// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include "freertos/FreeRTOS.h" #include "freertos/semphr.h" #include "esp_vfs.h" #include "sdkconfig.h" #ifdef CONFIG_SUPPRESS_SELECT_DEBUG_OUTPUT #define LOG_LOCAL_LEVEL ESP_LOG_NONE #endif //CONFIG_SUPPRESS_SELECT_DEBUG_OUTPUT #include "esp_log.h" static const char *TAG = "vfs"; #define VFS_MAX_COUNT 8 /* max number of VFS entries (registered filesystems) */ #define LEN_PATH_PREFIX_IGNORED SIZE_MAX /* special length value for VFS which is never recognised by open() */ #define FD_TABLE_ENTRY_UNUSED (fd_table_t) { .permanent = false, .vfs_index = -1, .local_fd = -1 } typedef uint8_t local_fd_t; _Static_assert((1 << (sizeof(local_fd_t)*8)) >= MAX_FDS, "file descriptor type too small"); typedef int8_t vfs_index_t; _Static_assert((1 << (sizeof(vfs_index_t)*8)) >= VFS_MAX_COUNT, "VFS index type too small"); _Static_assert(((vfs_index_t) -1) < 0, "vfs_index_t must be a signed type"); typedef struct { bool permanent; vfs_index_t vfs_index; local_fd_t local_fd; } fd_table_t; typedef struct vfs_entry_ { esp_vfs_t vfs; // contains pointers to VFS functions char path_prefix[ESP_VFS_PATH_MAX]; // path prefix mapped to this VFS size_t path_prefix_len; // micro-optimization to avoid doing extra strlen void* ctx; // optional pointer which can be passed to VFS int offset; // index of this structure in s_vfs array } vfs_entry_t; typedef struct { bool isset; // none or at least one bit is set in the following 3 fd sets fd_set readfds; fd_set writefds; fd_set errorfds; } fds_triple_t; static vfs_entry_t* s_vfs[VFS_MAX_COUNT] = { 0 }; static size_t s_vfs_count = 0; static fd_table_t s_fd_table[MAX_FDS] = { [0 ... MAX_FDS-1] = FD_TABLE_ENTRY_UNUSED }; static _lock_t s_fd_table_lock; static esp_err_t esp_vfs_register_common(const char* base_path, size_t len, const esp_vfs_t* vfs, void* ctx, int *vfs_index) { if (len != LEN_PATH_PREFIX_IGNORED) { if ((len != 0 && len < 2) || (len > ESP_VFS_PATH_MAX)) { return ESP_ERR_INVALID_ARG; } if ((len > 0 && base_path[0] != '/') || base_path[len - 1] == '/') { return ESP_ERR_INVALID_ARG; } } vfs_entry_t *entry = (vfs_entry_t*) malloc(sizeof(vfs_entry_t)); if (entry == NULL) { return ESP_ERR_NO_MEM; } size_t index; for (index = 0; index < s_vfs_count; ++index) { if (s_vfs[index] == NULL) { break; } } if (index == s_vfs_count) { if (s_vfs_count >= VFS_MAX_COUNT) { free(entry); return ESP_ERR_NO_MEM; } ++s_vfs_count; } s_vfs[index] = entry; if (len != LEN_PATH_PREFIX_IGNORED) { strcpy(entry->path_prefix, base_path); // we have already verified argument length } else { bzero(entry->path_prefix, sizeof(entry->path_prefix)); } memcpy(&entry->vfs, vfs, sizeof(esp_vfs_t)); entry->path_prefix_len = len; entry->ctx = ctx; entry->offset = index; if (vfs_index) { *vfs_index = index; } return ESP_OK; } esp_err_t esp_vfs_register(const char* base_path, const esp_vfs_t* vfs, void* ctx) { return esp_vfs_register_common(base_path, strlen(base_path), vfs, ctx, NULL); } esp_err_t esp_vfs_register_fd_range(const esp_vfs_t *vfs, void *ctx, int min_fd, int max_fd) { if (min_fd < 0 || max_fd < 0 || min_fd > MAX_FDS || max_fd > MAX_FDS || min_fd > max_fd) { ESP_LOGD(TAG, "Invalid arguments: esp_vfs_register_fd_range(0x%x, 0x%x, %d, %d)", (int) vfs, (int) ctx, min_fd, max_fd); return ESP_ERR_INVALID_ARG; } int index = -1; esp_err_t ret = esp_vfs_register_common("", LEN_PATH_PREFIX_IGNORED, vfs, ctx, &index); if (ret == ESP_OK) { _lock_acquire(&s_fd_table_lock); for (int i = min_fd; i < max_fd; ++i) { if (s_fd_table[i].vfs_index != -1) { free(s_vfs[i]); s_vfs[i] = NULL; for (int j = min_fd; j < i; ++j) { if (s_fd_table[j].vfs_index == index) { s_fd_table[j] = FD_TABLE_ENTRY_UNUSED; } } _lock_release(&s_fd_table_lock); ESP_LOGD(TAG, "esp_vfs_register_fd_range cannot set fd %d (used by other VFS)", i); return ESP_ERR_INVALID_ARG; } s_fd_table[i].permanent = true; s_fd_table[i].vfs_index = index; s_fd_table[i].local_fd = i; } _lock_release(&s_fd_table_lock); } ESP_LOGD(TAG, "esp_vfs_register_fd_range is successful for range <%d; %d) and VFS ID %d", min_fd, max_fd, index); return ret; } esp_err_t esp_vfs_register_with_id(const esp_vfs_t *vfs, void *ctx, esp_vfs_id_t *vfs_id) { if (vfs_id == NULL) { return ESP_ERR_INVALID_ARG; } *vfs_id = -1; return esp_vfs_register_common("", LEN_PATH_PREFIX_IGNORED, vfs, ctx, vfs_id); } esp_err_t esp_vfs_unregister(const char* base_path) { const size_t base_path_len = strlen(base_path); for (size_t i = 0; i < s_vfs_count; ++i) { vfs_entry_t* vfs = s_vfs[i]; if (vfs == NULL) { continue; } if (base_path_len == vfs->path_prefix_len && memcmp(base_path, vfs->path_prefix, vfs->path_prefix_len) == 0) { free(vfs); s_vfs[i] = NULL; _lock_acquire(&s_fd_table_lock); // Delete all references from the FD lookup-table for (int j = 0; j < MAX_FDS; ++j) { if (s_fd_table[j].vfs_index == i) { s_fd_table[j] = FD_TABLE_ENTRY_UNUSED; } } _lock_release(&s_fd_table_lock); return ESP_OK; } } return ESP_ERR_INVALID_STATE; } esp_err_t esp_vfs_register_fd(esp_vfs_id_t vfs_id, int *fd) { if (vfs_id < 0 || vfs_id >= s_vfs_count || fd == NULL) { ESP_LOGD(TAG, "Invalid arguments for esp_vfs_register_fd(%d, 0x%x)", vfs_id, (int) fd); return ESP_ERR_INVALID_ARG; } esp_err_t ret = ESP_ERR_NO_MEM; _lock_acquire(&s_fd_table_lock); for (int i = 0; i < MAX_FDS; ++i) { if (s_fd_table[i].vfs_index == -1) { s_fd_table[i].permanent = true; s_fd_table[i].vfs_index = vfs_id; s_fd_table[i].local_fd = i; *fd = i; ret = ESP_OK; break; } } _lock_release(&s_fd_table_lock); ESP_LOGD(TAG, "esp_vfs_register_fd(%d, 0x%x) finished with %s", vfs_id, (int) fd, esp_err_to_name(ret)); return ret; } esp_err_t esp_vfs_unregister_fd(esp_vfs_id_t vfs_id, int fd) { esp_err_t ret = ESP_ERR_INVALID_ARG; if (vfs_id < 0 || vfs_id >= s_vfs_count || fd < 0 || fd >= MAX_FDS) { ESP_LOGD(TAG, "Invalid arguments for esp_vfs_unregister_fd(%d, %d)", vfs_id, fd); return ret; } _lock_acquire(&s_fd_table_lock); fd_table_t *item = s_fd_table + fd; if (item->permanent == true && item->vfs_index == vfs_id && item->local_fd == fd) { *item = FD_TABLE_ENTRY_UNUSED; ret = ESP_OK; } _lock_release(&s_fd_table_lock); ESP_LOGD(TAG, "esp_vfs_unregister_fd(%d, %d) finished with %s", vfs_id, fd, esp_err_to_name(ret)); return ret; } static inline const vfs_entry_t *get_vfs_for_index(int index) { if (index < 0 || index >= s_vfs_count) { return NULL; } else { return s_vfs[index]; } } static inline bool fd_valid(int fd) { return (fd < MAX_FDS) && (fd >= 0); } static const vfs_entry_t *get_vfs_for_fd(int fd) { const vfs_entry_t *vfs = NULL; if (fd_valid(fd)) { const int index = s_fd_table[fd].vfs_index; // single read -> no locking is required vfs = get_vfs_for_index(index); } return vfs; } static inline int get_local_fd(const vfs_entry_t *vfs, int fd) { int local_fd = -1; if (vfs && fd_valid(fd)) { local_fd = s_fd_table[fd].local_fd; // single read -> no locking is required } return local_fd; } static const char* translate_path(const vfs_entry_t* vfs, const char* src_path) { assert(strncmp(src_path, vfs->path_prefix, vfs->path_prefix_len) == 0); if (strlen(src_path) == vfs->path_prefix_len) { // special case