// Copyright 2016-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "esp_err.h" #ifdef __cplusplus extern "C" { #endif /** * @defgroup ulp_registers ULP coprocessor registers * @{ */ #define R0 0 /*!< general purpose register 0 */ #define R1 1 /*!< general purpose register 1 */ #define R2 2 /*!< general purpose register 2 */ #define R3 3 /*!< general purpose register 3 */ /**@}*/ /** @defgroup ulp_opcodes ULP coprocessor opcodes, sub opcodes, and various modifiers/flags * * These definitions are not intended to be used directly. * They are used in definitions of instructions later on. * * @{ */ #define OPCODE_WR_REG 1 /*!< Instruction: write peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */ #define OPCODE_RD_REG 2 /*!< Instruction: read peripheral register (RTC_CNTL/RTC_IO/SARADC) (not implemented yet) */ #define RD_REG_PERIPH_RTC_CNTL 0 /*!< Identifier of RTC_CNTL peripheral for RD_REG and WR_REG instructions */ #define RD_REG_PERIPH_RTC_IO 1 /*!< Identifier of RTC_IO peripheral for RD_REG and WR_REG instructions */ #define RD_REG_PERIPH_SENS 2 /*!< Identifier of SARADC peripheral for RD_REG and WR_REG instructions */ #define RD_REG_PERIPH_RTC_I2C 3 /*!< Identifier of RTC_I2C peripheral for RD_REG and WR_REG instructions */ #define OPCODE_I2C 3 /*!< Instruction: read/write I2C (not implemented yet) */ #define OPCODE_DELAY 4 /*!< Instruction: delay (nop) for a given number of cycles */ #define OPCODE_ADC 5 /*!< Instruction: SAR ADC measurement (not implemented yet) */ #define OPCODE_ST 6 /*!< Instruction: store indirect to RTC memory */ #define SUB_OPCODE_ST 4 /*!< Store 32 bits, 16 MSBs contain PC, 16 LSBs contain value from source register */ #define OPCODE_ALU 7 /*!< Arithmetic instructions */ #define SUB_OPCODE_ALU_REG 0 /*!< Arithmetic instruction, both source values are in register */ #define SUB_OPCODE_ALU_IMM 1 /*!< Arithmetic instruction, one source value is an immediate */ #define SUB_OPCODE_ALU_CNT 2 /*!< Arithmetic instruction between counter register and an immediate (not implemented yet)*/ #define ALU_SEL_ADD 0 /*!< Addition */ #define ALU_SEL_SUB 1 /*!< Subtraction */ #define ALU_SEL_AND 2 /*!< Logical AND */ #define ALU_SEL_OR 3 /*!< Logical OR */ #define ALU_SEL_MOV 4 /*!< Copy value (immediate to destination register or source register to destination register */ #define ALU_SEL_LSH 5 /*!< Shift left by given number of bits */ #define ALU_SEL_RSH 6 /*!< Shift right by given number of bits */ #define OPCODE_BRANCH 8 /*!< Branch instructions */ #define SUB_OPCODE_BX 0 /*!< Branch to absolute PC (immediate or in register) */ #define BX_JUMP_TYPE_DIRECT 0 /*!< Unconditional jump */ #define BX_JUMP_TYPE_ZERO 1 /*!< Branch if last ALU result is zero */ #define BX_JUMP_TYPE_OVF 2 /*!< Branch if last ALU operation caused and overflow */ #define SUB_OPCODE_B 1 /*!< Branch to a relative offset */ #define B_CMP_L 0 /*!< Branch if R0 is less than an immediate */ #define B_CMP_GE 1 /*!< Branch if R0 is greater than or equal to an immediate */ #define OPCODE_END 9 /*!< Stop executing the program */ #define SUB_OPCODE_END 0 /*!< Stop executing the program and optionally wake up the chip */ #define SUB_OPCODE_SLEEP 1 /*!< Stop executing the program and run it again after selected interval */ #define OPCODE_TSENS 10 /*!< Instruction: temperature sensor measurement (not implemented yet) */ #define OPCODE_HALT 11 /*!< Halt the coprocessor */ #define OPCODE_LD 13 /*!< Indirect load lower 16 bits from RTC memory */ #define OPCODE_MACRO 15 /*!