/* * Copyright (c) 2011-2014, Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Misc utilities * * Misc utilities usable by the kernel and application code. */ #ifndef _BLE_MESH_UTIL_H_ #define _BLE_MESH_UTIL_H_ #include #include "soc/soc.h" #include "mesh_types.h" #include "mesh_trace.h" #ifdef __cplusplus extern "C" { #endif /* Helper to pass a int as a pointer or vice-versa. * Those are available for 32 bits architectures: */ #define POINTER_TO_UINT(x) ((u32_t) (x)) #define UINT_TO_POINTER(x) ((void *) (x)) #define POINTER_TO_INT(x) ((s32_t) (x)) #define INT_TO_POINTER(x) ((void *) (x)) /* Evaluates to 0 if cond is true-ish; compile error otherwise */ #define ZERO_OR_COMPILE_ERROR(cond) ((int) sizeof(char[1 - 2 * !(cond)]) - 1) /* Evaluates to 0 if array is an array; compile error if not array (e.g. * pointer) */ #define IS_ARRAY(array) \ ZERO_OR_COMPILE_ERROR( \ !__builtin_types_compatible_p(__typeof__(array), \ __typeof__(&(array)[0]))) /* Evaluates to number of elements in an array; compile error if not * an array (e.g. pointer) */ #define ARRAY_SIZE(array) \ ((unsigned long) (IS_ARRAY(array) + \ (sizeof(array) / sizeof((array)[0])))) /* Evaluates to 1 if ptr is part of array, 0 otherwise; compile error if * "array" argument is not an array (e.g. "ptr" and "array" mixed up) */ #define PART_OF_ARRAY(array, ptr) \ ((ptr) && ((ptr) >= &array[0] && (ptr) < &array[ARRAY_SIZE(array)])) #define CONTAINER_OF(ptr, type, field) \ ((type *)(((char *)(ptr)) - offsetof(type, field))) /* round "x" up/down to next multiple of "align" (which must be a power of 2) */ #define ROUND_UP(x, align) \ (((unsigned long)(x) + ((unsigned long)align - 1)) & \ ~((unsigned long)align - 1)) #define ROUND_DOWN(x, align) ((unsigned long)(x) & ~((unsigned long)align - 1)) #define ceiling_fraction(numerator, divider) \ (((numerator) + ((divider) - 1)) / (divider)) /* Internal helpers only used by the sys_* APIs further below */ #ifndef __bswap_16 #define __bswap_16(x) ((u16_t) ((((x) >> 8) & 0xff) | (((x) & 0xff) << 8))) #endif #ifndef __bswap_32 #define __bswap_32(x) ((u32_t) ((((x) >> 24) & 0xff) | \ (((x) >> 8) & 0xff00) | \ (((x) & 0xff00) << 8) | \ (((x) & 0xff) << 24))) #endif #ifndef __bswap_64 #define __bswap_64(x) ((u64_t) ((((x) >> 56) & 0xff) | \ (((x) >> 40) & 0xff00) | \ (((x) >> 24) & 0xff0000) | \ (((x) >> 8) & 0xff000000) | \ (((x) & 0xff000000) << 8) | \ (((x) & 0xff0000) << 24) | \ (((x) & 0xff00) << 40) | \ (((x) & 0xff) << 56))) #endif #define sys_le16_to_cpu(val) (val) #define sys_cpu_to_le16(val) (val) #define sys_be16_to_cpu(val) __bswap_16(val) #define sys_cpu_to_be16(val) __bswap_16(val) #define sys_le32_to_cpu(val) (val) #define sys_cpu_to_le32(val) (val) #define sys_le64_to_cpu(val) (val) #define sys_cpu_to_le64(val) (val) #define sys_be32_to_cpu(val) __bswap_32(val) #define sys_cpu_to_be32(val) __bswap_32(val) #define sys_be64_to_cpu(val) __bswap_64(val) #define sys_cpu_to_be64(val) __bswap_64(val) #ifndef MAX #define MAX(a, b) (((a) > (b)) ? (a) : (b)) #endif #ifndef MIN #define MIN(a, b) (((a) < (b)) ? (a) : (b)) #endif #ifndef BIT #define BIT(n) (1UL << (n)) #endif #ifndef BIT_MASK #define BIT_MASK(n) (BIT(n) - 1) #endif /** * @brief Check for macro definition in compiler-visible expressions * * This trick was pioneered in Linux as the config_enabled() macro. * The madness has the effect of taking a macro value that may be * defined to "1" (e.g. CONFIG_MYFEATURE), or may not be defined at * all and turning it into a literal expression that can be used at * "runtime". That is, it works similarly to * "defined(CONFIG_MYFEATURE)" does except that it is an expansion * that can exist in a standard expression and be seen by the compiler * and optimizer. Thus much ifdef usage can be replaced with cleaner * expressions like: * * if (IS_ENABLED(CONFIG_MYFEATURE)) * myfeature_enable(); * * INTERNAL * First pass just to expand any existing macros, we need the macro * value to be e.g. a literal "1" at expansion time in the next macro, * not "(1)", etc... Standard recursive expansion does not work. */ #define IS_ENABLED(config_macro) _IS_ENABLED1(config_macro) /* Now stick on a "_XXXX" prefix, it will now be "_XXXX1" if