when src_path matches the path prefix exactly return "/"; } return src_path + vfs->path_prefix_len; } static const vfs_entry_t* get_vfs_for_path(const char* path) { const vfs_entry_t* best_match = NULL; ssize_t best_match_prefix_len = -1; size_t len = strlen(path); for (size_t i = 0; i < s_vfs_count; ++i) { const vfs_entry_t* vfs = s_vfs[i]; if (!vfs || vfs->path_prefix_len == LEN_PATH_PREFIX_IGNORED) { continue; } // match path prefix if (len < vfs->path_prefix_len || memcmp(path, vfs->path_prefix, vfs->path_prefix_len) != 0) { continue; } // this is the default VFS and we don't have a better match yet. if (vfs->path_prefix_len == 0 && !best_match) { best_match = vfs; continue; } // if path is not equal to the prefix, expect to see a path separator // i.e. don't match "/data" prefix for "/data1/foo.txt" path if (len > vfs->path_prefix_len && path[vfs->path_prefix_len] != '/') { continue; } // Out of all matching path prefixes, select the longest one; // i.e. if "/dev" and "/dev/uart" both match, for "/dev/uart/1" path, // choose "/dev/uart", // This causes all s_vfs_count VFS entries to be scanned when opening // a file by name. This can be optimized by introducing a table for // FS search order, sorted so that longer prefixes are checked first. if (best_match_prefix_len < (ssize_t) vfs->path_prefix_len) { best_match_prefix_len = (ssize_t) vfs->path_prefix_len; best_match = vfs; } } return best_match; } /* * Using huge multi-line macros is never nice, but in this case * the only alternative is to repeat this chunk of code (with different function names) * for each syscall being implemented. Given that this define is contained within a single * file, this looks like a good tradeoff. * * First we check if syscall is implemented by VFS (corresponding member is not NULL), * then call the right flavor of the method (e.g. open or open_p) depending on * ESP_VFS_FLAG_CONTEXT_PTR flag. If ESP_VFS_FLAG_CONTEXT_PTR is set, context is passed * in as first argument and _p variant is used for the call. * It is enough to check just one of them for NULL, as both variants are part of a union. */ #define CHECK_AND_CALL(ret, r, pvfs, func, ...) \ if (pvfs->vfs.func == NULL) { \ __errno_r(r) = ENOSYS; \ return -1; \ } \ if (pvfs->vfs.flags & ESP_VFS_FLAG_CONTEXT_PTR) { \ ret = (*pvfs->vfs.func ## _p)(pvfs->ctx, __VA_ARGS__); \ } else { \ ret = (*pvfs->vfs.func)(__VA_ARGS__);\ } #define CHECK_AND_CALLV(r, pvfs, func, ...) \ if (pvfs->vfs.func == NULL) { \ __errno_r(r) = ENOSYS; \ return; \ } \ if (pvfs->vfs.flags & ESP_VFS_FLAG_CONTEXT_PTR) { \ (*pvfs->vfs.func ## _p)(pvfs->ctx, __VA_ARGS__); \ } else { \ (*pvfs->vfs.func)(__VA_ARGS__);\ } #define CHECK_AND_CALLP(ret, r, pvfs, func, ...) \ if (pvfs->vfs.func == NULL) { \ __errno_r(r) = ENOSYS; \ return NULL; \ } \ if (pvfs->vfs.flags & ESP_VFS_FLAG_CONTEXT_PTR) { \ ret = (*pvfs->vfs.func ## _p)(pvfs->ctx, __VA_ARGS__); \ } else { \ ret = (*pvfs->vfs.func)(__VA_ARGS__);\ } int esp_vfs_open(struct _reent *r, const char * path, int flags, int mode) { const vfs_entry_t *vfs = get_vfs_for_path(path); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char *path_within_vfs = translate_path(vfs, path); int fd_within_vfs; CHECK_AND_CALL(fd_within_vfs, r, vfs, open, path_within_vfs, flags, mode); if (fd_within_vfs >= 0) { _lock_acquire(&s_fd_table_lock); for (int i = 0; i < MAX_FDS; ++i) { if (s_fd_table[i].vfs_index == -1) { s_fd_table[i].permanent = false; s_fd_table[i].vfs_index = vfs->offset; s_fd_table[i].local_fd = fd_within_vfs; _lock_release(&s_fd_table_lock); return