< Not a real opcode. Used to identify labels and branches in the program */ #define SUB_OPCODE_MACRO_LABEL 0 /*!< Label macro */ #define SUB_OPCODE_MACRO_BRANCH 1 /*!< Branch macro */ /**@}*/ /**@{*/ #define ESP_ERR_ULP_BASE 0x1200 /*!< Offset for ULP-related error codes */ #define ESP_ERR_ULP_SIZE_TOO_BIG (ESP_ERR_ULP_BASE + 1) /*!< Program doesn't fit into RTC memory reserved for the ULP */ #define ESP_ERR_ULP_INVALID_LOAD_ADDR (ESP_ERR_ULP_BASE + 2) /*!< Load address is outside of RTC memory reserved for the ULP */ #define ESP_ERR_ULP_DUPLICATE_LABEL (ESP_ERR_ULP_BASE + 3) /*!< More than one label with the same number was defined */ #define ESP_ERR_ULP_UNDEFINED_LABEL (ESP_ERR_ULP_BASE + 4) /*!< Branch instructions references an undefined label */ #define ESP_ERR_ULP_BRANCH_OUT_OF_RANGE (ESP_ERR_ULP_BASE + 5) /*!< Branch target is out of range of B instruction (try replacing with BX) */ /**@}*/ /** * @brief Instruction format structure * * All ULP instructions are 32 bit long. * This union contains field layouts used by all of the supported instructions. * This union also includes a special "macro" instruction layout. * This is not a real instruction which can be executed by the CPU. It acts * as a token which is removed from the program by the * ulp_process_macros_and_load function. * * These structures are not intended to be used directly. * Preprocessor definitions provided below fill the fields of these structure with * the right arguments. */ typedef union { struct { uint32_t cycles : 16; /*!< Number of cycles to sleep */ uint32_t unused : 12; /*!< Unused */ uint32_t opcode : 4; /*!< Opcode (OPCODE_DELAY) */ } delay; /*!< Format of DELAY instruction */ struct { uint32_t dreg : 2; /*!< Register which contains data to store */ uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */ uint32_t unused1 : 6; /*!< Unused */ uint32_t offset : 11; /*!< Offset to add to sreg */ uint32_t unused2 : 4; /*!< Unused */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ST) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_ST) */ } st; /*!< Format of ST instruction */ struct { uint32_t dreg : 2; /*!< Register where the data should be loaded to */ uint32_t sreg : 2; /*!< Register which contains address in RTC memory (expressed in words) */ uint32_t unused1 : 6; /*!< Unused */ uint32_t offset : 11; /*!< Offset to add to sreg */ uint32_t unused2 : 7; /*!< Unused */ uint32_t opcode : 4; /*!< Opcode (OPCODE_LD) */ } ld; /*!< Format of LD instruction */ struct { uint32_t unused : 28; /*!< Unused */ uint32_t opcode : 4; /*!< Opcode (OPCODE_HALT) */ } halt; /*!< Format of HALT instruction */ struct { uint32_t dreg : 2; /*!< Register which contains target PC, expressed in words (used if .reg == 1) */ uint32_t addr : 11; /*!< Target PC, expressed in words (used if .reg == 0) */ uint32_t unused : 8; /*!< Unused */ uint32_t reg : 1; /*!< Target PC in register (1) or immediate (0) */ uint32_t type : 3; /*!< Jump condition (BX_JUMP_TYPE_xxx) */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_BX) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */ } bx; /*!< Format of BRANCH instruction (absolute address) */ struct { uint32_t imm : 16; /*!< Immediate value to compare against */ uint32_t cmp : 1; /*!< Comparison to perform: B_CMP_L or B_CMP_GE */ uint32_t offset : 7; /*!< Absolute value of target PC offset w.r.t. current PC, expressed in words */ uint32_t sign : 1; /*!