Ref. https://github.com/espressif/esp-idf/issues/1684
This change allows RTTI to be enabled in menuconfig. For full RTTI
support, libstdc++.a in the toolchain should be built without
-fno-rtti, as it is done now.
Generally if libstdc++.a is built with RTTI, applications which do not
use RTTI (and build with -fno-rtti) could still include typeinfo
structures referenced from STL classes’ vtables. This change works
around this, by moving all typeinfo structures from libstdc++.a into
a non-loadable section, placed into a non-existent memory region
starting at address 0. This can be done because when the application
is compiled with -fno-rtti, typeinfo structures are not used at run
time. This way, typeinfo structures do not contribute to the
application binary size.
If the application is build with RTTI support, typeinfo structures are
linked into the application .rodata section as usual.
Note that this commit does not actually enable RTTI support.
The respective Kconfig option is hidden, and will be made visible when
the toolchain is updated.
This MR removes the common dependency from every IDF components to the SOC component.
Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components.
But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components.
In CMAKE, we have two kinds of header visibilities (set by include path visibility):
(Assume component A --(depends on)--> B, B is the current component)
1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B)
2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only)
and we have two kinds of depending ways:
(Assume component A --(depends on)--> B --(depends on)--> C, B is the current component)
1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B)
2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B)
1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default.
2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it.
3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers
4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link)
This is a breaking change. Previous code may depends on the long include chain.
You may need to include the following headers for some files after this commit:
- soc/soc.h
- soc/soc_memory_layout.h
- driver/gpio.h
- esp_sleep.h
The major broken include chain includes:
1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h.
2. ets_sys.h no longer includes soc/soc.h
3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h
some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h
BREAKING CHANGE
Don't show the "Python 2 interpreter" option in menuconfig when using CMake.
This is a stop-gap until we support Python 2 & 3 together in ESP-IDF (soon).
Closes https://github.com/espressif/esp-idf/issues/1924
Implements support for system level traces compatible with SEGGER
SystemView tool on top of ESP32 application tracing module.
That kind of traces can help to analyse program's behaviour.
SystemView can show timeline of tasks/ISRs execution, context switches,
statistics related to the CPUs' load distribution etc.
Also this commit adds useful feature to ESP32 application tracing module:
- Trace data buffering is implemented to handle temporary peaks of events load
This change adds two options (Debug/Release) for optimization level.
Debug enables -O0, release enables -Os and adds -DNDEBUG (which removes all assert() statements).
Debugging symbols are kept in both cases, although we may add an option to strip output file if necessary.
Also we used to define all common compiler flags in CPPFLAGS, and then appended them to CFLAGS/CXXFLAGS.
It makes it impossible to add preprocessor macros to CPPFLAGS at component level (one has to use CFLAGS/CXXFLAGS instead).
Some third party libraries are not compatible with this approach. Changed to the more common way of using these variables.