ble_mesh: Format source and header files of tinycrypt

This commit is contained in:
lly 2020-06-08 18:16:43 +08:00 committed by bot
parent 12b9f59559
commit d690e52993
28 changed files with 2128 additions and 2123 deletions

View file

@ -62,7 +62,7 @@ extern "C" {
#define TC_AES_KEY_SIZE (Nb*Nk) #define TC_AES_KEY_SIZE (Nb*Nk)
typedef struct tc_aes_key_sched_struct { typedef struct tc_aes_key_sched_struct {
unsigned int words[Nb*(Nr+1)]; unsigned int words[Nb * (Nr + 1)];
} *TCAesKeySched_t; } *TCAesKeySched_t;
/** /**
@ -90,8 +90,8 @@ int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k);
* @param in IN -- a plaintext block to encrypt * @param in IN -- a plaintext block to encrypt
* @param s IN -- initialized AES key schedule * @param s IN -- initialized AES key schedule
*/ */
int tc_aes_encrypt(uint8_t *out, const uint8_t *in, int tc_aes_encrypt(uint8_t *out, const uint8_t *in,
const TCAesKeySched_t s); const TCAesKeySched_t s);
/** /**
* @brief Set the AES-128 decryption key * @brief Set the AES-128 decryption key
@ -120,8 +120,8 @@ int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k);
* @param in IN -- a plaintext block to encrypt * @param in IN -- a plaintext block to encrypt
* @param s IN -- initialized AES key schedule * @param s IN -- initialized AES key schedule
*/ */
int tc_aes_decrypt(uint8_t *out, const uint8_t *in, int tc_aes_decrypt(uint8_t *out, const uint8_t *in,
const TCAesKeySched_t s); const TCAesKeySched_t s);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -108,8 +108,8 @@ extern "C" {
* @param sched IN -- AES key schedule for this encrypt * @param sched IN -- AES key schedule for this encrypt
*/ */
int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in, int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv, unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched); const TCAesKeySched_t sched);
/** /**
* @brief CBC decryption procedure * @brief CBC decryption procedure
@ -141,8 +141,8 @@ int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
* *
*/ */
int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in, int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv, unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched); const TCAesKeySched_t sched);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -89,9 +89,9 @@ extern "C" {
/* struct tc_ccm_mode_struct represents the state of a CCM computation */ /* struct tc_ccm_mode_struct represents the state of a CCM computation */
typedef struct tc_ccm_mode_struct { typedef struct tc_ccm_mode_struct {
TCAesKeySched_t sched; /* AES key schedule */ TCAesKeySched_t sched; /* AES key schedule */
uint8_t *nonce; /* nonce required by CCM */ uint8_t *nonce; /* nonce required by CCM */
unsigned int mlen; /* mac length in bytes (parameter t in SP-800 38C) */ unsigned int mlen; /* mac length in bytes (parameter t in SP-800 38C) */
} *TCCcmMode_t; } *TCCcmMode_t;
/** /**
@ -109,7 +109,7 @@ typedef struct tc_ccm_mode_struct {
* @param mlen -- mac length in bytes (parameter t in SP-800 38C) * @param mlen -- mac length in bytes (parameter t in SP-800 38C)
*/ */
int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce, int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
unsigned int nlen, unsigned int mlen); unsigned int nlen, unsigned int mlen);
/** /**
* @brief CCM tag generation and encryption procedure * @brief CCM tag generation and encryption procedure
@ -154,9 +154,9 @@ int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
* 7: always 0 * 7: always 0
*/ */
int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen, int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen,
const uint8_t *associated_data, const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload, unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c); unsigned int plen, TCCcmMode_t c);
/** /**
* @brief CCM decryption and tag verification procedure * @brief CCM decryption and tag verification procedure
@ -200,9 +200,9 @@ int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen,
* 7: always 0 * 7: always 0
*/ */
int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen, int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen,
const uint8_t *associated_data, const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload, unsigned int plen, unsigned int alen, const uint8_t *payload, unsigned int plen,
TCCcmMode_t c); TCCcmMode_t c);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -110,22 +110,22 @@ extern "C" {
/* struct tc_cmac_struct represents the state of a CMAC computation */ /* struct tc_cmac_struct represents the state of a CMAC computation */
typedef struct tc_cmac_struct { typedef struct tc_cmac_struct {
/* initialization vector */ /* initialization vector */
uint8_t iv[TC_AES_BLOCK_SIZE]; uint8_t iv[TC_AES_BLOCK_SIZE];
/* used if message length is a multiple of block_size bytes */ /* used if message length is a multiple of block_size bytes */
uint8_t K1[TC_AES_BLOCK_SIZE]; uint8_t K1[TC_AES_BLOCK_SIZE];
/* used if message length isn't a multiple block_size bytes */ /* used if message length isn't a multiple block_size bytes */
uint8_t K2[TC_AES_BLOCK_SIZE]; uint8_t K2[TC_AES_BLOCK_SIZE];
/* where to put bytes that didn't fill a block */ /* where to put bytes that didn't fill a block */
uint8_t leftover[TC_AES_BLOCK_SIZE]; uint8_t leftover[TC_AES_BLOCK_SIZE];
/* identifies the encryption key */ /* identifies the encryption key */
unsigned int keyid; unsigned int keyid;
/* next available leftover location */ /* next available leftover location */
