#!/usr/bin/env python # # esp-idf serial output monitor tool. Does some helpful things: # - Looks up hex addresses in ELF file with addr2line # - Reset ESP32 via serial RTS line (Ctrl-T Ctrl-R) # - Run "make flash" (Ctrl-T Ctrl-F) # - Run "make app-flash" (Ctrl-T Ctrl-A) # - If gdbstub output is detected, gdb is automatically loaded # # Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Contains elements taken from miniterm "Very simple serial terminal" which # is part of pySerial. https://github.com/pyserial/pyserial # (C)2002-2015 Chris Liechti # # Originally released under BSD-3-Clause license. # from __future__ import print_function, division import subprocess import argparse import codecs import re import os try: import queue except ImportError: import Queue as queue import time import sys import serial import serial.tools.miniterm as miniterm import threading import ctypes key_description = miniterm.key_description # Control-key characters CTRL_A = '\x01' CTRL_B = '\x02' CTRL_F = '\x06' CTRL_H = '\x08' CTRL_R = '\x12' CTRL_T = '\x14' CTRL_RBRACKET = '\x1d' # Ctrl+] # ANSI terminal codes ANSI_RED = '\033[1;31m' ANSI_YELLOW = '\033[0;33m' ANSI_NORMAL = '\033[0m' def color_print(message, color): """ Print a message to stderr with colored highlighting """ sys.stderr.write("%s%s%s\n" % (color, message, ANSI_NORMAL)) def yellow_print(message): color_print(message, ANSI_YELLOW) def red_print(message): color_print(message, ANSI_RED) __version__ = "1.0" # Tags for tuples in queues TAG_KEY = 0 TAG_SERIAL = 1 # regex matches an potential PC value (0x4xxxxxxx) MATCH_PCADDR = re.compile(r'0x4[0-9a-f]{7}', re.IGNORECASE) DEFAULT_TOOLCHAIN_PREFIX = "xtensa-esp32-elf-" class StoppableThread(object): """ Provide a Thread-like class which can be 'cancelled' via a subclass-provided cancellation method. Can be started and stopped multiple times. Isn't an instance of type Thread because Python Thread objects can only be run once """ def __init__(self): self._thread = None @property def alive(self): """ Is 'alive' whenever the internal thread object exists """ return self._thread is not None def start(self): if self._thread is None: self._thread = threading.Thread(target=self._run_outer) self._thread.start() def _cancel(self): pass # override to provide cancellation functionality def run(self): pass # override for the main thread behaviour def _run_outer(self): try: self.run() finally: self._thread = None def stop(self): if self._thread is not None: old_thread = self._thread self._thread = None self._cancel() old_thread.join() class ConsoleReader(StoppableThread): """ Read input keys from the console and push them to the queue, until stopped. """ def __init__(self, console, event_queue): super(ConsoleReader, self).__init__() self.console = console self.event_queue = event_queue def run(self): self.console.setup() try: while self.alive: try: if os.name == 'nt': # Windows kludge: because the console.cancel() method doesn't # seem to work to unblock getkey() on the Windows implementation. # # So we only call getkey() if we know there's a key waiting for us. import msvcrt while not msvcrt.kbhit() and self.alive: time.sleep(0.1) if not self.alive: break c = self.console.getkey() except KeyboardInterrupt: c = '\x03' if c is not None: self.event_queue.put((TAG_KEY, c), False) finally: self.console.cleanup() def _cancel(self): if hasattr(self.console, "cancel"): self.console.cancel() elif os.name == 'posix': # this is the way cancel() is implemented in pyserial 3.1 or newer, # older pyserial doesn't have this method, hence this hack. # # on Windows there is a different (also hacky) fix, applied above. import fcntl, termios fcntl.ioctl(self.console.fd, termios.TIOCSTI, b'\0') class SerialReader(StoppableThread): """ Read serial data from the serial port and push to the event queue, until stopped. """ def __init__(self, serial, event_queue): super(SerialReader, self).