// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include "esp_attr.h" #include "esp_err.h" #include "esp_log.h" #include "esp_sleep.h" #include "esp32/ulp.h" #include "soc/soc.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "soc/sens_reg.h" #include "driver/rtc_io.h" #include "sdkconfig.h" static void hexdump(const uint32_t* src, size_t count) { for (size_t i = 0; i < count; ++i) { printf("%08x ", *src); ++src; if ((i + 1) % 4 == 0) { printf("\n"); } } } TEST_CASE("ulp add test", "[ulp]") { memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); const ulp_insn_t program[] = { I_MOVI(R3, 16), I_LD(R0, R3, 0), I_LD(R1, R3, 1), I_ADDR(R2, R0, R1), I_ST(R2, R3, 2), I_HALT() }; RTC_SLOW_MEM[16] = 10; RTC_SLOW_MEM[17] = 11; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ASSERT_EQUAL(ESP_OK, ulp_process_macros_and_load(0, program, &size)); TEST_ASSERT_EQUAL(ESP_OK, ulp_run(0)); ets_delay_us(1000); hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4); TEST_ASSERT_EQUAL(10 + 11, RTC_SLOW_MEM[18] & 0xffff); } TEST_CASE("ulp branch test", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); const ulp_insn_t program[] = { I_MOVI(R0, 34), // r0 = dst M_LABEL(1), I_MOVI(R1, 32), I_LD(R1, R1, 0), // r1 = mem[33] I_MOVI(R2, 33), I_LD(R2, R2, 0), // r2 = mem[34] I_SUBR(R3, R1, R2), // r3 = r1 - r2 I_ST(R3, R0, 0), // dst[0] = r3 I_ADDI(R0, R0, 1), M_BL(1, 64), I_HALT(), }; RTC_SLOW_MEM[32] = 42; RTC_SLOW_MEM[33] = 18; hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4); size_t size = sizeof(program)/sizeof(ulp_insn_t); ulp_process_macros_and_load(0, program, &size); ulp_run(0); printf("\n\n"); hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4); for (int i = 34; i < 64; ++i) { TEST_ASSERT_EQUAL(42 - 18, RTC_SLOW_MEM[i] & 0xffff); } TEST_ASSERT_EQUAL(0, RTC_SLOW_MEM[64]); } TEST_CASE("ulp wakeup test", "[ulp][ignore]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); const ulp_insn_t program[] = { I_MOVI(R1, 1024), M_LABEL(1), I_DELAY(32000), I_SUBI(R1, R1, 1), M_BXZ(3), I_RSHI(R3, R1, 5), // R3 = R1 / 32 I_ST(R1, R3, 16), M_BX(1), M_LABEL(3), I_MOVI(R2, 42), I_MOVI(R3, 15), I_ST(R2, R3, 0), I_WAKE(), I_END(), I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); ulp_process_macros_and_load(0, program, &size); ulp_run(0); esp_sleep_enable_ulp_wakeup(); esp_deep_sleep_start(); } TEST_CASE("ulp can write and read peripheral registers", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); REG_WRITE(RTC_CNTL_STORE1_REG, 0x89abcdef); const ulp_insn_t program[] = { I_MOVI(R1, 64), I_RD_REG(RTC_CNTL_STORE1_REG, 0, 15), I_ST(R0, R1, 0), I_RD_REG(RTC_CNTL_STORE1_REG, 4, 11), I_ST(R0, R1, 1), I_RD_REG(RTC_CNTL_STORE1_REG, 16, 31), I_ST(R0, R1, 2), I_RD_REG(RTC_CNTL_STORE1_REG, 20, 27), I_ST(R0, R1, 3), I_WR_REG(RTC_CNTL_STORE0_REG, 0, 7, 0x89), I_WR_REG(RTC_CNTL_STORE0_REG, 8, 15, 0xab), I_WR_REG(RTC_CNTL_STORE0_REG, 16, 23, 0xcd), I_WR_REG(RTC_CNTL_STORE0_REG, 24, 31, 0xef), I_LD(R0, R1, 4), I_ADDI(R0, R0, 1), I_ST(R0, R1, 4), I_END(), I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); TEST_ESP_OK(ulp_run(0)); vTaskDelay(100/portTICK_PERIOD_MS); TEST_ASSERT_EQUAL_HEX32(0xefcdab89, REG_READ(RTC_CNTL_STORE0_REG)); TEST_ASSERT_EQUAL_HEX16(0xcdef, RTC_SLOW_MEM[64] & 0xffff); TEST_ASSERT_EQUAL_HEX16(0xde, RTC_SLOW_MEM[65] & 