unsigned int leftover_offset; unsigned int leftover_offset;
/* AES key schedule */ /* AES key schedule */
TCAesKeySched_t sched; TCAesKeySched_t sched;
/* calls to tc_cmac_update left before re-key */ /* calls to tc_cmac_update left before re-key */
uint64_t countdown; uint64_t countdown;
} *TCCmacState_t; } *TCCmacState_t;
/** /**
@ -140,7 +140,7 @@ typedef struct tc_cmac_struct {
* @param sched IN -- AES key schedule * @param sched IN -- AES key schedule
*/ */
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, int tc_cmac_setup(TCCmacState_t s, const uint8_t *key,
TCAesKeySched_t sched); TCAesKeySched_t sched);
/** /**
* @brief Erases the CMAC state * @brief Erases the CMAC state

View file

@ -99,7 +99,7 @@ extern "C" {
* @param sched IN -- an initialized AES key schedule * @param sched IN -- an initialized AES key schedule
*/ */
int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in, int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched); unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -68,14 +68,14 @@ extern "C" {
#endif #endif
typedef struct { typedef struct {
/* updated each time another BLOCKLEN_BYTES bytes are produced */ /* updated each time another BLOCKLEN_BYTES bytes are produced */
uint8_t V[TC_AES_BLOCK_SIZE]; uint8_t V[TC_AES_BLOCK_SIZE];
/* updated whenever the PRNG is reseeded */ /* updated whenever the PRNG is reseeded */
struct tc_aes_key_sched_struct key; struct tc_aes_key_sched_struct key;
/* number of requests since initialization/reseeding */ /* number of requests since initialization/reseeding */
uint64_t reseedCount; uint64_t reseedCount;
} TCCtrPrng_t; } TCCtrPrng_t;
@ -98,11 +98,11 @@ typedef struct {
* @param plen IN -- personalization length in bytes * @param plen IN -- personalization length in bytes
* *
*/ */
int tc_ctr_prng_init(TCCtrPrng_t * const ctx, int tc_ctr_prng_init(TCCtrPrng_t *const ctx,
uint8_t const * const entropy, uint8_t const *const entropy,
unsigned int entropyLen, unsigned int entropyLen,
uint8_t const * const personalization, uint8_t const *const personalization,
unsigned int pLen); unsigned int pLen);
/** /**
* @brief CTR-PRNG reseed procedure * @brief CTR-PRNG reseed procedure
@ -123,11 +123,11 @@ int tc_ctr_prng_init(TCCtrPrng_t * const ctx,
* @param additional_input IN -- additional input to the prng (may be null) * @param additional_input IN -- additional input to the prng (may be null)
* @param additionallen IN -- additional input length in bytes * @param additionallen IN -- additional input length in bytes
*/ */
int tc_ctr_prng_reseed(TCCtrPrng_t * const ctx, int tc_ctr_prng_reseed(TCCtrPrng_t *const ctx,
uint8_t const * const entropy, uint8_t const *const entropy,
unsigned int entropyLen, unsigned int entropyLen,
uint8_t const * const additional_input, uint8_t const *const additional_input,
unsigned int additionallen); unsigned int additionallen);
/** /**
* @brief CTR-PRNG generate procedure * @brief CTR-PRNG generate procedure
@ -145,11 +145,11 @@ int tc_ctr_prng_reseed(TCCtrPrng_t * const ctx,
* @param out IN/OUT -- buffer to receive output * @param out IN/OUT -- buffer to receive output
* @param outlen IN -- size of out buffer in bytes * @param outlen IN -- size of out buffer in bytes
*/ */
int tc_ctr_prng_generate(TCCtrPrng_t * const ctx, int tc_ctr_prng_generate(TCCtrPrng_t *const ctx,
uint8_t const * const additional_input, uint8_t const *const additional_input,
unsigned int additionallen, unsigned int additionallen,
uint8_t * const out, uint8_t *const out,
unsigned int outlen); unsigned int outlen);
/** /**
* @brief CTR-PRNG uninstantiate procedure * @brief CTR-PRNG uninstantiate procedure
@ -157,7 +157,7 @@ int tc_ctr_prng_generate(TCCtrPrng_t * const ctx,
* @return none * @return none
* @param ctx IN/OUT -- the PRNG context * @param ctx IN/OUT -- the PRNG context
*/ */
void tc_ctr_prng_uninstantiate(TCCtrPrng_t * const ctx); void tc_ctr_prng_uninstantiate(TCCtrPrng_t *const ctx);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -108,19 +108,19 @@ typedef uint64_t uECC_dword_t;
/* structure that represents an elliptic curve (e.g. p256):*/ /* structure that represents an elliptic curve (e.g. p256):*/
struct uECC_Curve_t; struct uECC_Curve_t;
typedef const struct uECC_Curve_t * uECC_Curve; typedef const struct uECC_Curve_t *uECC_Curve;
struct uECC_Curve_t { struct uECC_Curve_t {
wordcount_t num_words; wordcount_t num_words;
wordcount_t num_bytes; wordcount_t num_bytes;
bitcount_t num_n_bits; bitcount_t num_n_bits;
uECC_word_t p[NUM_ECC_WORDS]; uECC_word_t p[NUM_ECC_WORDS];
uECC_word_t n[NUM_ECC_WORDS]; uECC_word_t n[NUM_ECC_WORDS];
uECC_word_t G[NUM_ECC_WORDS * 2]; uECC_word_t G[NUM_ECC_WORDS * 2];
uECC_word_t b[NUM_ECC_WORDS]; uECC_word_t b[NUM_ECC_WORDS];
void (*double_jacobian)(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * Z1, void (*double_jacobian)(uECC_word_t *X1, uECC_word_t *Y1, uECC_word_t *Z1,
uECC_Curve curve); uECC_Curve curve);
void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve); void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product); void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
}; };
/* /*
@ -130,8 +130,8 @@ struct uECC_Curve_t {
* @param Z1 IN/OUT -- z coordinate * @param Z1 IN/OUT -- z coordinate
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1, void double_jacobian_default(uECC_word_t *X1, uECC_word_t *Y1,
uECC_word_t * Z1, uECC_Curve curve); uECC_word_t *Z1, uECC_Curve curve);
/* /*
* @brief Computes x^3 + ax + b. result must not overlap x. * @brief Computes x^3 + ax + b. result must not overlap x.
