// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "esp_err.h" #ifdef __cplusplus extern "C" { #endif /** * @file PHY init parameters and API */ /** * @brief Structure holding PHY init parameters */ typedef struct { uint8_t param_ver_id; /*!< init_data structure version */ uint8_t crystal_select; /*!< 0: 40MHz, 1: 26 MHz, 2: 24 MHz, 3: auto */ uint8_t wifi_rx_gain_swp_step_1; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_2; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_3; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_4; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_5; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_6; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_7; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_8; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_9; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_10; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_11; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_12; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_13; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_14; /*!< do not change */ uint8_t wifi_rx_gain_swp_step_15; /*!< do not change */ uint8_t bt_rx_gain_swp_step_1; /*!< do not change */ uint8_t bt_rx_gain_swp_step_2; /*!< do not change */ uint8_t bt_rx_gain_swp_step_3; /*!< do not change */ uint8_t bt_rx_gain_swp_step_4; /*!< do not change */ uint8_t bt_rx_gain_swp_step_5; /*!< do not change */ uint8_t bt_rx_gain_swp_step_6; /*!< do not change */ uint8_t bt_rx_gain_swp_step_7; /*!< do not change */ uint8_t bt_rx_gain_swp_step_8; /*!< do not change */ uint8_t bt_rx_gain_swp_step_9; /*!< do not change */ uint8_t bt_rx_gain_swp_step_10; /*!< do not change */ uint8_t bt_rx_gain_swp_step_11; /*!< do not change */ uint8_t bt_rx_gain_swp_step_12; /*!< do not change */ uint8_t bt_rx_gain_swp_step_13; /*!< do not change */ uint8_t bt_rx_gain_swp_step_14; /*!< do not change */ uint8_t bt_rx_gain_swp_step_15; /*!< do not change */ uint8_t gain_cmp_1; /*!< do not change */ uint8_t gain_cmp_6; /*!< do not change */ uint8_t gain_cmp_11; /*!< do not change */ uint8_t gain_cmp_ext2_1; /*!< do not change */ uint8_t gain_cmp_ext2_6; /*!< do not change */ uint8_t gain_cmp_ext2_11; /*!< do not change */ uint8_t gain_cmp_ext3_1; /*!< do not change */ uint8_t gain_cmp_ext3_6; /*!< do not change */ uint8_t gain_cmp_ext3_11; /*!< do not change */ uint8_t gain_cmp_bt_ofs_1; /*!< do not change */ uint8_t gain_cmp_bt_ofs_6; /*!< do not change */ uint8_t gain_cmp_bt_ofs_11; /*!< do not change */ uint8_t target_power_qdb_0; /*!< 78 means target power is 78/4=19.5dbm */ uint8_t target_power_qdb_1; /*!< 76 means target power is 76/4=19dbm */ uint8_t target_power_qdb_2; /*!< 74 means target power is 74/4=18.5dbm */ uint8_t target_power_qdb_3; /*!< 68 means target power is 68/4=17dbm */ uint8_t target_power_qdb_4; /*!< 64 means target power is 64/4=16dbm */ uint8_t target_power_qdb_5; /*!< 52 means target power is 52/4=13dbm */ uint8_t target_power_index_mcs0; /*!< target power index is 0, means target power is target_power_qdb_0 19.5dbm; (1m,2m,5.5m,11m,6m,9m) */ uint8_t target_power_index_mcs1; /*!< target power index is 0, means target power is target_power_qdb_0 19.5dbm; (12m) */ uint8_t target_power_index_mcs2; /*!< target power index is 1, means target power is target_power_qdb_1 19dbm; (18m) */ uint8_t target_power_index_mcs3; /*!< target power index is 1, means target power is target_power_qdb_1 19dbm; (24m) */ uint8_t target_power_index_mcs4; /*!< target power index is 2, means target power is target_power_qdb_2 18.5dbm; (36m) */ uint8_t target_power_index_mcs5; /*!< target power index is 3, means target power is target_power_qdb_3 17dbm; (48m) */ uint8_t target_power_index_mcs6; /*!< target power index is 4, means target power is target_power_qdb_4 16dbm; (54m) */ uint8_t target_power_index_mcs7; /*!< target power index is 5, means target power is target_power_qdb_5 13dbm */ uint8_t pwr_ind_11b_en; /*!< 0: 11b power is same as mcs0 and 6m, 1: 11b power different with OFDM */ uint8_t pwr_ind_11b_0; /*!< 1m, 2m power index [0~5] */ uint8_t pwr_ind_11b_1; /*!< 5.5m, 11m power index [0~5] */ uint8_t chan_backoff_en; /*!< 0: channel backoff disable, 1:channel backoff enable */ uint8_t chan1_power_backoff_qdb; /*!< 4 means backoff is 1db */ uint8_t chan2_power_backoff_qdb; /*!< see chan1_power_backoff_qdb */ uint8_t chan3_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan4_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan5_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan6_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan7_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan8_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan9_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan10_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan11_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan12_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan13_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan14_power_backoff_qdb; /*!< chan1_power_backoff_qdb */ uint8_t chan1_rate_backoff_index; /*!< if bit i is set, backoff data rate is target_power_qdb_i */ uint8_t chan2_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan3_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan4_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan5_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan6_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan7_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan8_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan9_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan10_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan11_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan12_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan13_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t chan14_rate_backoff_index; /*!