0xffff); TEST_ASSERT_EQUAL_HEX16(0x89ab, RTC_SLOW_MEM[66] & 0xffff); TEST_ASSERT_EQUAL_HEX16(0x9a, RTC_SLOW_MEM[67] & 0xffff); TEST_ASSERT_EQUAL_HEX32(1 | (15 << 21) | (1 << 16), RTC_SLOW_MEM[68]); } TEST_CASE("ULP I_WR_REG instruction test", "[ulp]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); typedef struct { int low; int width; } wr_reg_test_item_t; const wr_reg_test_item_t test_items[] = { {0, 1}, {0, 2}, {0, 3}, {0, 4}, {0, 5}, {0, 6}, {0, 7}, {0, 8}, {3, 1}, {3, 2}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 7}, {3, 8}, {15, 1}, {15, 2}, {15, 3}, {15, 4}, {15, 5}, {15, 6}, {15, 7}, {15, 8}, {16, 1}, {16, 2}, {16, 3}, {16, 4}, {16, 5}, {16, 6}, {16, 7}, {16, 8}, {18, 1}, {18, 2}, {18, 3}, {18, 4}, {18, 5}, {18, 6}, {18, 7}, {18, 8}, {24, 1}, {24, 2}, {24, 3}, {24, 4}, {24, 5}, {24, 6}, {24, 7}, {24, 8}, }; const size_t test_items_count = sizeof(test_items)/sizeof(test_items[0]); for (size_t i = 0; i < test_items_count; ++i) { const uint32_t mask = (uint32_t) (((1ULL << test_items[i].width) - 1) << test_items[i].low); const uint32_t not_mask = ~mask; printf("#%2d: low: %2d width: %2d mask: %08x expected: %08x ", i, test_items[i].low, test_items[i].width, mask, not_mask); REG_WRITE(RTC_CNTL_STORE0_REG, 0xffffffff); REG_WRITE(RTC_CNTL_STORE1_REG, 0x00000000); const ulp_insn_t program[] = { I_WR_REG(RTC_CNTL_STORE0_REG, test_items[i].low, test_items[i].low + test_items[i].width - 1, 0), I_WR_REG(RTC_CNTL_STORE1_REG, test_items[i].low, test_items[i].low + test_items[i].width - 1, 0xff & ((1 << test_items[i].width) - 1)), I_END(), I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); ulp_process_macros_and_load(0, program, &size); ulp_run(0); vTaskDelay(10/portTICK_PERIOD_MS); uint32_t clear = REG_READ(RTC_CNTL_STORE0_REG); uint32_t set = REG_READ(RTC_CNTL_STORE1_REG); printf("clear: %08x set: %08x\n", clear, set); TEST_ASSERT_EQUAL_HEX32(not_mask, clear); TEST_ASSERT_EQUAL_HEX32(mask, set); } } TEST_CASE("ulp controls RTC_IO", "[ulp][ignore]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); const ulp_insn_t program[] = { I_MOVI(R0, 0), // R0 is LED state I_MOVI(R2, 16), // loop R2 from 16 down to 0 M_LABEL(4), I_SUBI(R2, R2, 1), M_BXZ(6), I_ADDI(R0, R0, 1), // R0 = (R0 + 1) % 2 I_ANDI(R0, R0, 0x1), M_BL(0, 1), // if R0 < 1 goto 0 M_LABEL(1), I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 1), // RTC_GPIO12 = 1 M_BX(2), // goto 2 M_LABEL(0), // 0: I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 0), // RTC_GPIO12 = 0 M_LABEL(2), // 2: I_MOVI(R1, 100), // loop R1 from 100 down to 0 M_LABEL(3), I_SUBI(R1, R1, 1), M_BXZ(5), I_DELAY(32000), // delay for a while M_BX(3), M_LABEL(5), M_BX(4), M_LABEL(6), I_WAKE(), // wake up the SoC I_END(), // stop ULP program timer I_HALT() }; const gpio_num_t led_gpios[] = { GPIO_NUM_2, GPIO_NUM_0, GPIO_NUM_4 }; for (size_t i = 0; i < sizeof(led_gpios)/sizeof(led_gpios[0]); ++i) { rtc_gpio_init(led_gpios[i]); rtc_gpio_set_direction(led_gpios[i], RTC_GPIO_MODE_OUTPUT_ONLY); rtc_gpio_set_level(led_gpios[i], 0); } size_t size = sizeof(program)/sizeof(ulp_insn_t); ulp_process_macros_and_load(0, program, &size); ulp_run(0); esp_sleep_enable_ulp_wakeup(); esp_deep_sleep_start(); } TEST_CASE("ulp power consumption in deep