// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "unity.h" #include "driver/gpio.h" #include "driver/sdmmc_host.h" #include "driver/sdspi_host.h" #include "driver/sdmmc_defs.h" #include "sdmmc_cmd.h" #include "esp_log.h" #include "esp_heap_caps.h" #include #include #include // Can't test eMMC (slot 0) and PSRAM together #ifndef CONFIG_ESP32_SPIRAM_SUPPORT #define WITH_EMMC_TEST #endif /* power supply enable pin */ #define SD_TEST_BOARD_VSEL_EN_GPIO 27 /* power supply voltage select pin */ #define SD_TEST_BOARD_VSEL_GPIO 26 #define SD_TEST_BOARD_VSEL_3V3 1 #define SD_TEST_BOARD_VSEL_1V8 0 /* time to wait for reset / power-on */ #define SD_TEST_BOARD_PWR_RST_DELAY_MS 5 #define SD_TEST_BOARD_PWR_ON_DELAY_MS 50 /* gpio which is not connected to actual CD pin, used to simulate CD behavior */ #define CD_WP_TEST_GPIO 18 static void sd_test_board_power_on() { gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_OUTPUT); gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, SD_TEST_BOARD_VSEL_3V3); gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_OUTPUT); gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0); usleep(SD_TEST_BOARD_PWR_RST_DELAY_MS * 1000); gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 1); usleep(SD_TEST_BOARD_PWR_ON_DELAY_MS * 1000); } static void sd_test_board_power_off() { gpio_set_level(SD_TEST_BOARD_VSEL_EN_GPIO, 0); gpio_set_direction(SD_TEST_BOARD_VSEL_GPIO, GPIO_MODE_INPUT); gpio_set_level(SD_TEST_BOARD_VSEL_GPIO, 0); gpio_set_direction(SD_TEST_BOARD_VSEL_EN_GPIO, GPIO_MODE_INPUT); } TEST_CASE("MMC_RSP_BITS", "[sd]") { uint32_t data[2] = { 0x01234567, 0x89abcdef }; TEST_ASSERT_EQUAL_HEX32(0x7, MMC_RSP_BITS(data, 0, 4)); TEST_ASSERT_EQUAL_HEX32(0x567, MMC_RSP_BITS(data, 0, 12)); TEST_ASSERT_EQUAL_HEX32(0xf0, MMC_RSP_BITS(data, 28, 8)); TEST_ASSERT_EQUAL_HEX32(0x3, MMC_RSP_BITS(data, 1, 3)); TEST_ASSERT_EQUAL_HEX32(0x11, MMC_RSP_BITS(data, 59, 5)); } static void probe_sd(int slot, int width, int freq_khz, int ddr) { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); config.slot = slot; config.max_freq_khz = freq_khz; sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); if (width == 1) { config.flags = SDMMC_HOST_FLAG_1BIT; slot_config.width = 1; } else if (width == 4) { config.flags &= ~SDMMC_HOST_FLAG_8BIT; slot_config.width = 4; } else { assert(!ddr && "host driver does not support 8-line DDR mode yet"); } if (!ddr) { config.flags &= ~SDMMC_HOST_FLAG_DDR; } TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); sdmmc_card_print_info(stdout, card); uint8_t* buffer = heap_caps_malloc(512, MALLOC_CAP_DMA); TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 0, 1)); free(buffer); TEST_ESP_OK(sdmmc_host_deinit()); free(card); sd_test_board_power_off(); } static void probe_spi(int freq_khz, int pin_miso, int pin_mosi, int pin_sck, int pin_cs) { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT(); slot_config.gpio_miso = pin_miso; slot_config.gpio_mosi = pin_mosi; slot_config.gpio_sck = pin_sck; slot_config.gpio_cs = pin_cs; TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); sdmmc_card_print_info(stdout, card); TEST_ESP_OK(sdspi_host_deinit()); free(card); sd_test_board_power_off(); } TEST_CASE("probe SD, slot 1, 4-bit", "[sd][test_env=UT_T1_SDMODE]") { probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_1, 4, SDMMC_FREQ_HIGHSPEED, 0); } TEST_CASE("probe SD, slot 1, 1-bit", "[sd][test_env=UT_T1_SDMODE]") { probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_1, 1, SDMMC_FREQ_HIGHSPEED, 