< see chan1_rate_backoff_index */ uint8_t spur_freq_cfg_msb_1; /*!< first spur: */ uint8_t spur_freq_cfg_1; /*!< spur_freq_cfg = (spur_freq_cfg_msb_1 <<8) | spur_freq_cfg_1 */ uint8_t spur_freq_cfg_div_1; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_1 */ uint8_t spur_freq_en_h_1; /*!< the seventh bit for total enable */ uint8_t spur_freq_en_l_1; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority */ uint8_t spur_freq_cfg_msb_2; /*!< second spur: */ uint8_t spur_freq_cfg_2; /*!< spur_freq_cfg = (spur_freq_cfg_msb_2 <<8) | spur_freq_cfg_2 */ uint8_t spur_freq_cfg_div_2; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_2 */ uint8_t spur_freq_en_h_2; /*!< the seventh bit for total enable */ uint8_t spur_freq_en_l_2; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority */ uint8_t spur_freq_cfg_msb_3; /*!< third spur: */ uint8_t spur_freq_cfg_3; /*!< spur_freq_cfg = (spur_freq_cfg_msb_3 <<8) | spur_freq_cfg_3 */ uint8_t spur_freq_cfg_div_3; /*!< spur_freq=spur_freq_cfg/spur_freq_cfg_div_3 */ uint8_t spur_freq_en_h_3; /*!< the seventh bit for total enable */ uint8_t spur_freq_en_l_3; /*!< each bit for 1 channel, and use [spur_freq_en_h, spur_freq_en_l] to select the spur's channel priority, */ uint8_t reserved[23]; /*!< reserved for future expansion */ } esp_phy_init_data_t; /** * @brief Opaque PHY calibration data */ typedef struct { uint8_t opaque[1904]; /*!< calibration data */ } esp_phy_calibration_data_t; typedef enum { PHY_RF_CAL_PARTIAL = 0x00000000, /*!< Do part of RF calibration. This should be used after power-on reset. */ PHY_RF_CAL_NONE = 0x00000001, /*!< Don't do any RF calibration. This mode is only suggested to be used after deep sleep reset. */ PHY_RF_CAL_FULL = 0x00000002 /*!< Do full RF calibration. Produces best results, but also consumes a lot of time and current. Suggested to be used once. */ } esp_phy_calibration_mode_t; /** * @brief Get PHY init data * * If "Use a partition to store PHY init data" option is set in menuconfig, * This function will load PHY init data from a partition. Otherwise, * PHY init data will be compiled into the application itself, and this function * will return a pointer to PHY init data located in read-only memory (DROM). * * If "Use a partition to store PHY init data" option is enabled, this function * may return NULL if the data loaded from flash is not valid. * * @note Call esp_phy_release_init_data to release the pointer obtained using * this function after the call to esp_wifi_init. * * @return pointer to PHY init data structure */ const esp_phy_init_data_t* esp_phy_get_init_data(); /** * @brief Release PHY init data * @param data pointer to PHY init data structure obtained from * esp_phy_get_init_data function */ void esp_phy_release_init_data(const esp_phy_init_data_t* data); /** * @brief Function called by esp_phy_init to load PHY calibration data * * This is a convenience function which can be used to load PHY calibration * data from NVS. Data can be stored to NVS using esp_phy_store_cal_data_to_nvs * function. * * If calibration data is not present in the NVS, or * data is not valid (was obtained for a chip with a different MAC address, * or obtained for a different version of software), this function will * return an error. * * If "Initialize PHY in startup code" option is set in menuconfig, this * function will be used to load calibration data. To provide a different * mechanism for loading calibration data, disable * "Initialize PHY in startup code" option in menuconfig and call esp_phy_init * function from the application. For an example usage of esp_phy_init and * this function, see esp_phy_store_cal_data_to_nvs function in cpu_start.c * * @param out_cal_data pointer to calibration data structure to be filled with * loaded data. * @return ESP_OK on success */ esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data); /** * @brief Function called by esp_phy_init to store PHY calibration data * * This is a convenience function which can be used to store PHY calibration * data to the NVS. Calibration data is returned by esp_phy_init function. * Data saved using this function to the NVS can later be loaded using * esp_phy_store_cal_data_to_nvs function. * * If "Initialize PHY in startup code" option is set in menuconfig, this * function will be used to store calibration data. To provide a different * mechanism for storing calibration data, disable * "Initialize PHY in startup code" option in menuconfig and call esp_phy_init * function from the application. * * @param cal_data pointer to calibration data which has to be saved. * @return ESP_OK on success */ esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data); /** * @brief Initialize PHY and RF module * * PHY and RF module should be initialized in order to use WiFi or BT. * Now PHY and RF initializing job is done automatically when start WiFi or BT. Users should not * call this API in their application. * * @param init_data PHY parameters. Default set of parameters can * be obtained by calling esp_phy_get_default_init_data * function. * @param mode Calibration mode (Full, partial, or no calibration) * @param[inout] calibration_data * @return ESP_OK on success. * @return ESP_FAIL on fail. */ esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode, esp_phy_calibration_data_t* calibration_data); /** * @brief De-initialize PHY and RF module * * PHY module should be de-initialized in order to shutdown WiFi or BT. * Now PHY and RF de-initializing job is done automatically when stop WiFi or BT. Users should not * call this API in their application. * * @return ESP_OK on success. */ esp_err_t esp_phy_rf_deinit(void); /** * @brief Load calibration data from NVS and initialize PHY and RF module */ void esp_phy_load_cal_and_init(void); #ifdef __cplusplus } #endif