@ -140,7 +140,7 @@ void double_jacobian_default(uECC_word_t * X1, uECC_word_t * Y1,
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
void x_side_default(uECC_word_t *result, const uECC_word_t *x, void x_side_default(uECC_word_t *result, const uECC_word_t *x,
uECC_Curve curve); uECC_Curve curve);
/* /*
* @brief Computes result = product % curve_p * @brief Computes result = product % curve_p
@ -154,42 +154,42 @@ void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e #define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a #define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
#define BITS_TO_WORDS(num_bits) \ #define BITS_TO_WORDS(num_bits) \
((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8)) ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8) #define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
/* definition of curve NIST p-256: */ /* definition of curve NIST p-256: */
static const struct uECC_Curve_t curve_secp256r1 = { static const struct uECC_Curve_t curve_secp256r1 = {
NUM_ECC_WORDS, NUM_ECC_WORDS,
NUM_ECC_BYTES, NUM_ECC_BYTES,
256, /* num_n_bits */ { 256, /* num_n_bits */ {
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF), BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00), BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00), BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF) BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
}, { }, {
BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3), BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC), BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF), BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF) BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
}, { }, {
BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4), BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77), BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8), BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B), BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB), BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B), BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E), BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F) BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
}, { }, {
BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B), BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65), BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3), BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A) BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
}, },
&double_jacobian_default, &double_jacobian_default,
&x_side_default, &x_side_default,
&vli_mmod_fast_secp256r1 &vli_mmod_fast_secp256r1
}; };
uECC_Curve uECC_secp256r1(void); uECC_Curve uECC_secp256r1(void);
@ -203,7 +203,7 @@ uECC_Curve uECC_secp256r1(void);
* @return a random integer in the range 0 < random < top * @return a random integer in the range 0 < random < top
*/ */
int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top, int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
wordcount_t num_words); wordcount_t num_words);
/* uECC_RNG_Function type /* uECC_RNG_Function type
@ -264,7 +264,7 @@ int uECC_curve_public_key_size(uECC_Curve curve);
* @return Returns 1 if key was computed successfully, 0 if an error occurred. * @return Returns 1 if key was computed successfully, 0 if an error occurred.
*/ */
int uECC_compute_public_key(const uint8_t *private_key, int uECC_compute_public_key(const uint8_t *private_key,
uint8_t *public_key, uECC_Curve curve); uint8_t *public_key, uECC_Curve curve);
/* /*
* @brief Compute public-key. * @brief Compute public-key.
@ -274,7 +274,7 @@ int uECC_compute_public_key(const uint8_t *private_key,
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result, uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key, uECC_Curve curve); uECC_word_t *private_key, uECC_Curve curve);
/* /*
* @brief Regularize the bitcount for the private key so that attackers cannot * @brief Regularize the bitcount for the private key so that attackers cannot
@ -285,8 +285,8 @@ uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
* @param k1 IN/OUT -- regularized k * @param k1 IN/OUT -- regularized k
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0, uECC_word_t regularize_k(const uECC_word_t *const k, uECC_word_t *k0,
uECC_word_t *k1, uECC_Curve curve); uECC_word_t *k1, uECC_Curve curve);
/* /*
* @brief Point multiplication algorithm using Montgomery's ladder with co-Z * @brief Point multiplication algorithm using Montgomery's ladder with co-Z
@ -299,9 +299,9 @@ uECC_word_t regularize_k(const uECC_word_t * const k, uECC_word_t *k0,
* @param num_bits IN -- number of bits in scalar * @param num_bits IN -- number of bits in scalar
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
void EccPoint_mult(uECC_word_t * result, const uECC_word_t * point, void EccPoint_mult(uECC_word_t *result, const uECC_word_t *point,
const uECC_word_t * scalar, const uECC_word_t * initial_Z, const uECC_word_t *scalar, const uECC_word_t *initial_Z,
bitcount_t num_bits, uECC_Curve curve); bitcount_t num_bits, uECC_Curve curve);
/* /*
* @brief Constant-time comparison to zero - secure way to compare long integers * @brief Constant-time comparison to zero - secure way to compare long integers
@ -327,7 +327,7 @@ uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
* @return the sign of left - right * @return the sign of left - right
*/ */
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right, cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief computes sign of left - right, not in constant time. * @brief computes sign of left - right, not in constant time.
@ -338,7 +338,7 @@ cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
* @return the sign of left - right * @return the sign of left - right
*/ */
cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right, cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief Computes result = (left - right) % mod. * @brief Computes result = (left - right) % mod.