< Sign of target PC offset: 0: positive, 1: negative */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_B) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_BRANCH) */ } b; /*!< Format of BRANCH instruction (relative address) */ struct { uint32_t dreg : 2; /*!< Destination register */ uint32_t sreg : 2; /*!< Register with operand A */ uint32_t treg : 2; /*!< Register with operand B */ uint32_t unused : 15; /*!< Unused */ uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_REG) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */ } alu_reg; /*!< Format of ALU instruction (both sources are registers) */ struct { uint32_t dreg : 2; /*!< Destination register */ uint32_t sreg : 2; /*!< Register with operand A */ uint32_t imm : 16; /*!< Immediate value of operand B */ uint32_t unused : 1; /*!< Unused */ uint32_t sel : 4; /*!< Operation to perform, one of ALU_SEL_xxx */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_ALU_IMM) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_ALU) */ } alu_imm; /*!< Format of ALU instruction (one source is an immediate) */ struct { uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */ uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */ uint32_t data : 8; /*!< 8 bits of data to write */ uint32_t low : 5; /*!< Low bit */ uint32_t high : 5; /*!< High bit */ uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */ } wr_reg; /*!< Format of WR_REG instruction */ struct { uint32_t addr : 8; /*!< Address within either RTC_CNTL, RTC_IO, or SARADC */ uint32_t periph_sel : 2; /*!< Select peripheral: RTC_CNTL (0), RTC_IO(1), SARADC(2) */ uint32_t unused : 8; /*!< Unused */ uint32_t low : 5; /*!< Low bit */ uint32_t high : 5; /*!< High bit */ uint32_t opcode : 4; /*!< Opcode (OPCODE_WR_REG) */ } rd_reg; /*!< Format of RD_REG instruction */ struct { uint32_t dreg : 2; /*!< Register where to store ADC result */ uint32_t mux : 4; /*!< Select SARADC pad (mux + 1) */ uint32_t sar_sel : 1; /*!< Select SARADC0 (0) or SARADC1 (1) */ uint32_t unused1 : 1; /*!< Unused */ uint32_t cycles : 16; /*!< TBD, cycles used for measurement */ uint32_t unused2 : 4; /*!< Unused */ uint32_t opcode: 4; /*!< Opcode (OPCODE_ADC) */ } adc; /*!< Format of ADC instruction */ struct { uint32_t dreg : 2; /*!< Register where to store temperature measurement result */ uint32_t wait_delay: 14; /*!< Cycles to wait after measurement is done */ uint32_t reserved: 12; /*!< Reserved, set to 0 */ uint32_t opcode: 4; /*!< Opcode (OPCODE_TSENS) */ } tsens; /*!< Format of TSENS instruction */ struct { uint32_t i2c_addr : 8; /*!< I2C slave address */ uint32_t data : 8; /*!< Data to read or write */ uint32_t low_bits : 3; /*!< TBD */ uint32_t high_bits : 3; /*!< TBD */ uint32_t i2c_sel : 4; /*!< TBD, select reg_i2c_slave_address[7:0] */ uint32_t unused : 1; /*!< Unused */ uint32_t rw : 1; /*!< Write (1) or read (0) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_I2C) */ } i2c; /*!< Format of I2C instruction */ struct { uint32_t wakeup : 1; /*!< Set to 1 to wake up chip */ uint32_t unused : 24; /*!< Unused */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_WAKEUP) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */ } end; /*!< Format of END instruction with wakeup */ struct { uint32_t cycle_sel : 4; /*!< Select which one of SARADC_ULP_CP_SLEEP_CYCx_REG to get the sleep duration from */ uint32_t unused : 21; /*!< Unused */ uint32_t sub_opcode : 3; /*!< Sub opcode (SUB_OPCODE_SLEEP) */ uint32_t opcode : 4; /*!< Opcode (OPCODE_END) */ } sleep; /*!< Format of END instruction with sleep */ struct { uint32_t label : 16; /*!