* master: (117 commits)
build system: Add -fno-rtti when compiling C++ code
FreeRTOS KConfig: Limit tick rate to 1000Hz
bootloader: Fix accidental tabs introduced in !78
build system: Print a WARNING if any submodule is out of date
Fix stack overflow message format
'make flash' targets: Print serial port when flashing
lwip/esp32: support iperf
Add data memory for RMT peripheral
syscall write: Should return number of bytes written
Also push relevant tags over
esp32: add libsmartconfig.a to link libs
esp32: not link wps
esp32/lib: update wifi lib to a1e5f8b9
esp32: remove esp_wps.h
add smartconfig header files(merge this after updating libsmartconfig.a version v2.6.2)
esp32/lib: update wifi lib to 3853d7ae
Add Comments
Modify spinlock error in periph_ctrl.c
Define xcoreid offset, add warning in tcb struct wrt the need to also change that define when struct changes
components/tcpip_adapter: add some comments
...
# Conflicts:
# components/freertos/queue.c
# components/freertos/tasks.c
Workaround: Automatically pin no-cpu-affinity task to a core when FPU is used
FPU status at the moment does not migrate cleanly between cores, so tasks without affinity that happen to migrate across FPUs will run into problems. As a workaround, this modification will automatically pin the task to the current CPU when FPU activity is detected. If anything, it's better than getting all kinds of weird and wonderful FPU corruption issues...
See merge request !124
This feature allows to use static buffers (or from a pool of memory which is not
controlled by FreeRTOS).
In order to reduce the impact of the changes, the static feature has only been added
to the queus (and in consequence to the semaphores and the mutexes) and the tasks.
The Timer task is always dynamically allocated and also the idle task(s), which in the
case of the ESP-IDF is ok, since we always need to have dynamic allocation enabled.
The thread-local-storage feature in FreeRTOS attaches an application-usable array of pointers to a thread control block. These pointers usually point to a structure the thread allocates. When a thread gets (voluntarily or involuntarily) destroyed, this memory can leak. This merge adds a matching second array of user-settable pointers to destructor routines. As soon as the task gets cleaned up (which happens in the idle thread), the destructors get called and the memory can be freed.
See merge request !19