@ -351,8 +351,8 @@ cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *righ
* @param num_words IN -- number of words * @param num_words IN -- number of words
*/ */
void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left, void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod, const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or * @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
@ -364,8 +364,8 @@ void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
* @param Y2 IN -- y coordinate of Q * @param Y2 IN -- y coordinate of Q
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2, void XYcZ_add(uECC_word_t *X1, uECC_word_t *Y1, uECC_word_t *X2,
uECC_word_t * Y2, uECC_Curve curve); uECC_word_t *Y2, uECC_Curve curve);
/* /*
* @brief Computes (x1 * z^2, y1 * z^3) * @brief Computes (x1 * z^2, y1 * z^3)
@ -374,8 +374,8 @@ void XYcZ_add(uECC_word_t * X1, uECC_word_t * Y1, uECC_word_t * X2,
* @param Z IN -- z value * @param Z IN -- z value
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
void apply_z(uECC_word_t * X1, uECC_word_t * Y1, const uECC_word_t * const Z, void apply_z(uECC_word_t *X1, uECC_word_t *Y1, const uECC_word_t *const Z,
uECC_Curve curve); uECC_Curve curve);
/* /*
* @brief Check if bit is set. * @brief Check if bit is set.
@ -396,7 +396,7 @@ uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
* @warning Currently only designed to work for curve_p or curve_n. * @warning Currently only designed to work for curve_p or curve_n.
*/ */
void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product, void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
const uECC_word_t *mod, wordcount_t num_words); const uECC_word_t *mod, wordcount_t num_words);
/* /*
* @brief Computes modular product (using curve->mmod_fast) * @brief Computes modular product (using curve->mmod_fast)
@ -406,7 +406,7 @@ void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
* @param curve IN -- elliptic curve * @param curve IN -- elliptic curve
*/ */
void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left, void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, uECC_Curve curve); const uECC_word_t *right, uECC_Curve curve);
/* /*
* @brief Computes result = left - right. * @brief Computes result = left - right.
@ -418,7 +418,7 @@ void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
* @return borrow * @return borrow
*/ */
uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left, uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words); const uECC_word_t *right, wordcount_t num_words);
/* /*
* @brief Constant-time comparison function(secure way to compare long ints) * @brief Constant-time comparison function(secure way to compare long ints)
@ -428,7 +428,7 @@ uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
* @return Returns 0 if left == right, 1 otherwise. * @return Returns 0 if left == right, 1 otherwise.
*/ */
uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right, uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief Computes (left * right) % mod * @brief Computes (left * right) % mod
@ -439,8 +439,8 @@ uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
* @param num_words IN -- number of words * @param num_words IN -- number of words
*/ */
void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left, void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod, const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief Computes (1 / input) % mod * @brief Computes (1 / input) % mod
@ -452,7 +452,7 @@ void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
* @param num_words -- number of words * @param num_words -- number of words
*/ */
void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input, void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
const uECC_word_t *mod, wordcount_t num_words); const uECC_word_t *mod, wordcount_t num_words);
/* /*
* @brief Sets dest = src. * @brief Sets dest = src.
@ -461,7 +461,7 @@ void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
* @param num_words IN -- number of words * @param num_words IN -- number of words
*/ */
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief Computes (left + right) % mod. * @brief Computes (left + right) % mod.
@ -474,8 +474,8 @@ void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
* @param num_words IN -- number of words * @param num_words IN -- number of words
*/ */
void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left, void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod, const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words); wordcount_t num_words);
/* /*
* @brief Counts the number of bits required to represent vli. * @brief Counts the number of bits required to represent vli.
@ -483,8 +483,8 @@ void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
* @param max_words IN -- number of words * @param max_words IN -- number of words
* @return number of bits in given vli * @return number of bits in given vli
*/ */
bitcount_t uECC_vli_numBits(const uECC_word_t *vli, bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
const wordcount_t max_words); const wordcount_t max_words);
/* /*
* @brief Erases (set to 0) vli * @brief Erases (set to 0) vli
@ -520,14 +520,14 @@ int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
*/ */
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve); int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
/* /*
* @brief Converts an integer in uECC native format to big-endian bytes. * @brief Converts an integer in uECC native format to big-endian bytes.
* @param bytes OUT -- bytes representation * @param bytes OUT -- bytes representation
* @param num_bytes IN -- number of bytes * @param num_bytes IN -- number of bytes
* @param native IN -- uECC native representation * @param native IN -- uECC native representation
*/ */
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes, void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
const unsigned int *native); const unsigned int *native);
/* /*
* @brief Converts big-endian bytes to an integer in uECC native format. * @brief Converts big-endian bytes to an integer in uECC native format.
@ -536,7 +536,7 @@ void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
* @param num_bytes IN -- number of bytes * @param num_bytes IN -- number of bytes
*/ */
void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes, void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
int num_bytes); int num_bytes);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -102,7 +102,7 @@ int uECC_make_key(uint8_t *p_public_key, uint8_t *p_private_key, uECC_Curve curv
* uECC_make_key() function for real applications. * uECC_make_key() function for real applications.
*/ */
int uECC_make_key_with_d(uint8_t *p_public_key, uint8_t *p_private_key, int uECC_make_key_with_d(uint8_t *p_public_key, uint8_t *p_private_key,
unsigned int *d, uECC_Curve curve); unsigned int *d, uECC_Curve curve);
#endif #endif
/** /**
@ -122,7 +122,7 @@ int uECC_make_key_with_d(uint8_t *p_public_key, uint8_t *p_private_key,
* order to produce a cryptographically secure symmetric key. * order to produce a cryptographically secure symmetric key.
*/ */
int uECC_shared_secret(const uint8_t *p_public_key, const uint8_t *p_private_key, int uECC_shared_secret(const uint8_t *p_public_key, const uint8_t *p_private_key,
uint8_t *p_secret, uECC_Curve curve); uint8_t *p_secret, uECC_Curve curve);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -103,7 +103,7 @@ extern "C" {
* attack. * attack.