< Label number */ uint32_t unused : 8; /*!< Unused */ uint32_t sub_opcode : 4; /*!< SUB_OPCODE_MACRO_LABEL or SUB_OPCODE_MACRO_BRANCH */ uint32_t opcode: 4; /*!< Opcode (OPCODE_MACRO) */ } macro; /*!< Format of tokens used by LABEL and BRANCH macros */ } ulp_insn_t; _Static_assert(sizeof(ulp_insn_t) == 4, "ULP coprocessor instruction size should be 4 bytes"); /** * Delay (nop) for a given number of cycles */ #define I_DELAY(cycles_) { .delay = {\ .cycles = cycles_, \ .unused = 0, \ .opcode = OPCODE_DELAY } } /** * Halt the coprocessor. * * This instruction halts the coprocessor, but keeps ULP timer active. * As such, ULP program will be restarted again by timer. * To stop the program and prevent the timer from restarting the program, * use I_END(0) instruction. */ #define I_HALT() { .halt = {\ .unused = 0, \ .opcode = OPCODE_HALT } } /** * Map SoC peripheral register to periph_sel field of RD_REG and WR_REG * instructions. * * @param reg peripheral register in RTC_CNTL_, RTC_IO_, SENS_, RTC_I2C peripherals. * @return periph_sel value for the peripheral to which this register belongs. */ static inline uint32_t SOC_REG_TO_ULP_PERIPH_SEL(uint32_t reg) { uint32_t ret = 3; if (reg < DR_REG_RTCCNTL_BASE) { assert(0 && "invalid register base"); } else if (reg < DR_REG_RTCIO_BASE) { ret = RD_REG_PERIPH_RTC_CNTL; } else if (reg < DR_REG_SENS_BASE) { ret = RD_REG_PERIPH_RTC_IO; } else if (reg < DR_REG_RTC_I2C_BASE){ ret = RD_REG_PERIPH_SENS; } else if (reg < DR_REG_IO_MUX_BASE){ ret = RD_REG_PERIPH_RTC_I2C; } else { assert(0 && "invalid register base"); } return ret; } /** * Write literal value to a peripheral register * * reg[high_bit : low_bit] = val * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers. */ #define I_WR_REG(reg, low_bit, high_bit, val) {.wr_reg = {\ .addr = (reg & 0xff) / sizeof(uint32_t), \ .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \ .data = val, \ .low = low_bit, \ .high = high_bit, \ .opcode = OPCODE_WR_REG } } /** * Read from peripheral register into R0 * * R0 = reg[high_bit : low_bit] * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers. */ #define I_RD_REG(reg, low_bit, high_bit) {.rd_reg = {\ .addr = (reg & 0xff) / sizeof(uint32_t), \ .periph_sel = SOC_REG_TO_ULP_PERIPH_SEL(reg), \ .unused = 0, \ .low = low_bit, \ .high = high_bit, \ .opcode = OPCODE_RD_REG } } /** * Set or clear a bit in the peripheral register. * * Sets bit (1 << shift) of register reg to value val. * This instruction can access RTC_CNTL_, RTC_IO_, SENS_, and RTC_I2C peripheral registers. */ #define I_WR_REG_BIT(reg, shift, val) I_WR_REG(reg, shift, shift, val) /** * Wake the SoC from deep sleep. * * This instruction initiates wake up from deep sleep. * Use esp_deep_sleep_enable_ulp_wakeup to enable deep sleep wakeup * triggered by the ULP before going into deep sleep. * Note that ULP program will still keep running until the I_HALT * instruction, and it will still be restarted by timer at regular * intervals, even when the SoC is woken up. * * To stop the ULP program, use I_HALT instruction. * * To disable the timer which start ULP program, use I_END() * instruction. I_END instruction clears the * RTC_CNTL_ULP_CP_SLP_TIMER_EN_S bit of RTC_CNTL_STATE0_REG * register, which controls the ULP timer. */ #define I_WAKE() { .end = { \ .wakeup = 1, \ .unused = 0, \ .sub_opcode = SUB_OPCODE_END, \ .opcode = OPCODE_END } } /** * Stop ULP program timer. * * This is a convenience macro which disables the ULP program