0); } #ifdef WITH_EMMC_TEST TEST_CASE("probe eMMC, slot 0, 4-bit, DDR", "[sd][test_env=EMMC]") { probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 1); } TEST_CASE("probe eMMC, slot 0, 8-bit", "[sd][test_env=EMMC]") { probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 8, SDMMC_FREQ_HIGHSPEED, 0); } #endif // WITH_EMMC_TEST TEST_CASE("probe SD, slot 0, 4-bit", "[sd][test_env=UT_T1_SDCARD][ignore]") { probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 4, SDMMC_FREQ_HIGHSPEED, 0); } TEST_CASE("probe SD, slot 0, 1-bit", "[sd][test_env=UT_T1_SDCARD][ignore]") { probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_PROBING, 0); probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_DEFAULT, 0); probe_sd(SDMMC_HOST_SLOT_0, 1, SDMMC_FREQ_HIGHSPEED, 0); } TEST_CASE("probe SD in SPI mode, slot 1", "[sd][test_env=UT_T1_SPIMODE]") { probe_spi(SDMMC_FREQ_DEFAULT, 2, 15, 14, 13); } TEST_CASE("probe SD in SPI mode, slot 0", "[sd][test_env=UT_T1_SDCARD][ignore]") { probe_spi(SDMMC_FREQ_DEFAULT, 7, 11, 6, 10); } // Fill buffer pointed to by 'dst' with 'count' 32-bit ints generated // from 'rand' with the starting value of 'seed' static void fill_buffer(uint32_t seed, uint8_t* dst, size_t count) { srand(seed); for (size_t i = 0; i < count; ++i) { uint32_t val = rand(); memcpy(dst + i * sizeof(uint32_t), &val, sizeof(val)); } } // Check if the buffer pointed to by 'dst' contains 'count' 32-bit // ints generated from 'rand' with the starting value of 'seed' static void check_buffer(uint32_t seed, const uint8_t* src, size_t count) { srand(seed); for (size_t i = 0; i < count; ++i) { uint32_t val; memcpy(&val, src + i * sizeof(uint32_t), sizeof(val)); TEST_ASSERT_EQUAL_HEX32(rand(), val); } } static void do_single_write_read_test(sdmmc_card_t* card, size_t start_block, size_t block_count, size_t alignment) { size_t block_size = card->csd.sector_size; size_t total_size = block_size * block_count; printf(" %8d | %3d | %d | %4.1f ", start_block, block_count, alignment, total_size / 1024.0f); uint32_t* buffer = heap_caps_malloc(total_size + 4, MALLOC_CAP_DMA); size_t offset = alignment % 4; uint8_t* c_buffer = (uint8_t*) buffer + offset; fill_buffer(start_block, c_buffer, total_size / sizeof(buffer[0])); struct timeval t_start_wr; gettimeofday(&t_start_wr, NULL); TEST_ESP_OK(sdmmc_write_sectors(card, c_buffer, start_block, block_count)); struct timeval t_stop_wr; gettimeofday(&t_stop_wr, NULL); float time_wr = 1e3f * (t_stop_wr.tv_sec - t_start_wr.tv_sec) + 1e-3f * (t_stop_wr.tv_usec - t_start_wr.tv_usec); memset(buffer, 0xbb, total_size + 4); struct timeval t_start_rd; gettimeofday(&t_start_rd, NULL); TEST_ESP_OK(sdmmc_read_sectors(card, c_buffer, start_block, block_count)); struct timeval t_stop_rd; gettimeofday(&t_stop_rd, NULL); float time_rd = 1e3f * (t_stop_rd.tv_sec - t_start_rd.tv_sec) + 1e-3f * (t_stop_rd.tv_usec - t_start_rd.tv_usec); printf(" | %6.2f | %5.2f | %6.2f | %5.2f\n", time_wr, total_size / (time_wr / 1000) / (1024 * 1024), time_rd, total_size / (time_rd / 1000) / (1024 * 1024)); check_buffer(start_block, c_buffer, total_size / sizeof(buffer[0])); free(buffer); } static void read_write_test(sdmmc_card_t* card) { sdmmc_card_print_info(stdout, card); printf(" sector | count | align | size(kB) | wr_time(ms) | wr_speed(MB/s) | rd_time(ms) | rd_speed(MB/s)\n"); do_single_write_read_test(card, 0, 1, 4); do_single_write_read_test(card, 0, 4, 4); do_single_write_read_test(card, 1, 16, 4); do_single_write_read_test(card, 16, 