*/ */
int uECC_sign(const uint8_t *p_private_key, const uint8_t *p_message_hash, int uECC_sign(const uint8_t *p_private_key, const uint8_t *p_message_hash,
unsigned p_hash_size, uint8_t *p_signature, uECC_Curve curve); unsigned p_hash_size, uint8_t *p_signature, uECC_Curve curve);
#ifdef ENABLE_TESTS #ifdef ENABLE_TESTS
/* /*
@ -111,14 +111,14 @@ int uECC_sign(const uint8_t *p_private_key, const uint8_t *p_message_hash,
* Refer to uECC_sign() function for real applications. * Refer to uECC_sign() function for real applications.
*/ */
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash, int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned int hash_size, uECC_word_t *k, uint8_t *signature, unsigned int hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve); uECC_Curve curve);
#endif #endif
/** /**
* @brief Verify an ECDSA signature. * @brief Verify an ECDSA signature.
* @return returns TC_SUCCESS (1) if the signature is valid * @return returns TC_SUCCESS (1) if the signature is valid
* returns TC_FAIL (0) if the signature is invalid. * returns TC_FAIL (0) if the signature is invalid.
* *
* @param p_public_key IN -- The signer's public key. * @param p_public_key IN -- The signer's public key.
* @param p_message_hash IN -- The hash of the signed data. * @param p_message_hash IN -- The hash of the signed data.
@ -130,7 +130,7 @@ int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
* the signature values (hash_size and signature). * the signature values (hash_size and signature).
*/ */
int uECC_verify(const uint8_t *p_public_key, const uint8_t *p_message_hash, int uECC_verify(const uint8_t *p_public_key, const uint8_t *p_message_hash,
unsigned int p_hash_size, const uint8_t *p_signature, uECC_Curve curve); unsigned int p_hash_size, const uint8_t *p_signature, uECC_Curve curve);
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -70,10 +70,10 @@ extern "C" {
#endif #endif
struct tc_hmac_state_struct { struct tc_hmac_state_struct {
/* the internal state required by h */ /* the internal state required by h */
struct tc_sha256_state_struct hash_state; struct tc_sha256_state_struct hash_state;
/* HMAC key schedule */ /* HMAC key schedule */
uint8_t key[2*TC_SHA256_BLOCK_SIZE]; uint8_t key[2 * TC_SHA256_BLOCK_SIZE];
}; };
typedef struct tc_hmac_state_struct *TCHmacState_t; typedef struct tc_hmac_state_struct *TCHmacState_t;
@ -90,7 +90,7 @@ typedef struct tc_hmac_state_struct *TCHmacState_t;
* @param key_size IN -- the HMAC key size * @param key_size IN -- the HMAC key size
*/ */
int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key, int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key,
unsigned int key_size); unsigned int key_size);
/** /**
* @brief HMAC init procedure * @brief HMAC init procedure
@ -112,7 +112,7 @@ int tc_hmac_init(TCHmacState_t ctx);
* @param data_length IN -- size of data in bytes * @param data_length IN -- size of data in bytes
*/ */
int tc_hmac_update(TCHmacState_t ctx, const void *data, int tc_hmac_update(TCHmacState_t ctx, const void *data,
unsigned int data_length); unsigned int data_length);
/** /**
* @brief HMAC final procedure * @brief HMAC final procedure

View file

@ -78,14 +78,14 @@ extern "C" {
#define TC_HMAC_PRNG_RESEED_REQ -1 #define TC_HMAC_PRNG_RESEED_REQ -1
struct tc_hmac_prng_struct { struct tc_hmac_prng_struct {
/* the HMAC instance for this PRNG */ /* the HMAC instance for this PRNG */
struct tc_hmac_state_struct h; struct tc_hmac_state_struct h;
/* the PRNG key */ /* the PRNG key */
uint8_t key[TC_SHA256_DIGEST_SIZE]; uint8_t key[TC_SHA256_DIGEST_SIZE];
/* PRNG state */ /* PRNG state */
uint8_t v[TC_SHA256_DIGEST_SIZE]; uint8_t v[TC_SHA256_DIGEST_SIZE];
/* calls to tc_hmac_prng_generate left before re-seed */ /* calls to tc_hmac_prng_generate left before re-seed */
unsigned int countdown; unsigned int countdown;
}; };
typedef struct tc_hmac_prng_struct *TCHmacPrng_t; typedef struct tc_hmac_prng_struct *TCHmacPrng_t;
@ -113,14 +113,14 @@ typedef struct tc_hmac_prng_struct *TCHmacPrng_t;
* @param plen IN -- personalization length in bytes * @param plen IN -- personalization length in bytes
*/ */
int tc_hmac_prng_init(TCHmacPrng_t prng, int tc_hmac_prng_init(TCHmacPrng_t prng,
const uint8_t *personalization, const uint8_t *personalization,
unsigned int plen); unsigned int plen);
/** /**
* @brief HMAC-PRNG reseed procedure * @brief HMAC-PRNG reseed procedure
* Mixes seed into prng, enables tc_hmac_prng_generate * Mixes seed into prng, enables tc_hmac_prng_generate
* @return returns TC_CRYPTO_SUCCESS (1) * @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: * returns TC_CRYPTO_FAIL (0) if:
* prng == NULL, * prng == NULL,
* seed == NULL, * seed == NULL,
* seedlen < MIN_SLEN, * seedlen < MIN_SLEN,
@ -137,8 +137,8 @@ int tc_hmac_prng_init(TCHmacPrng_t prng,
* @param additionallen IN -- additional input length in bytes * @param additionallen IN -- additional input length in bytes
*/ */
int tc_hmac_prng_reseed(TCHmacPrng_t prng, const uint8_t *seed, int tc_hmac_prng_reseed(TCHmacPrng_t prng, const uint8_t *seed,
unsigned int seedlen, const uint8_t *additional_input, unsigned int seedlen, const uint8_t *additional_input,