__init__() self.baud = serial.baudrate self.serial = serial self.event_queue = event_queue if not hasattr(self.serial, 'cancel_read'): # enable timeout for checking alive flag, # if cancel_read not available self.serial.timeout = 0.25 def run(self): if not self.serial.is_open: self.serial.baudrate = self.baud self.serial.rts = True # Force an RTS reset on open self.serial.open() self.serial.rts = False try: while self.alive: data = self.serial.read(self.serial.in_waiting or 1) if len(data): self.event_queue.put((TAG_SERIAL, data), False) finally: self.serial.close() def _cancel(self): if hasattr(self.serial, 'cancel_read'): try: self.serial.cancel_read() except: pass class Monitor(object): """ Monitor application main class. This was originally derived from miniterm.Miniterm, but it turned out to be easier to write from scratch for this purpose. Main difference is that all event processing happens in the main thread, not the worker threads. """ def __init__(self, serial_instance, elf_file, make="make", toolchain_prefix=DEFAULT_TOOLCHAIN_PREFIX, eol="CRLF"): super(Monitor, self).__init__() self.event_queue = queue.Queue() self.console = miniterm.Console() if os.name == 'nt': sys.stderr = ANSIColorConverter(sys.stderr) self.console.output = ANSIColorConverter(self.console.output) self.console.byte_output = ANSIColorConverter(self.console.byte_output) self.serial = serial_instance self.console_reader = ConsoleReader(self.console, self.event_queue) self.serial_reader = SerialReader(self.serial, self.event_queue) self.elf_file = elf_file self.make = make self.toolchain_prefix = toolchain_prefix self.menu_key = CTRL_T self.exit_key = CTRL_RBRACKET self.translate_eol = { "CRLF": lambda c: c.replace(b"\n", b"\r\n"), "CR": lambda c: c.replace(b"\n", b"\r"), "LF": lambda c: c.replace(b"\r", b"\n"), }[eol] # internal state self._pressed_menu_key = False self._read_line = b"" self._gdb_buffer = b"" def main_loop(self): self.console_reader.start() self.serial_reader.start() try: while self.console_reader.alive and self.serial_reader.alive: (event_tag, data) = self.event_queue.get() if event_tag == TAG_KEY: self.handle_key(data) elif event_tag == TAG_SERIAL: self.handle_serial_input(data) else: raise RuntimeError("Bad event data %r" % ((event_tag,data),)) finally: try: self.console_reader.stop() self.serial_reader.stop() except: pass sys.stderr.write(ANSI_NORMAL + "\n") def handle_key(self, key): if self._pressed_menu_key: self.handle_menu_key(key) self._pressed_menu_key = False elif key == self.menu_key: self._pressed_menu_key = True elif key == self.exit_key: self.console_reader.stop() self.serial_reader.stop() else: try: key = self.translate_eol(key) self.serial.write(codecs.encode(key)) except serial.SerialException: pass # this shouldn't happen, but sometimes port has closed in serial thread def handle_serial_input(self, data): # this may need to be made more efficient, as it pushes out a byte # at a time to the console for b in data: self.console.write_bytes(b) if b == b'\n': # end of line self.handle_serial_input_line(self._read_line.strip()) self._read_line = b"" else: self._read_line += b self.check_gdbstub_trigger(b) def handle_serial_input_line(self, line): for m in re.finditer(MATCH_PCADDR, line): self.lookup_pc_address(m.group()) def handle_menu_key(self, c): if c == self.exit_key or c == self.menu_key: # send verbatim self.serial.write(codecs.encode(c)) elif c in [ CTRL_H, 'h', 'H', '?' ]: red_print(self.get_help_text()) elif c == CTRL_R: # Reset device via RTS self.serial.setRTS(True) time.sleep(0.2) self.serial.setRTS(False) elif