32, 4); do_single_write_read_test(card, 48, 64, 4); do_single_write_read_test(card, 128, 128, 4); do_single_write_read_test(card, card->csd.capacity - 64, 32, 4); do_single_write_read_test(card, card->csd.capacity - 64, 64, 4); do_single_write_read_test(card, card->csd.capacity - 8, 1, 4); do_single_write_read_test(card, card->csd.capacity/2, 1, 4); do_single_write_read_test(card, card->csd.capacity/2, 4, 4); do_single_write_read_test(card, card->csd.capacity/2, 8, 4); do_single_write_read_test(card, card->csd.capacity/2, 16, 4); do_single_write_read_test(card, card->csd.capacity/2, 32, 4); do_single_write_read_test(card, card->csd.capacity/2, 64, 4); do_single_write_read_test(card, card->csd.capacity/2, 128, 4); do_single_write_read_test(card, card->csd.capacity/2, 1, 1); do_single_write_read_test(card, card->csd.capacity/2, 8, 1); do_single_write_read_test(card, card->csd.capacity/2, 128, 1); } void test_sd_rw_blocks(int slot, int width) { sdmmc_host_t config = SDMMC_HOST_DEFAULT(); config.max_freq_khz = SDMMC_FREQ_HIGHSPEED; config.slot = slot; sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); if (width != 0) { slot_config.width = width; } if (slot_config.width == 8) { config.flags &= ~SDMMC_HOST_FLAG_DDR; } TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(slot, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); read_write_test(card); free(card); TEST_ESP_OK(sdmmc_host_deinit()); } TEST_CASE("SDMMC read/write test (SD slot 1)", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); test_sd_rw_blocks(1, 4); sd_test_board_power_off(); } #ifdef WITH_EMMC_TEST TEST_CASE("SDMMC read/write test (eMMC slot 0, 4 line DDR)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); test_sd_rw_blocks(0, 4); sd_test_board_power_off(); } TEST_CASE("SDMMC read/write test (eMMC slot 0, 8 line)", "[sd][test_env=EMMC]") { sd_test_board_power_on(); test_sd_rw_blocks(0, 8); sd_test_board_power_off(); } #endif // WITH_EMMC_TEST TEST_CASE("SDMMC read/write test (SD slot 1, in SPI mode)", "[sdspi][test_env=UT_T1_SPIMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT(); TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config)); // This test can only run under 20MHz on ESP32, because the runner connects the card to // non-IOMUX pins of HSPI. sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); read_write_test(card); free(card); TEST_ESP_OK(sdspi_host_deinit()); sd_test_board_power_off(); } TEST_CASE("reads and writes with an unaligned buffer", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config)); sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); TEST_ESP_OK(sdmmc_card_init(&config, card)); const size_t buffer_size = 4096; const size_t block_count = buffer_size / 512; const size_t extra = 4; uint8_t* buffer = heap_caps_malloc(buffer_size + extra, MALLOC_CAP_DMA); // Check read behavior: do aligned write, then unaligned read const uint32_t seed = 0x89abcdef; fill_buffer(seed, buffer, buffer_size / sizeof(uint32_t)); TEST_ESP_OK(sdmmc_write_sectors(card, buffer, 0, block_count)); memset(buffer, 0xcc, buffer_size + extra); TEST_ESP_OK(sdmmc_read_sectors(card, buffer + 1, 0, block_count)); check_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t)); // Check write behavior: do unaligned write, then aligned read fill_buffer(seed, buffer + 1, buffer_size / sizeof(uint32_t)); TEST_ESP_OK(sdmmc_write_sectors(card, buffer + 1, 8, block_count)); memset(buffer, 0xcc, buffer_size + extra); TEST_ESP_OK(sdmmc_read_sectors(card, buffer, 