unsigned int additionallen); unsigned int additionallen);
/** /**
* @brief HMAC-PRNG generate procedure * @brief HMAC-PRNG generate procedure

View file

@ -69,10 +69,10 @@ extern "C" {
#define TC_SHA256_STATE_BLOCKS (TC_SHA256_DIGEST_SIZE/4) #define TC_SHA256_STATE_BLOCKS (TC_SHA256_DIGEST_SIZE/4)
struct tc_sha256_state_struct { struct tc_sha256_state_struct {
unsigned int iv[TC_SHA256_STATE_BLOCKS]; unsigned int iv[TC_SHA256_STATE_BLOCKS];
uint64_t bits_hashed; uint64_t bits_hashed;
uint8_t leftover[TC_SHA256_BLOCK_SIZE]; uint8_t leftover[TC_SHA256_BLOCK_SIZE];
size_t leftover_offset; size_t leftover_offset;
}; };
typedef struct tc_sha256_state_struct *TCSha256State_t; typedef struct tc_sha256_state_struct *TCSha256State_t;

View file

@ -59,7 +59,7 @@ extern "C" {
* @param from_len IN -- length of origin buffer * @param from_len IN -- length of origin buffer
*/ */
unsigned int _copy(uint8_t *to, unsigned int to_len, unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len); const uint8_t *from, unsigned int from_len);
/** /**
* @brief Set the value 'val' into the buffer 'to', 'len' times. * @brief Set the value 'val' into the buffer 'to', 'len' times.
@ -88,9 +88,9 @@ extern void _set_secure(void *to, uint8_t val, unsigned int len);
#else /* ! TINYCRYPT_ARCH_HAS_SET_SECURE */ #else /* ! TINYCRYPT_ARCH_HAS_SET_SECURE */
static inline void _set_secure(void *to, uint8_t val, unsigned int len) static inline void _set_secure(void *to, uint8_t val, unsigned int len)
{ {
(void) memset(to, val, len); (void) memset(to, val, len);
#ifdef __GNUC__ #ifdef __GNUC__
__asm__ __volatile__("" :: "g"(to) : "memory"); __asm__ __volatile__("" :: "g"(to) : "memory");
#endif /* __GNUC__ */ #endif /* __GNUC__ */
} }
#endif /* TINYCRYPT_ARCH_HAS_SET_SECURE */ #endif /* TINYCRYPT_ARCH_HAS_SET_SECURE */

View file

@ -35,33 +35,33 @@
#include <tinycrypt/utils.h> #include <tinycrypt/utils.h>
static const uint8_t inv_sbox[256] = { static const uint8_t inv_sbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0c, 0x7d 0x55, 0x21, 0x0c, 0x7d
}; };
int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k) int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k)
{ {
return tc_aes128_set_encrypt_key(s, k); return tc_aes128_set_encrypt_key(s, k);
} }
#define mult8(a)(_double_byte(_double_byte(_double_byte(a)))) #define mult8(a)(_double_byte(_double_byte(_double_byte(a))))
@ -72,42 +72,42 @@ int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k)
static inline void mult_row_column(uint8_t *out, const uint8_t *in) static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{ {
out[0] = multe(in[0]) ^ multb(in[1]) ^ multd(in[2]) ^ mult9(in[3]); out[0] = multe(in[0]) ^ multb(in[1]) ^ multd(in[2]) ^ mult9(in[3]);
out[1] = mult9(in[0]) ^ multe(in[1]) ^ multb(in[2]) ^ multd(in[3]); out[1] = mult9(in[0]) ^ multe(in[1]) ^ multb(in[2]) ^ multd(in[3]);
out[2] = multd(in[0]) ^ mult9(in[1]) ^ multe(in[2]) ^ multb(in[3]); out[2] = multd(in[0]) ^ mult9(in[1]) ^ multe(in[2]) ^ multb(in[3]);
out[3] = multb(in[0]) ^ multd(in[1]) ^ mult9(in[2]) ^ multe(in[3]); out[3] = multb(in[0]) ^ multd(in[1]) ^ mult9(in[2]) ^ multe(in[3]);
} }
static inline void inv_mix_columns(uint8_t *s) static inline void inv_mix_columns(uint8_t *s)
{ {
uint8_t t[Nb*Nk]; uint8_t t[Nb * Nk];
mult_row_column(t, s); mult_row_column(t, s);
mult_row_column(&t[Nb], s+Nb); mult_row_column(&t[Nb], s + Nb);
mult_row_column(&t[2*Nb], s+(2*Nb)); mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3*Nb], s+(3*Nb)); mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void)_copy(s, sizeof(t), t, sizeof(t)); (void)_copy(s, sizeof(t), t, sizeof(t));
} }
static inline void add_round_key(uint8_t *s, const unsigned int *k) static inline void add_round_key(uint8_t *s, const unsigned int *k)
{ {
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16); s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]); s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16); s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]); s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16); s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]); s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16); s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]); s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
} }
static inline void inv_sub_bytes(uint8_t *s) static inline void inv_sub_bytes(uint8_t *s)
{ {
unsigned int i; unsigned int i;
for (i = 0; i < (Nb*Nk); ++i) { for (i = 0; i < (Nb * Nk); ++i) {
s[i] = inv_sbox[s[i]]; s[i] = inv_sbox[s[i]];
} }
} }
/* /*
@ -117,48 +117,48 @@ static inline void inv_sub_bytes(uint8_t *s)
*/ */
static inline void inv_shift_rows(uint8_t *s) static inline void inv_shift_rows(uint8_t *s)
{ {
uint8_t t[Nb*Nk]; uint8_t t[Nb * Nk];
t[0] = s[0]; t[1] = s[13]; t[2] = s[10]; t[3] = s[7]; t[0] = s[0]; t[1] = s[13]; t[2] = s[10]; t[3] = s[7];
t[4] = s[4]; t[5] = s[1]; t[6] = s[14]; t[7] = s[11]; t[4] = s[4]; t[5] = s[1]; t[6] = s[14]; t[7] = s[11];
t[8] = s[8]; t[9] = s[5]; t[10] = s[2]; t[11] = s[15]; t[8] = s[8]; t[9] = s[5]; t[10] = s[2]; t[11] = s[15];