c == CTRL_F: # Recompile & upload self.run_make("flash") elif c == CTRL_A: # Recompile & upload app only self.run_make("app-flash") else: red_print('--- unknown menu character {} --'.format(key_description(c))) def get_help_text(self): return """ --- idf_monitor ({version}) - ESP-IDF monitor tool --- based on miniterm from pySerial --- --- {exit:8} Exit program --- {menu:8} Menu escape key, followed by: --- Menu keys: --- {menu:7} Send the menu character itself to remote --- {exit:7} Send the exit character itself to remote --- {reset:7} Reset target board via RTS line --- {make:7} Run 'make flash' to build & flash --- {appmake:7} Run 'make app-flash to build & flash app """.format(version=__version__, exit=key_description(self.exit_key), menu=key_description(self.menu_key), reset=key_description(CTRL_R), make=key_description(CTRL_F), appmake=key_description(CTRL_A), ) def __enter__(self): """ Use 'with self' to temporarily disable monitoring behaviour """ self.serial_reader.stop() self.console_reader.stop() def __exit__(self, *args, **kwargs): """ Use 'with self' to temporarily disable monitoring behaviour """ self.console_reader.start() self.serial_reader.start() def prompt_next_action(self, reason): self.console.setup() # set up console to trap input characters try: red_print(""" --- {} --- Press {} to exit monitor. --- Press {} to run 'make flash'. --- Press {} to run 'make app-flash'. --- Press any other key to resume monitor (resets target).""".format(reason, key_description(self.exit_key), key_description(CTRL_F), key_description(CTRL_A))) k = CTRL_T # ignore CTRL-T here, so people can muscle-memory Ctrl-T Ctrl-F, etc. while k == CTRL_T: k = self.console.getkey() finally: self.console.cleanup() if k == self.exit_key: self.event_queue.put((TAG_KEY, k)) elif k in [ CTRL_F, CTRL_A ]: self.event_queue.put((TAG_KEY, self.menu_key)) self.event_queue.put((TAG_KEY, k)) def run_make(self, target): with self: yellow_print("Running make %s..." % target) p = subprocess.Popen([self.make, target ]) try: p.wait() except KeyboardInterrupt: p.wait() if p.returncode != 0: self.prompt_next_action("Build failed") def lookup_pc_address(self, pc_addr): translation = subprocess.check_output( ["%saddr2line" % self.toolchain_prefix, "-pfia", "-e", self.elf_file, pc_addr], cwd=".") if not "?? ??:0" in translation: yellow_print(translation) def check_gdbstub_trigger(self, c): self._gdb_buffer = self._gdb_buffer[-6:] + c # keep the last 7 characters seen m = re.match(b"\\$(T..)#(..)", self._gdb_buffer) # look for a gdb "reason" for a break if m is not None: try: chsum = sum(ord(p) for p in m.group(1)) & 0xFF calc_chsum = int(m.group(2), 16) except ValueError: return # payload wasn't valid hex digits if chsum == calc_chsum: self.run_gdb() else: red_print("Malformed gdb message... calculated checksum %02x received %02x" % (chsum, calc_chsum)) def run_gdb(self): with self: # disable console control sys.stderr.write(ANSI_NORMAL) try: subprocess.call(["%sgdb" % self.toolchain_prefix, "-ex", "set serial baud %d" % self.serial.baudrate, "-ex", "target remote %s" % self.serial.port, "-ex", "interrupt", # monitor has already parsed the first 'reason' command, need a second self.elf_file], cwd=".") except KeyboardInterrupt: pass # happens on Windows, maybe other OSes self.prompt_next_action("gdb exited") def main(): parser = argparse.ArgumentParser("idf_monitor - a serial output monitor for esp-idf") parser.add_argument( '--port', '-p', help='Serial port device', default=os.environ.get('ESPTOOL_PORT', '/dev/ttyUSB0') ) parser.add_argument( '--baud', '-b', help='Serial port baud rate', type=int, default=os.environ.get('MONITOR_BAUD', 115200)) parser.add_argument( '--make', '-m', help='Command