timer. * Once this instruction is used, ULP program will not be restarted * anymore until ulp_run function is called. * * ULP program will continue running after this instruction. To stop * the currently running program, use I_HALT(). */ #define I_END() \ I_WR_REG_BIT(RTC_CNTL_STATE0_REG, RTC_CNTL_ULP_CP_SLP_TIMER_EN_S, 0) /** * Select the time interval used to run ULP program. * * This instructions selects which of the SENS_SLEEP_CYCLES_Sx * registers' value is used by the ULP program timer. * When the ULP program stops at I_HALT instruction, ULP program * timer start counting. When the counter reaches the value of * the selected SENS_SLEEP_CYCLES_Sx register, ULP program * start running again from the start address (passed to the ulp_run * function). * There are 5 SENS_SLEEP_CYCLES_Sx registers, so 0 <= timer_idx < 5. * * By default, SENS_SLEEP_CYCLES_S0 register is used by the ULP * program timer. */ #define I_SLEEP_CYCLE_SEL(timer_idx) { .sleep = { \ .cycle_sel = timer_idx, \ .unused = 0, \ .sub_opcode = SUB_OPCODE_SLEEP, \ .opcode = OPCODE_END } } /** * Perform temperature sensor measurement and store it into reg_dest. * * Delay can be set between 1 and ((1 << 14) - 1). Higher values give * higher measurement resolution. */ #define I_TSENS(reg_dest, delay) { .tsens = { \ .dreg = reg_dest, \ .wait_delay = delay, \ .reserved = 0, \ .opcode = OPCODE_TSENS } } /** * Perform ADC measurement and store result in reg_dest. * * adc_idx selects ADC (0 or 1). * pad_idx selects ADC pad (0 - 7). */ #define I_ADC(reg_dest, adc_idx, pad_idx) { .adc = {\ .dreg = reg_dest, \ .mux = pad_idx + 1, \ .sar_sel = adc_idx, \ .unused1 = 0, \ .cycles = 0, \ .unused2 = 0, \ .opcode = OPCODE_ADC } } /** * Store value from register reg_val into RTC memory. * * The value is written to an offset calculated by adding value of * reg_addr register and offset_ field (this offset is expressed in 32-bit words). * 32 bits written to RTC memory are built as follows: * - bits [31:21] hold the PC of current instruction, expressed in 32-bit words * - bits [20:16] = 5'b1 * - bits [15:0] are assigned the contents of reg_val * * RTC_SLOW_MEM[addr + offset_] = { 5'b0, insn_PC[10:0], val[15:0] } */ #define I_ST(reg_val, reg_addr, offset_) { .st = { \ .dreg = reg_val, \ .sreg = reg_addr, \ .unused1 = 0, \ .offset = offset_, \ .unused2 = 0, \ .sub_opcode = SUB_OPCODE_ST, \ .opcode = OPCODE_ST } } /** * Load value from RTC memory into reg_dest register. * * Loads 16 LSBs from RTC memory word given by the sum of value in reg_addr and * value of offset_. */ #define I_LD(reg_dest, reg_addr, offset_) { .ld = { \ .dreg = reg_dest, \ .sreg = reg_addr, \ .unused1 = 0, \ .offset = offset_, \ .unused2 = 0, \ .opcode = OPCODE_LD } } /** * Branch relative if R0 less than immediate value. * * pc_offset is expressed in words, and can be from -127 to 127 * imm_value is a 16-bit value to compare R0 against */ #define I_BL(pc_offset, imm_value) { .b = { \ .imm = imm_value, \ .cmp = B_CMP_L, \ .offset = abs(pc_offset), \ .sign = (pc_offset >= 0) ? 0 : 1, \ .sub_opcode = SUB_OPCODE_B, \ .opcode = OPCODE_BRANCH } } /** * Branch relative if R0 greater or equal than immediate value. * * pc_offset is expressed in words, and can be from -127 to 127 * imm_value is a 16-bit value to compare R0 against */ #define I_BGE(pc_offset, imm_value) { .b = { \ .imm = imm_value, \ .cmp = B_CMP_GE, \ .offset = abs(pc_offset), \ .sign = (pc_offset >= 0) ? 