t[12] = s[12]; t[13] = s[9]; t[14] = s[6]; t[15] = s[3]; t[12] = s[12]; t[13] = s[9]; t[14] = s[6]; t[15] = s[3];
(void)_copy(s, sizeof(t), t, sizeof(t)); (void)_copy(s, sizeof(t), t, sizeof(t));
} }
int tc_aes_decrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s) int tc_aes_decrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{ {
uint8_t state[Nk*Nb]; uint8_t state[Nk * Nb];
unsigned int i; unsigned int i;
if (out == (uint8_t *) 0) { if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) { } else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) { } else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
(void)_copy(state, sizeof(state), in, sizeof(state)); (void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words + Nb*Nr); add_round_key(state, s->words + Nb * Nr);
for (i = Nr - 1; i > 0; --i) { for (i = Nr - 1; i > 0; --i) {
inv_shift_rows(state); inv_shift_rows(state);
inv_sub_bytes(state); inv_sub_bytes(state);
add_round_key(state, s->words + Nb*i); add_round_key(state, s->words + Nb * i);
inv_mix_columns(state); inv_mix_columns(state);
} }
inv_shift_rows(state); inv_shift_rows(state);
inv_sub_bytes(state); inv_sub_bytes(state);
add_round_key(state, s->words); add_round_key(state, s->words);
(void)_copy(out, sizeof(state), state, sizeof(state)); (void)_copy(out, sizeof(state), state, sizeof(state));
/*zeroing out the state buffer */ /*zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state)); _set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -35,33 +35,33 @@
#include <tinycrypt/constants.h> #include <tinycrypt/constants.h>
static const uint8_t sbox[256] = { static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16 0xb0, 0x54, 0xbb, 0x16
}; };
static inline unsigned int rotword(unsigned int a) static inline unsigned int rotword(unsigned int a)
{ {
return (((a) >> 24)|((a) << 8)); return (((a) >> 24) | ((a) << 8));
} }
#define subbyte(a, o)(sbox[((a) >> (o))&0xff] << (o)) #define subbyte(a, o)(sbox[((a) >> (o))&0xff] << (o))
@ -69,75 +69,75 @@ static inline unsigned int rotword(unsigned int a)
int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k) int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k)
{ {
const unsigned int rconst[11] = { const unsigned int rconst[11] = {
0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000
}; };
unsigned int i; unsigned int i;
unsigned int t; unsigned int t;
if (s == (TCAesKeySched_t) 0) { if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (k == (const uint8_t *) 0) { } else if (k == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
for (i = 0; i < Nk; ++i) { for (i = 0; i < Nk; ++i) {
s->words[i] = (k[Nb*i]<<24) | (k[Nb*i+1]<<16) | s->words[i] = (k[Nb * i] << 24) | (k[Nb * i + 1] << 16) |
(k[Nb*i+2]<<8) | (k[Nb*i+3]); (k[Nb * i + 2] << 8) | (k[Nb * i + 3]);
} }
for (; i < (Nb * (Nr + 1)); ++i) { for (; i < (Nb * (Nr + 1)); ++i) {
t = s->words[i-1]; t = s->words[i - 1];
if ((i % Nk) == 0) { if ((i % Nk) == 0) {
t = subword(rotword(t)) ^ rconst[i/Nk]; t = subword(rotword(t)) ^ rconst[i / Nk];
} }
s->words[i] = s->words[i-Nk] ^ t; s->words[i] = s->words[i - Nk] ^ t;
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
static inline void add_round_key(uint8_t *s, const unsigned int *k) static inline void add_round_key(uint8_t *s, const unsigned int *k)
{ {
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16); s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]); s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16); s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]); s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16); s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]); s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16); s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]); s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
} }
static inline void sub_bytes(uint8_t *s) static inline void sub_bytes(uint8_t *s)
{ {
unsigned int i; unsigned int i;
for (i = 0; i < (Nb * Nk); ++i) { for (i = 0; i < (Nb * Nk); ++i) {
s[i] = sbox[s[i]]; s[i] = sbox[s[i]];
} }
} }
#define triple(a)(_double_byte(a)^(a)) #define triple(a)(_double_byte(a)^(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in) static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{ {
out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3]; out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3];
out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3]; out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3];
out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]); out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]);
out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]); out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]);
} }
static inline void mix_columns(uint8_t *s) static inline void mix_columns(uint8_t *s)
{ {
uint8_t t[Nb*Nk]; uint8_t t[Nb * Nk];
mult_row_column(t, s); mult_row_column(t, s);
mult_row_column(&t[Nb], s+Nb); mult_row_column(&t[Nb], s + Nb);
