/* * FreeModbus Libary: ESP32 Port Demo Application * Copyright (C) 2010 Christian Walter * * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * IF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * File: $Id: portother.c,v 1.1 2010/06/06 13:07:20 wolti Exp $ */ #include "port.h" #include "driver/uart.h" #include "freertos/queue.h" // for queue support #include "soc/uart_reg.h" #include "driver/gpio.h" #include "esp_log.h" // for esp_log #include "esp_err.h" // for ESP_ERROR_CHECK macro /* ----------------------- Modbus includes ----------------------------------*/ #include "mb.h" #include "mbport.h" #include "sdkconfig.h" // for KConfig options // Definitions of UART default pin numbers #define MB_UART_RXD (CONFIG_MB_UART_RXD) #define MB_UART_TXD (CONFIG_MB_UART_TXD) #define MB_UART_RTS (CONFIG_MB_UART_RTS) #define MB_BAUD_RATE_DEFAULT (115200) #define MB_QUEUE_LENGTH (CONFIG_MB_QUEUE_LENGTH) #define MB_SERIAL_TASK_PRIO (CONFIG_MB_SERIAL_TASK_PRIO) #define MB_SERIAL_TASK_STACK_SIZE (CONFIG_MB_SERIAL_TASK_STACK_SIZE) #define MB_SERIAL_TOUT (3) // 3.5*8 = 28 ticks, TOUT=3 -> ~24..33 ticks // Set buffer size for transmission #define MB_SERIAL_BUF_SIZE (CONFIG_MB_SERIAL_BUF_SIZE) // Note: This code uses mixed coding standard from legacy IDF code and used freemodbus stack // A queue to handle UART event. static QueueHandle_t xMbUartQueue; static TaskHandle_t xMbTaskHandle; static const CHAR *TAG = "MB_SERIAL"; // The UART hardware port number static UCHAR ucUartNumber = UART_NUM_2; static BOOL bRxStateEnabled = FALSE; // Receiver enabled flag static BOOL bTxStateEnabled = FALSE; // Transmitter enabled flag static UCHAR ucBuffer[MB_SERIAL_BUF_SIZE]; // Temporary buffer to transfer received data to modbus stack static USHORT uiRxBufferPos = 0; // position in the receiver buffer void vMBPortSerialEnable(BOOL bRxEnable, BOOL bTxEnable) { // This function can be called from xMBRTUTransmitFSM() of different task if (bRxEnable) { //uart_enable_rx_intr(ucUartNumber); bRxStateEnabled = TRUE; vTaskResume(xMbTaskHandle); // Resume receiver task } else { vTaskSuspend(xMbTaskHandle); // Block receiver task bRxStateEnabled = FALSE; } if (bTxEnable) { bTxStateEnabled = TRUE; } else { bTxStateEnabled = FALSE; } } static void vMBPortSerialRxPoll(size_t xEventSize) { USHORT usLength; if (bRxStateEnabled) { if (xEventSize > 0) { xEventSize = (xEventSize > MB_SERIAL_BUF_SIZE) ? MB_SERIAL_BUF_SIZE : xEventSize; uiRxBufferPos = ((uiRxBufferPos + xEventSize) >= MB_SERIAL_BUF_SIZE) ? 0 : uiRxBufferPos; // Get received packet into Rx buffer usLength = uart_read_bytes(ucUartNumber, &ucBuffer[uiRxBufferPos], xEventSize, portMAX_DELAY); for(USHORT usCnt = 0; usCnt < usLength; usCnt++ ) { // Call the Modbus stack callback function and let it fill the buffers. ( void )pxMBFrameCBByteReceived(); // calls callback xMBRTUReceiveFSM() to execute MB state machine } // The buffer is transferred into Modbus stack and is not needed here any more uart_flush_input(ucUartNumber); // Send event EV_FRAME_RECEIVED to allow stack process packet #ifndef MB_TIMER_PORT_ENABLED // Let the stack know that T3.5 time is expired and data is received (void)pxMBPortCBTimerExpired(); // calls callback xMBRTUTimerT35Expired(); #endif ESP_LOGD(TAG, "RX_T35_timeout: %d(bytes in buffer)\n", (uint32_t)usLength); } } } BOOL xMBPortSerialTxPoll() { BOOL bStatus = FALSE; USHORT usCount = 0; BOOL bNeedPoll = FALSE; if( bTxStateEnabled ) { // Continue while all response bytes put in buffer or out of buffer while((bNeedPoll == FALSE) && (usCount++ < MB_SERIAL_BUF_SIZE)) { // Calls the modbus stack callback function to let it fill the UART transmit buffer. bNeedPoll = pxMBFrameCBTransmitterEmpty( ); // calls callback xMBRTUTransmitFSM(); } ESP_LOGD(TAG, "MB_TX_buffer sent: (%d) bytes\n", (uint16_t)usCount); bStatus = TRUE; } return bStatus; } static void vUartTask(void *pvParameters) { uart_event_t xEvent; for(;;) { if (xQueueReceive(xMbUartQueue, (void*)&xEvent, portMAX_DELAY) == pdTRUE) { ESP_LOGD(TAG, "MB_uart[%d] event:", ucUartNumber); //vMBPortTimersEnable(); switch(xEvent.type) { //Event of UART receving data case UART_DATA: ESP_LOGD(TAG,"Receive data, len: %d", xEvent.size); // Read received data and send it to modbus stack vMBPortSerialRxPoll(xEvent.size); break; //Event of HW FIFO overflow detected case UART_FIFO_OVF: ESP_LOGD(TAG, "hw fifo overflow\n"); xQueueReset(xMbUartQueue); break; //Event of UART ring buffer full case UART_BUFFER_FULL: ESP_LOGD(TAG, "ring buffer full\n"); xQueueReset(xMbUartQueue); uart_flush_input(ucUartNumber); break; //Event of UART RX break detected case UART_BREAK: ESP_LOGD(TAG, "uart rx break\n"); break; //Event of UART parity check error case UART_PARITY_ERR: ESP_LOGD(TAG, "uart parity error\n"); break; //Event of UART frame error case UART_FRAME_ERR: ESP_LOGD(TAG, "uart frame error\n"); break; default: ESP_LOGD(TAG, "uart event type: %d\n", xEvent.type); break; } } } vTaskDelete(NULL); } BOOL xMBPortSerialInit(UCHAR ucPORT, ULONG ulBaudRate, UCHAR ucDataBits, eMBParity eParity) { esp_err_t xErr = ESP_OK; MB_PORT_CHECK((eParity <= MB_PAR_EVEN), FALSE, "mb serial set parity failure."); // Set communication port number ucUartNumber = ucPORT; // Configure serial communication parameters UCHAR ucParity = UART_PARITY_DISABLE; UCHAR ucData = UART_DATA_8_BITS; switch(eParity){ case MB_PAR_NONE: ucParity = UART_PARITY_DISABLE; break; case MB_PAR_ODD: ucParity = UART_PARITY_ODD; break; case MB_PAR_EVEN: ucParity = UART_PARITY_EVEN; break; } switch(ucDataBits){ case 5: ucData = UART_DATA_5_BITS; break; case 6: ucData = UART_DATA_6_BITS; break; case 7: ucData = UART_DATA_7_BITS; break; case 8: ucData = UART_DATA_8_BITS; break; default: ucData = UART_DATA_8_BITS; break; } uart_config_t xUartConfig = { .baud_rate = ulBaudRate, .data_bits = ucData, .parity = ucParity, .stop_bits = UART_STOP_BITS_1, .flow_ctrl = UART_HW_FLOWCTRL_DISABLE, .rx_flow_ctrl_thresh = 2, }; // Set UART config xErr = uart_param_config(ucUartNumber, &xUartConfig); MB_PORT_CHECK((xErr == ESP_OK), FALSE, "mb config failure, uart_param_config() returned (0x%x).", (uint32_t)xErr); // Install UART driver, and get the queue. xErr = uart_driver_install(ucUartNumber, MB_SERIAL_BUF_SIZE, MB_SERIAL_BUF_SIZE, MB_QUEUE_LENGTH, &xMbUartQueue, ESP_INTR_FLAG_LOWMED); MB_PORT_CHECK((xErr == ESP_OK), FALSE, "mb serial driver failure, uart_driver_install() returned (0x%x).", (uint32_t)xErr); #ifndef MB_TIMER_PORT_ENABLED // Set timeout for TOUT interrupt (T3.5 modbus time) xErr = uart_set_rx_timeout(ucUartNumber, MB_SERIAL_TOUT); MB_PORT_CHECK((xErr == ESP_OK), FALSE, "mb serial set rx timeout failure, uart_set_rx_timeout() returned (0x%x).", (uint32_t)xErr); #endif // Create a task to handle UART events BaseType_t xStatus = xTaskCreate(vUartTask, "uart_queue_task", MB_SERIAL_TASK_STACK_SIZE, NULL, MB_SERIAL_TASK_PRIO, &xMbTaskHandle); if (xStatus != pdPASS) { vTaskDelete(xMbTaskHandle); // Force exit from function with failure MB_PORT_CHECK(FALSE, FALSE, "mb stack serial task creation error. xTaskCreate() returned (0x%x).", (uint32_t)xStatus); } else { vTaskSuspend(xMbTaskHandle); // Suspend serial task while stack is not started } uiRxBufferPos = 0; return TRUE; } void vMBPortSerialClose() { (void)vTaskSuspend(xMbTaskHandle); (void)vTaskDelete(xMbTaskHandle); ESP_ERROR_CHECK(uart_driver_delete(ucUartNumber)); } BOOL xMBPortSerialPutByte(CHAR ucByte) { // Send one byte to UART transmission buffer // This function is called by Modbus stack UCHAR ucLength = uart_write_bytes(ucUartNumber, &ucByte, 1); return (ucLength == 1); } // Get one byte from intermediate RX buffer BOOL xMBPortSerialGetByte(CHAR* pucByte) { assert(pucByte != NULL); MB_PORT_CHECK((uiRxBufferPos < MB_SERIAL_BUF_SIZE), FALSE, "mb stack serial get byte failure."); *pucByte = ucBuffer[uiRxBufferPos]; uiRxBufferPos++; return TRUE; }