0 : 1, \ .sub_opcode = SUB_OPCODE_B, \ .opcode = OPCODE_BRANCH } } /** * Unconditional branch to absolute PC, address in register. * * reg_pc is the register which contains address to jump to. * Address is expressed in 32-bit words. */ #define I_BXR(reg_pc) { .bx = { \ .dreg = reg_pc, \ .addr = 0, \ .unused = 0, \ .reg = 1, \ .type = BX_JUMP_TYPE_DIRECT, \ .sub_opcode = SUB_OPCODE_BX, \ .opcode = OPCODE_BRANCH } } /** * Unconditional branch to absolute PC, immediate address. * * Address imm_pc is expressed in 32-bit words. */ #define I_BXI(imm_pc) { .bx = { \ .dreg = 0, \ .addr = imm_pc, \ .unused = 0, \ .reg = 0, \ .type = BX_JUMP_TYPE_DIRECT, \ .sub_opcode = SUB_OPCODE_BX, \ .opcode = OPCODE_BRANCH } } /** * Branch to absolute PC if ALU result is zero, address in register. * * reg_pc is the register which contains address to jump to. * Address is expressed in 32-bit words. */ #define I_BXZR(reg_pc) { .bx = { \ .dreg = reg_pc, \ .addr = 0, \ .unused = 0, \ .reg = 1, \ .type = BX_JUMP_TYPE_ZERO, \ .sub_opcode = SUB_OPCODE_BX, \ .opcode = OPCODE_BRANCH } } /** * Branch to absolute PC if ALU result is zero, immediate address. * * Address imm_pc is expressed in 32-bit words. */ #define I_BXZI(imm_pc) { .bx = { \ .dreg = 0, \ .addr = imm_pc, \ .unused = 0, \ .reg = 0, \ .type = BX_JUMP_TYPE_ZERO, \ .sub_opcode = SUB_OPCODE_BX, \ .opcode = OPCODE_BRANCH } } /** * Branch to absolute PC if ALU overflow, address in register * * reg_pc is the register which contains address to jump to. * Address is expressed in 32-bit words. */ #define I_BXFR(reg_pc) { .bx = { \ .dreg = reg_pc, \ .addr = 0, \ .unused = 0, \ .reg = 1, \ .type = BX_JUMP_TYPE_OVF, \ .sub_opcode = SUB_OPCODE_BX, \ .opcode = OPCODE_BRANCH } } /** * Branch to absolute PC if ALU overflow, immediate address * * Address imm_pc is expressed in 32-bit words. */ #define I_BXFI(imm_pc) { .bx = { \ .dreg = 0, \ .addr = imm_pc, \ .unused = 0, \ .reg = 0, \ .type = BX_JUMP_TYPE_OVF, \ .sub_opcode = SUB_OPCODE_BX, \ .opcode = OPCODE_BRANCH } } /** * Addition: dest = src1 + src2 */ #define I_ADDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src1, \ .treg = reg_src2, \ .unused = 0, \ .sel = ALU_SEL_ADD, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Subtraction: dest = src1 - src2 */ #define I_SUBR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src1, \ .treg = reg_src2, \ .unused = 0, \ .sel = ALU_SEL_SUB, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Logical AND: dest = src1 & src2 */ #define I_ANDR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src1, \ .treg = reg_src2, \ .unused = 0, \ .sel = ALU_SEL_AND, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Logical OR: dest = src1 | src2 */ #define I_ORR(reg_dest, reg_src1, reg_src2) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src1, \ .treg = reg_src2, \ .unused = 0, \ .sel = ALU_SEL_OR, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Copy: dest = src */ #define I_MOVR(reg_dest, reg_src) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .treg = 0, \ .unused = 0, \ .sel = ALU_SEL_MOV, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Logical shift left: dest = src << shift */ #define I_LSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .treg = reg_shift, \ .unused = 0, \ .sel = ALU_SEL_LSH, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Logical shift right: dest = src >> shift */ #define I_RSHR(reg_dest, reg_src, reg_shift) { .alu_reg = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .treg = reg_shift, \ .unused = 0, \ .sel = ALU_SEL_RSH, \ .sub_opcode = SUB_OPCODE_ALU_REG, \ .opcode = OPCODE_ALU } } /** * Add register and an immediate value: dest = src1 + imm */ #define I_ADDI(reg_dest, reg_src, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_ADD, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Subtract register and an immediate value: dest = src - imm */ #define I_SUBI(reg_dest, reg_src, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_SUB, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Logical AND register and an immediate value: dest = src & imm */ #define I_ANDI(reg_dest, reg_src, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_AND, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Logical OR register and an immediate value: dest = src | imm */ #define I_ORI(reg_dest, reg_src, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_OR, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Copy an immediate value into register: dest = imm */ #define I_MOVI(reg_dest, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = 0, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_MOV, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Logical shift left register value by an immediate: dest = src << imm */ #define I_LSHI(reg_dest, reg_src, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_LSH, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Logical shift right register value by an immediate: dest = val >> imm */ #define I_RSHI(reg_dest, reg_src, imm_) { .alu_imm = { \ .dreg = reg_dest, \ .sreg = reg_src, \ .imm = imm_, \ .unused = 0, \ .sel = ALU_SEL_RSH, \ .sub_opcode = SUB_OPCODE_ALU_IMM, \ .opcode = OPCODE_ALU } } /** * Define a label with number label_num. * * This is a macro which doesn't generate a real instruction. * The token generated by this macro is removed by ulp_process_macros_and_load * function. Label defined using this macro can be used in branch macros defined * below. */ #define M_LABEL(label_num) { .macro = { \ .label = label_num, \ .unused = 0, \ .sub_opcode = SUB_OPCODE_MACRO_LABEL, \ .opcode = OPCODE_MACRO } } /** * Token macro used by M_B and M_BX macros. Not to be used directly. */ #define M_BRANCH(label_num) { .macro = { \ .label = label_num, \ .unused = 0, \ .sub_opcode = SUB_OPCODE_MACRO_BRANCH, \ .opcode = OPCODE_MACRO } } /** * Macro: branch to label label_num if R0 is less than immediate value. * * This macro generates two ulp_insn_t values separated by a comma, and should * be used when defining contents of ulp_insn_t arrays. First value is not a * real instruction; it is a token which is removed by ulp_process_macros_and_load * function. */ #define M_BL(label_num, imm_value) \ M_BRANCH(label_num), \ I_BL(0, imm_value) /** * Macro: branch to label label_num if R0 is greater or equal than immediate value * * This macro generates two ulp_insn_t values separated by a comma, and should * be used when defining contents of ulp_insn_t arrays. First value is not a * real instruction; it is a token which is removed by ulp_process_macros_and_load * function. */ #define M_BGE(label_num, imm_value) \ M_BRANCH(label_num), \ I_BGE(0, imm_value) /** * Macro: unconditional branch to label * * This macro generates two ulp_insn_t values separated by a comma, and should * be used when defining contents of ulp_insn_t arrays. First value is not a * real instruction; it is a token which is removed by ulp_process_macros_and_load * function. */ #define M_BX(label_num) \ M_BRANCH(label_num), \ I_BXI(0) /** * Macro: branch to label if ALU result is zero * * This