i; } } _lock_release(&s_fd_table_lock); int ret; CHECK_AND_CALL(ret, r, vfs, close, fd_within_vfs); (void) ret; // remove "set but not used" warning __errno_r(r) = ENOMEM; return -1; } __errno_r(r) = ENOENT; return -1; } ssize_t esp_vfs_write(struct _reent *r, int fd, const void * data, size_t size) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } ssize_t ret; CHECK_AND_CALL(ret, r, vfs, write, local_fd, data, size); return ret; } off_t esp_vfs_lseek(struct _reent *r, int fd, off_t size, int mode) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } off_t ret; CHECK_AND_CALL(ret, r, vfs, lseek, local_fd, size, mode); return ret; } ssize_t esp_vfs_read(struct _reent *r, int fd, void * dst, size_t size) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } ssize_t ret; CHECK_AND_CALL(ret, r, vfs, read, local_fd, dst, size); return ret; } int esp_vfs_close(struct _reent *r, int fd) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, close, local_fd); _lock_acquire(&s_fd_table_lock); if (!s_fd_table[fd].permanent) { s_fd_table[fd] = FD_TABLE_ENTRY_UNUSED; } _lock_release(&s_fd_table_lock); return ret; } int esp_vfs_fstat(struct _reent *r, int fd, struct stat * st) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, fstat, local_fd, st); return ret; } int esp_vfs_stat(struct _reent *r, const char * path, struct stat * st) { const vfs_entry_t* vfs = get_vfs_for_path(path); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, path); int ret; CHECK_AND_CALL(ret, r, vfs, stat, path_within_vfs, st); return ret; } int esp_vfs_link(struct _reent *r, const char* n1, const char* n2) { const vfs_entry_t* vfs = get_vfs_for_path(n1); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const vfs_entry_t* vfs2 = get_vfs_for_path(n2); if (vfs != vfs2) { __errno_r(r) = EXDEV; return -1; } const char* path1_within_vfs = translate_path(vfs, n1); const char* path2_within_vfs = translate_path(vfs, n2); int ret; CHECK_AND_CALL(ret, r, vfs, link, path1_within_vfs, path2_within_vfs); return ret; } int esp_vfs_unlink(struct _reent *r, const char *path) { const vfs_entry_t* vfs = get_vfs_for_path(path); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, path); int ret; CHECK_AND_CALL(ret, r, vfs, unlink, path_within_vfs); return ret; } int esp_vfs_rename(struct _reent *r, const char *src, const char *dst) { const vfs_entry_t* vfs = get_vfs_for_path(src); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const vfs_entry_t* vfs_dst = get_vfs_for_path(dst); if (vfs != vfs_dst) { __errno_r(r) = EXDEV; return -1; } const char* src_within_vfs = translate_path(vfs, src); const char* dst_within_vfs = translate_path(vfs, dst); int ret; CHECK_AND_CALL(ret, r, vfs, rename, src_within_vfs, dst_within_vfs); return ret; } DIR* opendir(const char* name) { const vfs_entry_t* vfs = get_vfs_for_path(name); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = ENOENT; return NULL; } const char* path_within_vfs = translate_path(vfs, name); DIR* ret; CHECK_AND_CALLP(ret, r, vfs, opendir, path_within_vfs); if (ret != NULL) { ret->dd_vfs_idx = vfs->offset; } return ret; } struct dirent* readdir(DIR* pdir) { const vfs_entry_t* vfs = get_vfs_for_index(pdir->dd_vfs_idx); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = EBADF; return NULL; } struct dirent* ret; CHECK_AND_CALLP(ret, r, vfs, readdir, pdir); return ret; } int readdir_r(DIR* pdir, struct dirent* entry, struct dirent** out_dirent) { const vfs_entry_t* vfs = get_vfs_for_index(pdir->dd_vfs_idx); struct _reent* r = __getreent(); if (vfs == NULL) { errno = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, readdir_r, pdir, entry, out_dirent); return ret; } long telldir(DIR* pdir) { const vfs_entry_t* vfs = get_vfs_for_index(pdir->dd_vfs_idx); struct _reent* r = __getreent(); if (vfs == NULL) { errno = EBADF; return -1; } long ret; CHECK_AND_CALL(ret, r, vfs, telldir, pdir); return ret; } void seekdir(DIR* pdir, long loc) { const vfs_entry_t* vfs = get_vfs_for_index(pdir->dd_vfs_idx); struct _reent* r = __getreent(); if (vfs == NULL) { errno = EBADF; return; } CHECK_AND_CALLV(r, vfs, seekdir, pdir, loc); } void rewinddir(DIR* pdir) { seekdir(pdir, 0); } int closedir(DIR* pdir) { const vfs_entry_t* vfs = get_vfs_for_index(pdir->dd_vfs_idx); struct _reent* r = __getreent(); if (vfs == NULL) { errno = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, closedir, pdir); return ret; } int mkdir(const char* name, mode_t mode) { const vfs_entry_t* vfs = get_vfs_for_path(name); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, name); int ret; CHECK_AND_CALL(ret, r, vfs, mkdir, path_within_vfs, mode); return ret; } int rmdir(const char* name) { const vfs_entry_t* vfs = get_vfs_for_path(name); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, name); int ret; CHECK_AND_CALL(ret, r, vfs, rmdir, path_within_vfs); return ret; } int fcntl(int fd, int cmd, ...) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; va_list args; va_start(args, cmd); CHECK_AND_CALL(ret, r, vfs, fcntl, local_fd, cmd, args); va_end(args); return ret; } int ioctl(int fd, int cmd, ...) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; va_list args; va_start(args, cmd); CHECK_AND_CALL(ret, r, vfs, ioctl, local_fd, cmd, args); va_end(args); return ret; } int fsync(int fd) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, fsync, local_fd); return ret; } int access(const char *path, int amode) { int ret; const vfs_entry_t* vfs = get_vfs_for_path(path); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, path); CHECK_AND_CALL(ret, r, vfs, access, path_within_vfs, amode); return ret; } int truncate(const char *path, off_t length) { int ret; const vfs_entry_t* vfs = get_vfs_for_path(path); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, path); CHECK_AND_CALL(ret, r, vfs, truncate, path_within_vfs, length); return ret; } static void call_end_selects(int end_index, const fds_triple_t *vfs_fds_triple) { for (int i = 0; i < end_index; ++i) { const vfs_entry_t *vfs = get_vfs_for_index(i); const fds_triple_t *item = &vfs_fds_triple[i]; if (vfs && vfs->vfs.end_select && item->isset) { vfs->vfs.end_select(); } } } static inline bool esp_vfs_safe_fd_isset(int fd, const fd_set *fds) { return fds && FD_ISSET(fd, fds); } static int set_global_fd_sets(const fds_triple_t *vfs_fds_triple, int size, fd_set *readfds, fd_set *writefds, fd_set *errorfds) { int ret = 0; for (int i = 0; i < size; ++i) { const fds_triple_t *item = &vfs_fds_triple[i]; if (item->isset) { for (int fd = 0; fd < MAX_FDS; ++fd) { const int local_fd = s_fd_table[fd].local_fd; // single read -> no locking is required if (readfds && esp_vfs_safe_fd_isset(local_fd, &item->readfds)) { ESP_LOGD(TAG, "FD %d in readfds was set from VFS ID %d", fd, i); FD_SET(fd, readfds); ++ret; } if (writefds && esp_vfs_safe_fd_isset(local_fd, &item->writefds)) { ESP_LOGD(TAG, "FD %d in writefds was set from VFS ID %d", fd, i); FD_SET(fd, writefds); ++ret; } if (errorfds && esp_vfs_safe_fd_isset(local_fd, &item->errorfds)) { ESP_LOGD(TAG, "FD %d in errorfds was set from VFS ID %d", fd, i); FD_SET(fd, errorfds); ++ret; } } } } return ret; } static