sleep", "[ulp][ignore]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 4 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); ulp_insn_t insn = I_HALT(); memcpy(&RTC_SLOW_MEM[0], &insn, sizeof(insn)); REG_WRITE(SENS_ULP_CP_SLEEP_CYC0_REG, 0x8000); ulp_run(0); esp_sleep_enable_ulp_wakeup(); esp_sleep_enable_timer_wakeup(10 * 1000000); esp_deep_sleep_start(); } TEST_CASE("ulp timer setting", "[ulp]") { /* * Run a simple ULP program which increments the counter, for one second. * Program calls I_HALT each time and gets restarted by the timer. * Compare the expected number of times the program runs with the actual. */ assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 32 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); const int offset = 6; const ulp_insn_t program[] = { I_MOVI(R1, offset), // r1 <- offset I_LD(R2, R1, 0), // load counter I_ADDI(R2, R2, 1), // counter += 1 I_ST(R2, R1, 0), // save counter I_HALT(), }; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); assert(offset >= size && "data offset needs to be greater or equal to program size"); TEST_ESP_OK(ulp_run(0)); // disable the ULP program timer — we will enable it later CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN); const uint32_t cycles_to_test[] = {0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000}; const size_t tests_count = sizeof(cycles_to_test) / sizeof(cycles_to_test[0]); for (size_t i = 0; i < tests_count; ++i) { // zero out the counter RTC_SLOW_MEM[offset] = 0; // set the number of slow clock cycles REG_WRITE(SENS_ULP_CP_SLEEP_CYC0_REG, cycles_to_test[i]); // enable the timer and wait for a second SET_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN); vTaskDelay(1000 / portTICK_PERIOD_MS); // get the counter value and stop the timer uint32_t counter = RTC_SLOW_MEM[offset] & 0xffff; CLEAR_PERI_REG_MASK(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN); // compare the actual and expected numbers of iterations of ULP program float expected_period = (cycles_to_test[i] + 16) / (float) rtc_clk_slow_freq_get_hz() + 5 / 8e6f; float error = 1.0f - counter * expected_period; printf("%u\t%u\t%.01f\t%.04f\n", cycles_to_test[i], counter, 1.0f / expected_period, error); // Should be within 15% TEST_ASSERT_INT_WITHIN(15, 0, (int) error * 100); } } TEST_CASE("ulp can use TSENS in deep sleep", "[ulp][ignore]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4); printf("\n\n"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); // Allow TSENS to be controlled by the ULP SET_PERI_REG_BITS(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_CLK_DIV, 10, SENS_TSENS_CLK_DIV_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 3, SENS_FORCE_XPD_SAR_S); CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP); CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_DUMP_OUT); CLEAR_PERI_REG_MASK(SENS_SAR_TSENS_CTRL_REG, SENS_TSENS_POWER_UP_FORCE); // data start offset size_t offset = 20; // number of samples to collect RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8; // sample counter RTC_SLOW_MEM[offset + 1] = 0; const ulp_insn_t program[] = { I_MOVI(R1, offset), // r1 <- offset I_LD(R2, R1, 1), // r2 <- counter I_LD(R3, R1, 0), // r3 <- length I_SUBI(R3, R3, 1), // end = length - 1 I_SUBR(R3, R3, R2), // r3 = length - counter M_BXF(1), // if overflow goto 1: I_WR_REG(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR_S, SENS_FORCE_XPD_SAR_S + 1, 3), I_TSENS(R0, 16383), // r0 <- tsens I_WR_REG(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR_S, SENS_FORCE_XPD_SAR_S + 1, 0), I_ST(R0, R2, offset + 4), I_ADDI(R2, R2, 1), // counter += 1 I_ST(R2, R1, 1), // save counter I_HALT(), // enter sleep M_LABEL(1), // done with measurements I_END(), // stop ULP timer I_WAKE(), // initiate wakeup I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); assert(offset >= size); TEST_ESP_OK(ulp_run(0)); esp_sleep_enable_timer_wakeup(4000000); esp_sleep_enable_ulp_wakeup(); esp_deep_sleep_start(); } TEST_CASE("can use ADC in deep sleep", "[ulp][ignore]") { assert(CONFIG_ULP_COPROC_RESERVE_MEM >= 260 && "this test needs ULP_COPROC_RESERVE_MEM option set in menuconfig"); hexdump(RTC_SLOW_MEM, CONFIG_ULP_COPROC_RESERVE_MEM / 4); printf("\n\n"); memset(RTC_SLOW_MEM, 0, CONFIG_ULP_COPROC_RESERVE_MEM); SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR1_BIT_WIDTH, 3, SENS_SAR1_BIT_WIDTH_S); SET_PERI_REG_BITS(SENS_SAR_START_FORCE_REG, SENS_SAR2_BIT_WIDTH, 3, SENS_SAR2_BIT_WIDTH_S); SET_PERI_REG_BITS(SENS_SAR_READ_CTRL_REG, SENS_SAR1_SAMPLE_BIT, 0x3, SENS_SAR1_SAMPLE_BIT_S); SET_PERI_REG_BITS(SENS_SAR_READ_CTRL2_REG, SENS_SAR2_SAMPLE_BIT, 0x3, SENS_SAR2_SAMPLE_BIT_S); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_MEAS2_START_FORCE); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_MEAS1_START_FORCE); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_SAR, 0, SENS_FORCE_XPD_SAR_S); SET_PERI_REG_BITS(SENS_SAR_MEAS_WAIT2_REG, SENS_FORCE_XPD_AMP, 2, SENS_FORCE_XPD_AMP_S); // SAR1 invert result SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR1_DATA_INV); SET_PERI_REG_MASK(SENS_SAR_READ_CTRL_REG, SENS_SAR2_DATA_INV); // const int adc = 1; // const int channel = 1; // const int atten = 3; // const int gpio_num = 0; const int adc = 0; const int channel = 0; const int atten = 0; const int gpio_num = 36; rtc_gpio_init(gpio_num); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START1_REG, SENS_SAR1_EN_PAD_FORCE_M); CLEAR_PERI_REG_MASK(SENS_SAR_MEAS_START2_REG, SENS_SAR2_EN_PAD_FORCE_M); SET_PERI_REG_BITS(SENS_SAR_ATTEN1_REG, 3, atten, 2 * channel); //set SAR1 attenuation SET_PERI_REG_BITS(SENS_SAR_ATTEN2_REG, 3, atten, 2 * channel); //set SAR2 attenuation // data start offset size_t offset = 20; // number of samples to collect RTC_SLOW_MEM[offset] = (CONFIG_ULP_COPROC_RESERVE_MEM) / 4 - offset - 8; // sample counter RTC_SLOW_MEM[offset + 1] = 0; const ulp_insn_t program[] = { I_MOVI(R1, offset), // r1 <- offset I_LD(R2, R1, 1), // r2 <- counter I_LD(R3, R1, 0), // r3 <- length I_SUBI(R3, R3, 1), // end = length - 1 I_SUBR(R3, R3, R2), // r3 = length - counter M_BXF(1), // if overflow goto 1: I_ADC(R0, adc, channel), // r0 <- ADC I_ST(R0, R2, offset + 4), I_ADDI(R2, R2, 1), // counter += 1 I_ST(R2, R1, 1), // save counter I_HALT(), M_LABEL(1), // done with measurements I_END(), // stop ULP program timer I_HALT() }; size_t size = sizeof(program)/sizeof(ulp_insn_t); TEST_ESP_OK(ulp_process_macros_and_load(0, program, &size)); assert(offset >= size); TEST_ESP_OK(ulp_run(0)); esp_sleep_enable_timer_wakeup(4000000); esp_deep_sleep_start(); }