config_macro * is "1", or just "_XXXX" if it's undefined. * ENABLED: _IS_ENABLED2(_XXXX1) * DISABLED _IS_ENABLED2(_XXXX) */ #define _IS_ENABLED1(config_macro) _IS_ENABLED2(_XXXX##config_macro) /* Here's the core trick, we map "_XXXX1" to "_YYYY," (i.e. a string * with a trailing comma), so it has the effect of making this a * two-argument tuple to the preprocessor only in the case where the * value is defined to "1" * ENABLED: _YYYY, <--- note comma! * DISABLED: _XXXX */ #define _XXXX1 _YYYY, /* Then we append an extra argument to fool the gcc preprocessor into * accepting it as a varargs macro. * arg1 arg2 arg3 * ENABLED: _IS_ENABLED3(_YYYY, 1, 0) * DISABLED _IS_ENABLED3(_XXXX 1, 0) */ #define _IS_ENABLED2(one_or_two_args) _IS_ENABLED3(one_or_two_args 1, 0) /* And our second argument is thus now cooked to be 1 in the case * where the value is defined to 1, and 0 if not: */ #define _IS_ENABLED3(ignore_this, val, ...) val /* ESP Toolchain doesn't support section */ #define ___in_section(a, b, c) #define __in_section(a, b, c) ___in_section(a, b, c) #define __in_section_unique(seg) ___in_section(seg, __FILE__, __COUNTER__) #define popcount(x) __builtin_popcount(x) /** * * @brief find most significant bit set in a 32-bit word * * This routine finds the first bit set starting from the most significant bit * in the argument passed in and returns the index of that bit. Bits are * numbered starting at 1 from the least significant bit. A return value of * zero indicates that the value passed is zero. * * @return most significant bit set, 0 if @a op is 0 */ #if defined(__GNUC__) static inline unsigned int find_msb_set(u32_t op) { if (!op) { return 0; } return 32 - __builtin_clz(op); } #endif /** * * @brief find least significant bit set in a 32-bit word * * This routine finds the first bit set starting from the least significant bit * in the argument passed in and returns the index of that bit. Bits are * numbered starting at 1 from the least significant bit. A return value of * zero indicates that the value passed is zero. * * @return least significant bit set, 0 if @a op is 0 */ #if defined(__GNUC__) static inline unsigned int find_lsb_set(u32_t op) { return __builtin_ffs(op); } #endif /** * @brief Put a 16-bit integer as big-endian to arbitrary location. * * Put a 16-bit integer, originally in host endianness, to a * potentially unaligned memory location in big-endian format. * * @param val 16-bit integer in host endianness. * @param dst Destination memory address to store the result. */ static inline void sys_put_be16(u16_t val, u8_t dst[2]) { dst[0] = val >> 8; dst[1] = val; } /** * @brief Put a 32-bit integer as big-endian to arbitrary location. * * Put a 32-bit integer, originally in host endianness, to a * potentially unaligned memory location in big-endian format. * * @param val 32-bit integer in host endianness. * @param dst Destination memory address to store the result. */ static inline void sys_put_be32(u32_t val, u8_t dst[4]) { sys_put_be16(val >> 16, dst); sys_put_be16(val, &dst[2]); } /** * @brief Put a 16-bit integer as little-endian to arbitrary location. * * Put a 16-bit integer, originally in host endianness, to a * potentially unaligned memory location in little-endian format. * * @param val 16-bit integer in host endianness. * @param dst Destination memory address to store the result. */ static inline void sys_put_le16(u16_t val, u8_t dst[2]) { dst[0] = val; dst[1] = val >> 8; } /** * @brief Put a 32-bit integer as little-endian to arbitrary location. * * Put a 32-bit integer, originally in host endianness, to a * potentially unaligned memory location in little-endian format. * * @param val 32-bit integer in host endianness. * @param dst Destination memory address to store the result. */ static inline void sys_put_le32(u32_t val, u8_t dst[4]) { sys_put_le16(val, dst); sys_put_le16(val >> 16, &dst[2]); } /** * @brief Put a 64-bit integer as little-endian to arbitrary location. * * Put a 64-bit integer, originally in host endianness, to a * potentially unaligned memory location in little-endian format. * * @param val 64-bit integer in host endianness. * @param dst Destination memory address to store