8, block_count)); check_buffer(seed, buffer, buffer_size / sizeof(uint32_t)); free(buffer); free(card); TEST_ESP_OK(sdmmc_host_deinit()); sd_test_board_power_off(); } static void test_cd_input(int gpio_cd_num, const sdmmc_host_t* config) { sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); // SDMMC host should have configured CD as input. // Enable output as well (not using the driver, to avoid touching input // enable bits). gpio_matrix_out(gpio_cd_num, SIG_GPIO_OUT_IDX, false, false); REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_cd_num)); // Check that card initialization fails if CD is high REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_cd_num)); usleep(1000); TEST_ESP_ERR(ESP_ERR_NOT_FOUND, sdmmc_card_init(config, card)); // Check that card initialization succeeds if CD is low REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_cd_num)); usleep(1000); TEST_ESP_OK(sdmmc_card_init(config, card)); free(card); } TEST_CASE("CD input works in SD mode", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); slot_config.gpio_cd = CD_WP_TEST_GPIO; TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config)); test_cd_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdmmc_host_deinit()); sd_test_board_power_off(); } TEST_CASE("CD input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT(); slot_config.gpio_cd = CD_WP_TEST_GPIO; TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config)); test_cd_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdspi_host_deinit()); sd_test_board_power_off(); } static void test_wp_input(int gpio_wp_num, const sdmmc_host_t* config) { sdmmc_card_t* card = malloc(sizeof(sdmmc_card_t)); TEST_ASSERT_NOT_NULL(card); // SDMMC host should have configured WP as input. // Enable output as well (not using the driver, to avoid touching input // enable bits). gpio_matrix_out(gpio_wp_num, SIG_GPIO_OUT_IDX, false, false); REG_WRITE(GPIO_ENABLE_W1TS_REG, BIT(gpio_wp_num)); // Check that the card can be initialized with WP low REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num)); TEST_ESP_OK(sdmmc_card_init(config, card)); uint32_t* data = heap_caps_calloc(1, 512, MALLOC_CAP_DMA); // Check that card write succeeds if WP is high REG_WRITE(GPIO_OUT_W1TS_REG, BIT(gpio_wp_num)); usleep(1000); TEST_ESP_OK(sdmmc_write_sectors(card, &data, 0, 1)); // Check that write fails if WP is low REG_WRITE(GPIO_OUT_W1TC_REG, BIT(gpio_wp_num)); usleep(1000); TEST_ESP_ERR(ESP_ERR_INVALID_STATE, sdmmc_write_sectors(card, &data, 0, 1)); // ...but reads still work TEST_ESP_OK(sdmmc_read_sectors(card, &data, 0, 1)); free(data); free(card); } TEST_CASE("WP input works in SD mode", "[sd][test_env=UT_T1_SDMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDMMC_HOST_DEFAULT(); sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT(); slot_config.gpio_wp = CD_WP_TEST_GPIO; TEST_ESP_OK(sdmmc_host_init()); TEST_ESP_OK(sdmmc_host_init_slot(SDMMC_HOST_SLOT_1, &slot_config)); test_wp_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdmmc_host_deinit()); sd_test_board_power_off(); } TEST_CASE("WP input works in SPI mode", "[sd][test_env=UT_T1_SPIMODE]") { sd_test_board_power_on(); sdmmc_host_t config = SDSPI_HOST_DEFAULT(); sdspi_slot_config_t slot_config = SDSPI_SLOT_CONFIG_DEFAULT(); slot_config.gpio_wp = CD_WP_TEST_GPIO; TEST_ESP_OK(sdspi_host_init()); TEST_ESP_OK(sdspi_host_init_slot(config.slot, &slot_config)); test_wp_input(CD_WP_TEST_GPIO, &config); TEST_ESP_OK(sdspi_host_deinit()); sd_test_board_power_off(); }