to run make', type=str, default='make') parser.add_argument( '--toolchain-prefix', help="Triplet prefix to add before cross-toolchain names", default=DEFAULT_TOOLCHAIN_PREFIX) parser.add_argument( "--eol", choices=['CR', 'LF', 'CRLF'], type=lambda c: c.upper(), help="End of line to use when sending to the serial port", default='CRLF') parser.add_argument( 'elf_file', help='ELF file of application', type=argparse.FileType('r')) args = parser.parse_args() if args.port.startswith("/dev/tty."): args.port = args.port.replace("/dev/tty.", "/dev/cu.") yellow_print("--- WARNING: Serial ports accessed as /dev/tty.* will hang gdb if launched.") yellow_print("--- Using %s instead..." % args.port) serial_instance = serial.serial_for_url(args.port, args.baud, do_not_open=True) serial_instance.dtr = False serial_instance.rts = False args.elf_file.close() # don't need this as a file # remove the parallel jobserver arguments from MAKEFLAGS, as any # parent make is only running 1 job (monitor), so we can re-spawn # all of the child makes we need (the -j argument remains part of # MAKEFLAGS) try: makeflags = os.environ["MAKEFLAGS"] makeflags = re.sub(r"--jobserver[^ =]*=[0-9,]+ ?", "", makeflags) os.environ["MAKEFLAGS"] = makeflags except KeyError: pass # not running a make jobserver monitor = Monitor(serial_instance, args.elf_file.name, args.make, args.toolchain_prefix, args.eol) yellow_print('--- idf_monitor on {p.name} {p.baudrate} ---'.format( p=serial_instance)) yellow_print('--- Quit: {} | Menu: {} | Help: {} followed by {} ---'.format( key_description(monitor.exit_key), key_description(monitor.menu_key), key_description(monitor.menu_key), key_description(CTRL_H))) monitor.main_loop() if os.name == 'nt': # Windows console stuff STD_OUTPUT_HANDLE = -11 STD_ERROR_HANDLE = -12 # wincon.h values FOREGROUND_INTENSITY = 8 FOREGROUND_GREY = 7 # matches the ANSI color change sequences that IDF sends RE_ANSI_COLOR = re.compile(b'\033\\[([01]);3([0-7])m') # list mapping the 8 ANSI colors (the indexes) to Windows Console colors ANSI_TO_WINDOWS_COLOR = [ 0, 4, 2, 6, 1, 5, 3, 7 ] GetStdHandle = ctypes.windll.kernel32.GetStdHandle SetConsoleTextAttribute = ctypes.windll.kernel32.SetConsoleTextAttribute class ANSIColorConverter(object): """Class to wrap a file-like output stream, intercept ANSI color codes, and convert them into calls to Windows SetConsoleTextAttribute. Doesn't support all ANSI terminal code escape sequences, only the sequences IDF uses. Ironically, in Windows this console output is normally wrapped by winpty which will then detect the console text color changes and convert these back to ANSI color codes for MSYS' terminal to display. However this is the least-bad working solution, as winpty doesn't support any "passthrough" mode for raw output. """ def __init__(self, output): self.output = output self.handle = GetStdHandle(STD_ERROR_HANDLE if self.output == sys.stderr else STD_OUTPUT_HANDLE) self.matched = b'' def write(self, data): for b in data: l = len(self.matched) if b == '\033': # ESC self.matched = b elif (l == 1 and b == '[') or (1 < l < 7): self.matched += b if self.matched == ANSI_NORMAL: # reset console SetConsoleTextAttribute(self.handle, FOREGROUND_GREY) self.matched = b'' elif len(self.matched) == 7: # could be an ANSI sequence m = re.match(RE_ANSI_COLOR, self.matched) if m is not None: color = ANSI_TO_WINDOWS_COLOR[int(m.group(2))] if m.group(1) == b'1': color |= FOREGROUND_INTENSITY SetConsoleTextAttribute(self.handle, color) else: self.output.write(self.matched) # not an ANSI color code, display verbatim self.matched = b'' else: self.output.write(b) self.matched = b'' def flush(self): self.output.flush() if __name__ == "__main__": main()