void esp_vfs_log_fd_set(const char *fds_name, const fd_set *fds) { if (fds_name && fds) { ESP_LOGD(TAG, "FDs in %s =", fds_name); for (int i = 0; i < MAX_FDS; ++i) { if (esp_vfs_safe_fd_isset(i, fds)) { ESP_LOGD(TAG, "%d", i); } } } } int esp_vfs_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout) { int ret = 0; struct _reent* r = __getreent(); ESP_LOGD(TAG, "esp_vfs_select starts with nfds = %d", nfds); if (timeout) { ESP_LOGD(TAG, "timeout is %lds + %ldus", timeout->tv_sec, timeout->tv_usec); } esp_vfs_log_fd_set("readfds", readfds); esp_vfs_log_fd_set("writefds", writefds); esp_vfs_log_fd_set("errorfds", errorfds); if (nfds > MAX_FDS || nfds < 0) { ESP_LOGD(TAG, "incorrect nfds"); __errno_r(r) = EINVAL; return -1; } // Capture s_vfs_count to a local variable in case a new driver is registered or removed during this actual select() // call. s_vfs_count cannot be protected with a mutex during a select() call (which can be one without a timeout) // because that could block the registration of new driver. const size_t vfs_count = s_vfs_count; fds_triple_t *vfs_fds_triple; if ((vfs_fds_triple = calloc(vfs_count, sizeof(fds_triple_t))) == NULL) { __errno_r(r) = ENOMEM; ESP_LOGD(TAG, "calloc is unsuccessful"); return -1; } int (*socket_select)(int, fd_set *, fd_set *, fd_set *, struct timeval *) = NULL; for (int fd = 0; fd < nfds; ++fd) { _lock_acquire(&s_fd_table_lock); const bool is_socket_fd = s_fd_table[fd].permanent; const int vfs_index = s_fd_table[fd].vfs_index; const int local_fd = s_fd_table[fd].local_fd; _lock_release(&s_fd_table_lock); if (vfs_index < 0) { continue; } if (is_socket_fd) { if (!socket_select) { // no socket_select found yet so take a look if (esp_vfs_safe_fd_isset(fd, readfds) || esp_vfs_safe_fd_isset(fd, writefds) || esp_vfs_safe_fd_isset(fd, errorfds)) { const vfs_entry_t *vfs = s_vfs[vfs_index]; socket_select = vfs->vfs.socket_select; // get_socket_select_semaphore needs to be set for a socket driver where semaphore can be // initialized outside interrupt handlers (ignoring this could result in unexpected failures) if (vfs->vfs.get_socket_select_semaphore != NULL) { vfs->vfs.get_socket_select_semaphore(); // Semaphore is returned and it was allocated if it // wasn't before. We don't use the return value just need to be sure that it doesn't get // allocated later from ISR. // Note: ESP-IDF v4.0 will start to use this callback differently with some breaking changes // in the VFS API. } } } continue; } fds_triple_t *item = &vfs_fds_triple[vfs_index]; // FD sets for VFS which belongs to fd if (esp_vfs_safe_fd_isset(fd, readfds)) { item->isset = true; FD_SET(local_fd, &item->readfds); FD_CLR(fd, readfds); ESP_LOGD(TAG, "removing %d from readfds and adding as local FD %d to fd_set of VFS ID %d", fd, local_fd, vfs_index); } if (esp_vfs_safe_fd_isset(fd, writefds)) { item->isset = true; FD_SET(local_fd, &item->writefds); FD_CLR(fd, writefds); ESP_LOGD(TAG, "removing %d from writefds and adding as local FD %d to fd_set of VFS ID %d", fd, local_fd, vfs_index); } if (esp_vfs_safe_fd_isset(fd, errorfds)) { item->isset = true; FD_SET(local_fd, &item->errorfds); FD_CLR(fd, errorfds); ESP_LOGD(TAG, "removing %d from errorfds and adding as local FD %d to fd_set of VFS ID %d", fd, local_fd, vfs_index); } } // all non-socket VFSs have their FD sets in vfs_fds_triple // the global readfds, writefds and errorfds contain only socket FDs (if // there any) /* Semaphore used for waiting select events from other VFS drivers when socket * select is not used (not registered or socket FDs are not