the result. */ static inline void sys_put_le64(u64_t val, u8_t dst[8]) { sys_put_le32(val, dst); sys_put_le32(val >> 32, &dst[4]); } /** * @brief Get a 16-bit integer stored in big-endian format. * * Get a 16-bit integer, stored in big-endian format in a potentially * unaligned memory location, and convert it to the host endianness. * * @param src Location of the big-endian 16-bit integer to get. * * @return 16-bit integer in host endianness. */ static inline u16_t sys_get_be16(const u8_t src[2]) { return ((u16_t)src[0] << 8) | src[1]; } /** * @brief Get a 32-bit integer stored in big-endian format. * * Get a 32-bit integer, stored in big-endian format in a potentially * unaligned memory location, and convert it to the host endianness. * * @param src Location of the big-endian 32-bit integer to get. * * @return 32-bit integer in host endianness. */ static inline u32_t sys_get_be32(const u8_t src[4]) { return ((u32_t)sys_get_be16(&src[0]) << 16) | sys_get_be16(&src[2]); } /** * @brief Get a 16-bit integer stored in little-endian format. * * Get a 16-bit integer, stored in little-endian format in a potentially * unaligned memory location, and convert it to the host endianness. * * @param src Location of the little-endian 16-bit integer to get. * * @return 16-bit integer in host endianness. */ static inline u16_t sys_get_le16(const u8_t src[2]) { return ((u16_t)src[1] << 8) | src[0]; } /** * @brief Get a 32-bit integer stored in little-endian format. * * Get a 32-bit integer, stored in little-endian format in a potentially * unaligned memory location, and convert it to the host endianness. * * @param src Location of the little-endian 32-bit integer to get. * * @return 32-bit integer in host endianness. */ static inline u32_t sys_get_le32(const u8_t src[4]) { return ((u32_t)sys_get_le16(&src[2]) << 16) | sys_get_le16(&src[0]); } /** * @brief Get a 64-bit integer stored in little-endian format. * * Get a 64-bit integer, stored in little-endian format in a potentially * unaligned memory location, and convert it to the host endianness. * * @param src Location of the little-endian 64-bit integer to get. * * @return 64-bit integer in host endianness. */ static inline u64_t sys_get_le64(const u8_t src[8]) { return ((u64_t)sys_get_le32(&src[4]) << 32) | sys_get_le32(&src[0]); } const char *bt_hex(const void *buf, size_t len); void mem_rcopy(u8_t *dst, u8_t const *src, u16_t len); void _set(void *to, uint8_t val, unsigned int len); unsigned int _copy(uint8_t *to, unsigned int to_len, const uint8_t *from, unsigned int from_len); void _set(void *to, uint8_t val, unsigned int len); uint8_t _double_byte(uint8_t a); int _compare(const uint8_t *a, const uint8_t *b, size_t size); /** * @brief Swap one buffer content into another * * Copy the content of src buffer into dst buffer in reversed order, * i.e.: src[n] will be put in dst[end-n] * Where n is an index and 'end' the last index in both arrays. * The 2 memory pointers must be pointing to different areas, and have * a minimum size of given length. * * @param dst A valid pointer on a memory area where to copy the data in * @param src A valid pointer on a memory area where to copy the data from * @param length Size of both dst and src memory areas */ static inline void sys_memcpy_swap(void *dst, const void *src, size_t length) { u8_t *pdst = (u8_t *)dst; const u8_t *psrc = (const u8_t *)src; __ASSERT(((psrc < pdst && (psrc + length) <= pdst) || (psrc > pdst && (pdst + length) <= psrc)), "Source and destination buffers must not overlap"); psrc += length - 1; for (; length > 0; length--) { *pdst++ = *psrc--; } } /** * @brief Swap buffer content * * In-place memory swap, where final content will be reversed. * I.e.: buf[n] will be put in buf[end-n] * Where n is an index and 'end' the last index of buf. * * @param buf A valid pointer on a memory area to swap * @param length Size of buf memory area */ static inline void sys_mem_swap(void *buf, size_t length) { size_t i; for (i = 0; i < (length / 2); i++) { u8_t tmp = ((u8_t *)buf)[i]; ((u8_t *)buf)[i] = ((u8_t *)buf)[length - 1 - i]; ((u8_t *)buf)[length - 1 - i] = tmp; } } #ifdef __cplusplus } #endif #endif /* _BLE_MESH_UTIL_H_ */