// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "spi_flash_chip_driver.h" #include "memspi_host_driver.h" #include "esp_log.h" #include "sdkconfig.h" #include "esp_heap_caps.h" static const char TAG[] = "spi_flash"; #define MAX_WRITE_CHUNK 8192 /* write in chunks */ #define MAX_READ_CHUNK 16384 #ifdef CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS #define UNSAFE_WRITE_ADDRESS abort() #else #define UNSAFE_WRITE_ADDRESS return ESP_ERR_INVALID_ARG #endif /* CHECK_WRITE_ADDRESS macro to fail writes which land in the bootloader, partition table, or running application region. */ #if CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED #define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE) #else /* FAILS or ABORTS */ #define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE) do { \ if (CHIP && CHIP->host->region_protected && CHIP->host->region_protected(CHIP->host, ADDR, SIZE)) { \ UNSAFE_WRITE_ADDRESS; \ } \ } while(0) #endif // CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED #define IO_STR_LEN 7 static const char io_mode_str[][IO_STR_LEN] = { "slowrd", "fastrd", "dout", "dio", "qout", "qio", }; _Static_assert(sizeof(io_mode_str)/IO_STR_LEN == SPI_FLASH_READ_MODE_MAX, "the io_mode_str should be consistent with the esp_flash_read_mode_t defined in spi_flash_ll.h"); /* Static function to notify OS of a new SPI flash operation. If returns an error result, caller must abort. If returns ESP_OK, caller must call spiflash_end() before returning. */ static esp_err_t IRAM_ATTR spiflash_start(esp_flash_t *chip) { if (chip->os_func != NULL && chip->os_func->start != NULL) { esp_err_t err = chip->os_func->start(chip->os_func_data); if (err != ESP_OK) { return err; } } chip->host->dev_config(chip->host); return ESP_OK; } /* Static function to notify OS that SPI flash operation is complete. */ static esp_err_t IRAM_ATTR spiflash_end(const esp_flash_t *chip, esp_err_t err) { if (chip->os_func != NULL && chip->os_func->end != NULL) { esp_err_t end_err = chip->os_func->end(chip->os_func_data); if (err == ESP_OK) { err = end_err; // Only return the 'end' error if we haven't already failed } } return err; } /* Return true if regions 'a' and 'b' overlap at all, based on their start offsets and lengths. */ inline static bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len); /* Top-level API functions, calling into chip_drv functions via chip->drv */ static esp_err_t detect_spi_flash_chip(esp_flash_t *chip); bool esp_flash_chip_driver_initialized(const esp_flash_t *chip) { if (!chip->chip_drv) return false; return true; } esp_err_t IRAM_ATTR esp_flash_init(esp_flash_t *chip) { esp_err_t err = ESP_OK; if (chip == NULL || chip->host == NULL || chip->host->driver_data == NULL || ((memspi_host_data_t*)chip->host->driver_data)->spi == NULL) { return ESP_ERR_INVALID_ARG; } if (!esp_flash_chip_driver_initialized(chip)) { // Detect chip_drv err = detect_spi_flash_chip(chip); if (err != ESP_OK) { return err; } } // Detect flash size uint32_t size; err = esp_flash_get_size(chip, &size); if (err != ESP_OK) { ESP_LOGE(TAG, "failed to get chip size"); return err; } ESP_LOGI(TAG, "flash io: %s", io_mode_str[chip->read_mode]); err = spiflash_start(chip); if (err != ESP_OK) { return err; } if (err == ESP_OK) { // Try to set the flash mode to whatever default mode was chosen err = chip->chip_drv->set_read_mode(chip); } // Done: all fields on 'chip' are initialised return spiflash_end(chip, err); } static esp_err_t IRAM_ATTR detect_spi_flash_chip(esp_flash_t *chip) { esp_err_t err; uint32_t flash_id; int retries = 10; do { err = spiflash_start(chip); if (err != ESP_OK) { return err; } // Send generic RDID command twice, check for a matching result and retry in case we just powered on (inner // function fails if it sees all-ones or all-zeroes.) err = chip->host->read_id(chip->host, &flash_id); if (err == ESP_OK) { // check we see the same ID twice, in case of transient power-on errors uint32_t new_id; err = chip->host->read_id(chip->host, &new_id); if (err == ESP_OK && (new_id != flash_id)) { err = ESP_ERR_FLASH_NOT_INITIALISED; } } err = spiflash_end(chip, err); } while (err != ESP_OK && retries-- > 0); // Detect the chip and set the chip_drv structure