Added bootloader_common_get_sha256_of_partition() and esp_partition_get_sha256() - get or calculate SHA-256
digest for app and data partitions.
Added bootloader_sha256_hex_to_str() - helps to print SHA-256 digest
Added esp_partition_check_identity() - compares two partitions by SHA-256 digest
Refactoring a function esp_image_load() in bootloader space to esp_image_verify() and
bootloader_load_image(). Old name function esp_image_load is deprecated
and will remove in V4.0 version.
spi_flash/sim: Fix error test_host. Add stub for bootloader_common_get_sha256_of_partition in sim/stubs
* spi_flash_mmap_pages needs pages array to be in internal memory.
Document and check this.
* Fix a bug that spi_flash_mmap did not allocate pages array in
internal memory.
* Minor style fixes: const-ify pages argument of spi_flash_mmap, add
spaces around operators, mark output arguments with [out].
Closes https://github.com/espressif/esp-idf/issues/2229.
components/spi_flash/partition.c: In function 'load_partitions':
components/spi_flash/partition.c:179:66: error: argument to 'sizeof' in 'strncpy' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
strncpy(item->info.label, (const char*) it->label, sizeof(it->label));
^
The fix is for the situation when cache disabling mechanism causes
a deadlock with user tasks. Situation is as follows:
1. spi_flash operation is started from low-priority task on CPU0
2. It uses IPC to wake up high-priority IPC1 task on CPU1, preventing
all other tasks on CPU1 from running. This is needed to safely
disable the cache.
3. While the task which started spi_flash operation is waiting for IPC1
task to acknowledge that CPU1 is not using cache anymore, it is
preempted by a higher priority application task ("app0").
4. Task app0 busy-waits for some operation on CPU1 to complete. But
since application tasks are blocked out by IPC1 task, this never
happens. Since app0 is busy-waiting, the task doing spi flash
operation never runs.
The more or less logical soltion to the problem would be to also do
cache disabling on CPU0 and the SPI flash operation itself from IPC0
task. However IPC0 task stack would need to be increased to allow doing
SPI flash operation (and IPC1 stack as well). This would waste some
memory. An alternative approach adopted in this fix is to call FreeRTOS
functions to temporary increase the priority of SPI flash operation task
to the same level as the IPC task.
Fixes https://github.com/espressif/arduino-esp32/issues/740
Fixes https://github.com/espressif/esp-idf/issues/1157
IDF had two defines ESP_PARTITION_TABLE_OFFSET and ESP_PARTITION_TABLE_ADDR. They were the same and equal by 0x8000.
A define ESP_PARTITION_TABLE_ADDR was removed from IDF.
A define ESP_PARTITION_TABLE_OFFSET depends on option CONFIG_PARTITION_TABLE_OFFSET in Kconfig.
Now using only #define ESP_PARTITION_TABLE_OFFSET CONFIG_PARTITION_TABLE_OFFSET
Allows you to move the partition table, it gives more space for the bootloader.
Added a new utility - parttool.py. This utility can search for the offset and/or size of the partitions by name and type/subtype. Use for getting APP_OFFSET and PHY_DATA_OFFSET.
The linker(esp32.bootloader.ld) made changes that allow you to write a custom bootloader code more.
TW14125
Makes spiffs component runnable on host. Depends on the host library build
of flash emulator. Includes a basic sanity test of
mounting a volume, opening a file, writing to the file, reading the file,
closing the file and unmounting volume.
Makes fatfs component runnable on host. Depends on the host library build
of wear levelling and flash emulator. Includes a basic sanity test of
mounting a volume, opening a file, writing to the file, reading the file,
closing the file and unmounting volume.
Makes the entirety of the wl API runnable on host. Flash emulator
is separated into spi_flash component directory to be reused by
other storage components.
When two CPUs read the area of the DPORT and the area of the APB, the result is corrupted for the CPU that read the APB area.
And another CPU has valid data.
The method of eliminating this error.
Before reading the registers of the DPORT, make a preliminary reading of the APB register.
In this case, the joint access of the two CPUs to the registers of the APB and the DPORT is successful.