macro generates two ulp_insn_t values separated by a comma, and should * be used when defining contents of ulp_insn_t arrays. First value is not a * real instruction; it is a token which is removed by ulp_process_macros_and_load * function. */ #define M_BXZ(label_num) \ M_BRANCH(label_num), \ I_BXZI(0) /** * Macro: branch to label if ALU overflow * * This macro generates two ulp_insn_t values separated by a comma, and should * be used when defining contents of ulp_insn_t arrays. First value is not a * real instruction; it is a token which is removed by ulp_process_macros_and_load * function. */ #define M_BXF(label_num) \ M_BRANCH(label_num), \ I_BXFI(0) #define RTC_SLOW_MEM ((uint32_t*) 0x50000000) /*!< RTC slow memory, 8k size */ /** * @brief Resolve all macro references in a program and load it into RTC memory * @param load_addr address where the program should be loaded, expressed in 32-bit words * @param program ulp_insn_t array with the program * @param psize size of the program, expressed in 32-bit words * @return * - ESP_OK on success * - ESP_ERR_NO_MEM if auxiliary temporary structure can not be allocated * - one of ESP_ERR_ULP_xxx if program is not valid or can not be loaded */ esp_err_t ulp_process_macros_and_load(uint32_t load_addr, const ulp_insn_t* program, size_t* psize); /** * @brief Load ULP program binary into RTC memory * * ULP program binary should have the following format (all values little-endian): * * 1. MAGIC, (value 0x00706c75, 4 bytes) * 2. TEXT_OFFSET, offset of .text section from binary start (2 bytes) * 3. TEXT_SIZE, size of .text section (2 bytes) * 4. DATA_SIZE, size of .data section (2 bytes) * 5. BSS_SIZE, size of .bss section (2 bytes) * 6. (TEXT_OFFSET - 16) bytes of arbitrary data (will not be loaded into RTC memory) * 7. .text section * 8. .data section * * Linker script in components/ulp/ld/esp32.ulp.ld produces ELF files which * correspond to this format. This linker script produces binaries with load_addr == 0. * * @param load_addr address where the program should be loaded, expressed in 32-bit words * @param program_binary pointer to program binary * @param program_size size of the program binary * @return * - ESP_OK on success * - ESP_ERR_INVALID_ARG if load_addr is out of range * - ESP_ERR_INVALID_SIZE if program_size doesn't match (TEXT_OFFSET + TEXT_SIZE + DATA_SIZE) * - ESP_ERR_NOT_SUPPORTED if the magic number is incorrect */ esp_err_t ulp_load_binary(uint32_t load_addr, const uint8_t* program_binary, size_t program_size); /** * @brief Run the program loaded into RTC memory * @param entry_point entry point, expressed in 32-bit words * @return ESP_OK on success */ esp_err_t ulp_run(uint32_t entry_point); /** * @brief Set one of ULP wakeup period values * * ULP coprocessor starts running the program when the wakeup timer counts up * to a given value (called period). There are 5 period values which can be * programmed into SENS_ULP_CP_SLEEP_CYCx_REG registers, x = 0..4. * By default, wakeup timer will use the period set into SENS_ULP_CP_SLEEP_CYC0_REG, * i.e. period number 0. ULP program code can use SLEEP instruction to select * which of the SENS_ULP_CP_SLEEP_CYCx_REG should be used for subsequent wakeups. * * @param period_index wakeup period setting number (0 - 4) * @param period_us wakeup period, us * @return * - ESP_OK on success * - ESP_ERR_INVALID_ARG if period_index is out of range */ esp_err_t ulp_set_wakeup_period(size_t period_index, uint32_t period_us); #ifdef __cplusplus } #endif