for it const spi_flash_chip_t **drivers = esp_flash_registered_chips; while (*drivers != NULL && !esp_flash_chip_driver_initialized(chip)) { chip->chip_drv = *drivers; // start/end SPI operation each time, for multitasking // and also so esp_flash_registered_flash_drivers can live in flash ESP_LOGD(TAG, "trying chip: %s", chip->chip_drv->name); err = spiflash_start(chip); if (err != ESP_OK) { return err; } if (chip->chip_drv->probe(chip, flash_id) != ESP_OK) { chip->chip_drv = NULL; } // if probe succeeded, chip->drv stays set drivers++; err = spiflash_end(chip, err); if (err != ESP_OK) { return err; } } if (!esp_flash_chip_driver_initialized(chip)) { return ESP_ERR_NOT_FOUND; } ESP_LOGI(TAG, "detected chip: %s", chip->chip_drv->name); return ESP_OK; } // Convenience macro for beginning of all API functions, // check that the 'chip' parameter is properly initialised // and supports the operation in question #define VERIFY_OP(OP) do { \ if (chip == NULL) { \ chip = esp_flash_default_chip; \ } \ if (chip == NULL || !esp_flash_chip_driver_initialized(chip)) { \ return ESP_ERR_FLASH_NOT_INITIALISED; \ } \ if (chip->chip_drv->OP == NULL) { \ return ESP_ERR_FLASH_UNSUPPORTED_CHIP; \ } \ } while (0) esp_err_t IRAM_ATTR esp_flash_read_id(esp_flash_t *chip, uint32_t *out_id) { if (chip == NULL) { chip = esp_flash_default_chip; } if (chip == NULL || !esp_flash_chip_driver_initialized(chip)) { return ESP_ERR_FLASH_NOT_INITIALISED; } if (out_id == NULL) { return ESP_ERR_INVALID_ARG; } esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->host->read_id(chip->host, out_id); return spiflash_end(chip, err); } esp_err_t IRAM_ATTR esp_flash_get_size(esp_flash_t *chip, uint32_t *out_size) { VERIFY_OP(detect_size); if (out_size == NULL) { return ESP_ERR_INVALID_ARG; } if (chip->size != 0) { *out_size = chip->size; return ESP_OK; } esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } uint32_t detect_size; err = chip->chip_drv->detect_size(chip, &detect_size); if (err == ESP_OK) { chip->size = detect_size; } return spiflash_end(chip, err); } esp_err_t IRAM_ATTR esp_flash_erase_chip(esp_flash_t *chip) { VERIFY_OP(erase_chip); CHECK_WRITE_ADDRESS(chip, 0, chip->size); bool write_protect = false; esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = esp_flash_get_chip_write_protect(chip, &write_protect); if (err == ESP_OK && write_protect) { err = ESP_ERR_FLASH_PROTECTED; } if (err == ESP_OK) { err = chip->chip_drv->erase_chip(chip); } return spiflash_end(chip, err); } esp_err_t IRAM_ATTR esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len) { VERIFY_OP(erase_sector); VERIFY_OP(erase_block); CHECK_WRITE_ADDRESS(chip, start, len); uint32_t block_erase_size = chip->chip_drv->erase_block == NULL ? 0 : chip->chip_drv->block_erase_size; uint32_t sector_size = chip->chip_drv->sector_size; bool write_protect = false; if (sector_size == 0 || (block_erase_size % sector_size) != 0) { return ESP_ERR_FLASH_NOT_INITIALISED; } if (start > chip->size || start + len > chip->size) { return ESP_ERR_INVALID_ARG; } if ((start % chip->chip_drv->sector_size) != 0 || (len % chip->chip_drv->sector_size) != 0) { // Can only erase multiples of the sector size, starting at sector boundary return ESP_ERR_INVALID_ARG; } esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } // Check for write protection on whole chip if (chip->chip_drv->get_chip_write_protect != NULL) { err = chip->chip_drv->get_chip_write_protect(chip, &write_protect); if (err == ESP_OK && write_protect) { err = ESP_ERR_FLASH_PROTECTED; } } // Check for write protected regions overlapping the erase region if (err == ESP_OK && chip->chip_drv->get_protected_regions != NULL && chip->chip_drv->num_protectable_regions > 0) { uint64_t protected = 0; err = chip->chip_drv->get_protected_regions(chip, &protected); if (err == ESP_OK && protected != 0) { for (int i = 0; i < chip->chip_drv->num_protectable_regions && err == ESP_OK; i++) { const esp_flash_region_t *region = &chip->chip_drv->protectable_regions[i]; if ((protected & BIT64(i)) && regions_overlap(start, len, region->offset, region->size)) { err = ESP_ERR_FLASH_PROTECTED; } } } } // Don't lock the SPI flash for the entire erase, as this may be very long err = spiflash_end(chip, err); while (err == ESP_OK && len >= sector_size) { err = spiflash_start(chip); if (err != ESP_OK) { return err; } // If possible erase an entire multi-sector block if (block_erase_size > 0 && len >= block_erase_size && (start % block_erase_size) == 0) { err = chip->chip_drv->erase_block(chip, start); start += block_erase_size; len -= block_erase_size; } else { // Otherwise erase individual sector only err = chip->chip_drv->erase_sector(chip, start); start += sector_size; len -= sector_size; } err = spiflash_end(chip, err); } return err; } esp_err_t IRAM_ATTR esp_flash_get_chip_write_protect(esp_flash_t *chip, bool *write_protected) { VERIFY_OP(get_chip_write_protect); if (write_protected == NULL) { return ESP_ERR_INVALID_ARG; } esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->chip_drv->get_chip_write_protect(chip, write_protected); return spiflash_end(chip, err); } esp_err_t IRAM_ATTR esp_flash_set_chip_write_protect(esp_flash_t *chip, bool write_protect) { VERIFY_OP(set_chip_write_protect); //TODO: skip writing if already locked or unlocked esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->chip_drv->set_chip_write_protect(chip, write_protect); return spiflash_end(chip, err); } esp_err_t esp_flash_get_protectable_regions(const esp_flash_t *chip, const esp_flash_region_t **out_regions, uint32_t *out_num_regions) { if(out_num_regions != NULL) { *out_num_regions = 0; // In case caller doesn't check result } VERIFY_OP(get_protected_regions); if(out_regions == NULL || out_num_regions == NULL) { return ESP_ERR_INVALID_ARG; } *out_num_regions = chip->chip_drv->num_protectable_regions; *out_regions = chip->chip_drv->protectable_regions; return ESP_OK; } static esp_err_t find_region(const esp_flash_t *chip, const esp_flash_region_t *region, uint8_t *index) { if (region == NULL) { return ESP_ERR_INVALID_ARG; } for(*index = 0; *index < chip->chip_drv->num_protectable_regions; (*index)++) { if (memcmp(&chip->chip_drv->protectable_regions[*index], region, sizeof(esp_flash_region_t)) == 0) { return ESP_OK; } } return ESP_ERR_NOT_FOUND; } esp_err_t IRAM_ATTR esp_flash_get_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool *out_protected) { VERIFY_OP(get_protected_regions); if (out_protected == NULL) { return ESP_ERR_INVALID_ARG; } uint8_t index; esp_err_t err = find_region(chip, region, &index); if (err != ESP_OK) { return err; } uint64_t protection_mask = 0; err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->chip_drv->get_protected_regions(chip, &protection_mask); if (err == ESP_OK) { *out_protected = protection_mask & (1LL << index); } return spiflash_end(chip, err); } esp_err_t IRAM_ATTR esp_flash_set_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool protect) { VERIFY_OP(set_protected_regions); uint8_t index; esp_err_t err = find_region(chip, region, &index); if (err != ESP_OK) { return err; } uint64_t protection_mask = 0; err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->chip_drv->get_protected_regions(chip, &protection_mask); if (err == ESP_OK) { if (protect) { protection_mask |= (1LL << index); } else { protection_mask &= ~(1LL << index); } err = chip->chip_drv->set_protected_regions(chip, protection_mask); } return spiflash_end(chip, err); } esp_err_t IRAM_ATTR esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length) { if (length == 0) { return ESP_OK; } VERIFY_OP(read); if (buffer == NULL || address > chip->size || address+length > chip->size) { return ESP_ERR_INVALID_ARG; } //when the cache is disabled, only the DRAM can be read, check whether we need to receive in another buffer in DRAM. bool direct_read = chip->host->supports_direct_read(chip->host, buffer); uint8_t* temp_buffer = NULL; if (!direct_read) { uint32_t length_to_allocate = MAX(MAX_READ_CHUNK, length); length_to_allocate = (length_to_allocate+3)&(~3); temp_buffer = heap_caps_malloc(length_to_allocate, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); ESP_LOGV(TAG, "allocate temp buffer: %p", temp_buffer); if (temp_buffer == NULL) return ESP_ERR_NO_MEM; } esp_err_t err = ESP_OK; do { err = spiflash_start(chip); if (err != ESP_OK) { break; } //if required (dma buffer allocated), read to the buffer instead of the original buffer