observed by the * given call of select) */ SemaphoreHandle_t select_sem = NULL; if (!socket_select) { // There is no socket VFS registered or select() wasn't called for // any socket. Therefore, we will use our own signalization. if ((select_sem = xSemaphoreCreateBinary()) == NULL) { free(vfs_fds_triple); __errno_r(r) = ENOMEM; ESP_LOGD(TAG, "cannot create select_sem"); return -1; } } for (int i = 0; i < vfs_count; ++i) { const vfs_entry_t *vfs = get_vfs_for_index(i); fds_triple_t *item = &vfs_fds_triple[i]; if (vfs && vfs->vfs.start_select && item->isset) { // call start_select for all non-socket VFSs with has at least one FD set in readfds, writefds, or errorfds // note: it can point to socket VFS but item->isset will be false for that ESP_LOGD(TAG, "calling start_select for VFS ID %d with the following local FDs", i); esp_vfs_log_fd_set("readfds", &item->readfds); esp_vfs_log_fd_set("writefds", &item->writefds); esp_vfs_log_fd_set("errorfds", &item->errorfds); esp_err_t err = vfs->vfs.start_select(nfds, &item->readfds, &item->writefds, &item->errorfds, &select_sem); if (err != ESP_OK) { call_end_selects(i, vfs_fds_triple); (void) set_global_fd_sets(vfs_fds_triple, vfs_count, readfds, writefds, errorfds); if (select_sem) { vSemaphoreDelete(select_sem); select_sem = NULL; } free(vfs_fds_triple); __errno_r(r) = EINTR; ESP_LOGD(TAG, "start_select failed"); return -1; } } } if (socket_select) { ESP_LOGD(TAG, "calling socket_select with the following FDs"); esp_vfs_log_fd_set("readfds", readfds); esp_vfs_log_fd_set("writefds", writefds); esp_vfs_log_fd_set("errorfds", errorfds); ret = socket_select(nfds, readfds, writefds, errorfds, timeout); ESP_LOGD(TAG, "socket_select returned %d and the FDs are the following", ret); esp_vfs_log_fd_set("readfds", readfds); esp_vfs_log_fd_set("writefds", writefds); esp_vfs_log_fd_set("errorfds", errorfds); } else { if (readfds) { FD_ZERO(readfds); } if (writefds) { FD_ZERO(writefds); } if (errorfds) { FD_ZERO(errorfds); } TickType_t ticks_to_wait = portMAX_DELAY; if (timeout) { uint32_t timeout_ms = timeout->tv_sec * 1000 + timeout->tv_usec / 1000; ticks_to_wait = timeout_ms / portTICK_PERIOD_MS; ESP_LOGD(TAG, "timeout is %dms", timeout_ms); } ESP_LOGD(TAG, "waiting without calling socket_select"); xSemaphoreTake(select_sem, ticks_to_wait); } call_end_selects(vfs_count, vfs_fds_triple); // for VFSs for start_select was called before if (ret >= 0) { ret += set_global_fd_sets(vfs_fds_triple, vfs_count, readfds, writefds, errorfds); } if (select_sem) { vSemaphoreDelete(select_sem); select_sem = NULL; } free(vfs_fds_triple); ESP_LOGD(TAG, "esp_vfs_select returns %d", ret); esp_vfs_log_fd_set("readfds", readfds); esp_vfs_log_fd_set("writefds", writefds); esp_vfs_log_fd_set("errorfds", errorfds); return ret; } void esp_vfs_select_triggered(SemaphoreHandle_t *signal_sem) { if (signal_sem && (*signal_sem)) { xSemaphoreGive(*signal_sem); } else { // Another way would be to go through s_fd_table and find the VFS // which has a permanent FD. But in order to avoid to lock // s_fd_table_lock we go through the VFS table. for (int i = 0; i < s_vfs_count; ++i) { // Note: s_vfs_count could have changed since the start of vfs_select() call. However, that change doesn't // matter here stop_socket_select() will be called for only valid VFS drivers. const vfs_entry_t *vfs = s_vfs[i]; if (vfs != NULL && vfs->vfs.stop_socket_select != NULL) { vfs->vfs.stop_socket_select(); break; } } } } void esp_vfs_select_triggered_isr(SemaphoreHandle_t *signal_sem, BaseType_t *woken) { if (signal_sem && (*signal_sem)) { xSemaphoreGiveFromISR(*signal_sem, woken); } else { // Another way would be to go through s_fd_table and find the VFS // which has a permanent FD. But in order to avoid to lock // s_fd_table_lock we go through the VFS table. for (int i = 0; i < s_vfs_count; ++i) { // Note: s_vfs_count could have changed since the start of vfs_select() call. However, that change doesn't // matter here stop_socket_select() will be called for only valid VFS drivers. const vfs_entry_t *vfs = s_vfs[i]; if (vfs != NULL && vfs->vfs.stop_socket_select_isr != NULL) { vfs->vfs.stop_socket_select_isr(woken); break; } } } } #ifdef CONFIG_SUPPORT_TERMIOS int tcgetattr(int fd, struct termios *p) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcgetattr, local_fd, p); return ret; } int tcsetattr(int fd, int optional_actions, const struct termios *p) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcsetattr, local_fd, optional_actions, p); return ret; } int tcdrain(int fd) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcdrain, local_fd); return ret; } int tcflush(int fd, int select) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcflush, local_fd, select); return ret; } int tcflow(int fd, int action) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcflow, local_fd, action); return ret; } pid_t tcgetsid(int fd) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcgetsid, local_fd); return ret; } int tcsendbreak(int fd, int duration) { const vfs_entry_t* vfs = get_vfs_for_fd(fd); const int local_fd = get_local_fd(vfs, fd); struct _reent* r = __getreent(); if (vfs == NULL || local_fd < 0) { __errno_r(r) = EBADF; return -1; } int ret; CHECK_AND_CALL(ret, r, vfs, tcsendbreak, local_fd, duration); return ret; } #endif // CONFIG_SUPPORT_TERMIOS int esp_vfs_utime(const char *path, const struct utimbuf *times) { int ret; const vfs_entry_t* vfs = get_vfs_for_path(path); struct _reent* r = __getreent(); if (vfs == NULL) { __errno_r(r) = ENOENT; return -1; } const char* path_within_vfs = translate_path(vfs, path); CHECK_AND_CALL(ret, r, vfs, utime, path_within_vfs, times); return ret; } int esp_vfs_poll(struct pollfd *fds, nfds_t nfds, int timeout) { struct timeval tv = { // timeout is in milliseconds .tv_sec = timeout / 1000, .tv_usec = (timeout % 1000) * 1000, }; int max_fd = -1; fd_set readfds; fd_set writefds; fd_set errorfds; struct _reent* r = __getreent(); int ret = 0; if (fds == NULL) { __errno_r(r) = ENOENT; return -1; } FD_ZERO(&readfds); FD_ZERO(&writefds); FD_ZERO(&errorfds); for (int i = 0; i < nfds; ++i) { fds[i].revents = 0; if (fds[i].fd < 0) { // revents should remain 0 and events ignored (according to the documentation of poll()). continue; } if (fds[i].fd >= MAX_FDS) { fds[i].revents |= POLLNVAL; ++ret; continue; } if (fds[i].events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) { FD_SET(fds[i].fd, &readfds); FD_SET(fds[i].fd, &errorfds); max_fd = MAX(max_fd, fds[i].fd); } if (fds[i].events & (POLLOUT | POLLWRNORM | POLLWRBAND)) { FD_SET(fds[i].fd, &writefds); FD_SET(fds[i].fd, &errorfds); max_fd = MAX(max_fd, fds[i].fd); } } const int select_ret = esp_vfs_select(max_fd + 1, &readfds, &writefds, &errorfds, timeout < 0 ? NULL: &tv); if (select_ret > 0) { ret += select_ret; for (int i = 0; i < nfds; ++i) { if (FD_ISSET(fds[i].fd, &readfds)) { fds[i].revents |= POLLIN; } if (FD_ISSET(fds[i].fd, &writefds)) { fds[i].revents |= POLLOUT; } if (FD_ISSET(fds[i].fd, &errorfds)) { fds[i].revents |= POLLERR; } } } else { ret = select_ret; // keeping the errno from select() } return ret; }