_DEFAULT, .write = &uart_write, .open = &uart_open, .fstat = &uart_fstat, .close = &uart_close, .read = &uart_read, .fcntl = &uart_fcntl, .access = &uart_access, .start_select = &uart_start_select, .end_select = &uart_end_select, }; ESP_ERROR_CHECK(esp_vfs_register("/dev/uart", &vfs, NULL)); } void esp_vfs_dev_uart_set_rx_line_endings(esp_line_endings_t mode) { s_rx_mode = mode; } void esp_vfs_dev_uart_set_tx_line_endings(esp_line_endings_t mode) { s_tx_mode = mode; } void esp_vfs_dev_uart_use_nonblocking(int uart_num) { _lock_acquire_recursive(&s_uart_read_locks[uart_num]); _lock_acquire_recursive(&s_uart_write_locks[uart_num]); s_uart_tx_func[uart_num] = uart_tx_char; s_uart_rx_func[uart_num] = uart_rx_char; _lock_release_recursive(&s_uart_write_locks[uart_num]); _lock_release_recursive(&s_uart_read_locks[uart_num]); } void esp_vfs_dev_uart_use_driver(int uart_num) { _lock_acquire_recursive(&s_uart_read_locks[uart_num]); _lock_acquire_recursive(&s_uart_write_locks[uart_num]); s_uart_tx_func[uart_num] = uart_tx_char_via_driver; s_uart_rx_func[uart_num] = uart_rx_char_via_driver; _lock_release_recursive(&s_uart_write_locks[uart_num]); _lock_release_recursive(&s_uart_read_locks[uart_num]); }