uint8_t* buffer_to_read = (temp_buffer)? temp_buffer : buffer; //each time, we at most read this length //after that, we release the lock to allow some other operations uint32_t length_to_read = MIN(MAX_READ_CHUNK, length); if (err == ESP_OK) { err = chip->chip_drv->read(chip, buffer_to_read, address, length_to_read); } if (err != ESP_OK) { spiflash_end(chip, err); break; } //even if this is failed, the data is still valid, copy before quit err = spiflash_end(chip, err); //copy back to the original buffer if (temp_buffer) { memcpy(buffer, temp_buffer, length_to_read); } address += length_to_read; length -= length_to_read; buffer += length_to_read; } while (err == ESP_OK && length > 0); free(temp_buffer); return err; } esp_err_t IRAM_ATTR esp_flash_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length) { if (length == 0) { return ESP_OK; } VERIFY_OP(write); CHECK_WRITE_ADDRESS(chip, address, length); if (buffer == NULL || address > chip->size || address+length > chip->size) { return ESP_ERR_INVALID_ARG; } //when the cache is disabled, only the DRAM can be read, check whether we need to copy the data first bool direct_write = chip->host->supports_direct_write(chip->host, buffer); esp_err_t err = ESP_OK; /* Write output in chunks, either by buffering on stack or by artificially cutting into MAX_WRITE_CHUNK parts (in an OS environment, this prevents writing from causing interrupt or higher priority task starvation.) */ do { uint32_t write_len; const void *write_buf; if (direct_write) { write_len = MIN(length, MAX_WRITE_CHUNK); write_buf = buffer; } else { uint32_t buf[8]; write_len = MIN(length, sizeof(buf)); memcpy(buf, buffer, write_len); write_buf = buf; } err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->chip_drv->write(chip, write_buf, address, write_len); address += write_len; buffer = (void *)((intptr_t)buffer + write_len); length -= write_len; err = spiflash_end(chip, err); } while (err == ESP_OK && length > 0); return err; } esp_err_t IRAM_ATTR esp_flash_write_encrypted(esp_flash_t *chip, uint32_t address, const void *buffer, uint32_t length) { VERIFY_OP(write_encrypted); if (((memspi_host_data_t*)chip->host->driver_data)->spi != 0) { // Encrypted operations have to use SPI0 return ESP_ERR_FLASH_UNSUPPORTED_HOST; } if (buffer == NULL || address > chip->size || address+length > chip->size) { return ESP_ERR_INVALID_ARG; } esp_err_t err = spiflash_start(chip); if (err != ESP_OK) { return err; } err = chip->chip_drv->write_encrypted(chip, buffer, address, length); return spiflash_end(chip, err); } inline static IRAM_ATTR bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len) { uint32_t a_end = a_start + a_len; uint32_t b_end = b_start + b_len; return (a_end > b_start && b_end > a_start); } /*------------------------------------------------------------------------------ Adapter layer to original api before IDF v4.0 ------------------------------------------------------------------------------*/ static esp_err_t spi_flash_translate_rc(esp_err_t err) { switch (err) { case ESP_OK: return ESP_OK; case ESP_ERR_INVALID_ARG: return ESP_ERR_INVALID_ARG; case ESP_ERR_FLASH_NOT_INITIALISED: case ESP_ERR_FLASH_PROTECTED: return ESP_ERR_INVALID_STATE; case ESP_ERR_NOT_FOUND: case ESP_ERR_FLASH_UNSUPPORTED_HOST: case ESP_ERR_FLASH_UNSUPPORTED_CHIP: return ESP_ERR_NOT_SUPPORTED; case ESP_ERR_FLASH_NO_RESPONSE: return ESP_ERR_INVALID_RESPONSE; default: ESP_EARLY_LOGE(TAG, "unexpected spi flash error code: %x", err); abort(); } return ESP_OK; } #ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL esp_err_t spi_flash_erase_range(uint32_t start_addr, uint32_t size) { esp_err_t err = esp_flash_erase_region(NULL, start_addr, size); return spi_flash_translate_rc(err); } esp_err_t spi_flash_write(size_t dst, const void *srcv, size_t size) { esp_err_t err = esp_flash_write(NULL, srcv, dst, size); return spi_flash_translate_rc(err); //CHECK_WRITE_ADDRESS(dst, size); } esp_err_t spi_flash_read(size_t src, void *dstv, size_t size) { esp_err_t err = esp_flash_read(NULL, dstv, src, size); return spi_flash_translate_rc(err); } esp_err_t spi_flash_unlock() { esp_err_t err = esp_flash_set_chip_write_protect(NULL, false); return spi_flash_translate_rc(err); } #endif