mult_row_column(&t[2 * Nb], s + (2 * Nb)); mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3 * Nb], s + (3 * Nb)); mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void) _copy(s, sizeof(t), t, sizeof(t)); (void) _copy(s, sizeof(t), t, sizeof(t));
} }
/* /*
@ -146,46 +146,46 @@ static inline void mix_columns(uint8_t *s)
*/ */
static inline void shift_rows(uint8_t *s) static inline void shift_rows(uint8_t *s)
{ {
uint8_t t[Nb * Nk]; uint8_t t[Nb * Nk];
t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15]; t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15];
t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3]; t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3];
t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7]; t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7];
t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11]; t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11];
(void) _copy(s, sizeof(t), t, sizeof(t)); (void) _copy(s, sizeof(t), t, sizeof(t));
} }
int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s) int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{ {
uint8_t state[Nk*Nb]; uint8_t state[Nk * Nb];
unsigned int i; unsigned int i;
if (out == (uint8_t *) 0) { if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) { } else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) { } else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
(void)_copy(state, sizeof(state), in, sizeof(state)); (void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words); add_round_key(state, s->words);
for (i = 0; i < (Nr - 1); ++i) { for (i = 0; i < (Nr - 1); ++i) {
sub_bytes(state); sub_bytes(state);
shift_rows(state); shift_rows(state);
mix_columns(state); mix_columns(state);
add_round_key(state, s->words + Nb*(i+1)); add_round_key(state, s->words + Nb * (i + 1));
} }
sub_bytes(state); sub_bytes(state);
shift_rows(state); shift_rows(state);
add_round_key(state, s->words + Nb*(i+1)); add_round_key(state, s->words + Nb * (i + 1));
(void)_copy(out, sizeof(state), state, sizeof(state)); (void)_copy(out, sizeof(state), state, sizeof(state));
/* zeroing out the state buffer */ /* zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state)); _set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -35,80 +35,80 @@
#include <tinycrypt/utils.h> #include <tinycrypt/utils.h>
int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in, int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv, unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched) const TCAesKeySched_t sched)
{ {
uint8_t buffer[TC_AES_BLOCK_SIZE]; uint8_t buffer[TC_AES_BLOCK_SIZE];
unsigned int n, m; unsigned int n, m;
/* input sanity check: */ /* input sanity check: */
if (out == (uint8_t *) 0 || if (out == (uint8_t *) 0 ||
in == (const uint8_t *) 0 || in == (const uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 || sched == (TCAesKeySched_t) 0 ||
inlen == 0 || inlen == 0 ||
outlen == 0 || outlen == 0 ||
(inlen % TC_AES_BLOCK_SIZE) != 0 || (inlen % TC_AES_BLOCK_SIZE) != 0 ||
(outlen % TC_AES_BLOCK_SIZE) != 0 || (outlen % TC_AES_BLOCK_SIZE) != 0 ||
outlen != inlen + TC_AES_BLOCK_SIZE) { outlen != inlen + TC_AES_BLOCK_SIZE) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* copy iv to the buffer */ /* copy iv to the buffer */
(void)_copy(buffer, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE); (void)_copy(buffer, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE);
/* copy iv to the output buffer */ /* copy iv to the output buffer */
(void)_copy(out, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE); (void)_copy(out, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE);
out += TC_AES_BLOCK_SIZE; out += TC_AES_BLOCK_SIZE;
for (n = m = 0; n < inlen; ++n) { for (n = m = 0; n < inlen; ++n) {
buffer[m++] ^= *in++; buffer[m++] ^= *in++;
if (m == TC_AES_BLOCK_SIZE) { if (m == TC_AES_BLOCK_SIZE) {
(void)tc_aes_encrypt(buffer, buffer, sched); (void)tc_aes_encrypt(buffer, buffer, sched);
(void)_copy(out, TC_AES_BLOCK_SIZE, (void)_copy(out, TC_AES_BLOCK_SIZE,
buffer, TC_AES_BLOCK_SIZE); buffer, TC_AES_BLOCK_SIZE);
out += TC_AES_BLOCK_SIZE; out += TC_AES_BLOCK_SIZE;
m = 0; m = 0;
} }
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in, int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv, unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched) const TCAesKeySched_t sched)
{ {
uint8_t buffer[TC_AES_BLOCK_SIZE]; uint8_t buffer[TC_AES_BLOCK_SIZE];
const uint8_t *p; const uint8_t *p;
unsigned int n, m; unsigned int n, m;
/* sanity check the inputs */ /* sanity check the inputs */
if (out == (uint8_t *) 0 || if (out == (uint8_t *) 0 ||
in == (const uint8_t *) 0 || in == (const uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 || sched == (TCAesKeySched_t) 0 ||
inlen == 0 || inlen == 0 ||
outlen == 0 || outlen == 0 ||
(inlen % TC_AES_BLOCK_SIZE) != 0 || (inlen % TC_AES_BLOCK_SIZE) != 0 ||
(outlen % TC_AES_BLOCK_SIZE) != 0 || (outlen % TC_AES_BLOCK_SIZE) != 0 ||
outlen != inlen) { outlen != inlen) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* /*
* Note that in == iv + ciphertext, i.e. the iv and the ciphertext are * Note that in == iv + ciphertext, i.e. the iv and the ciphertext are
* contiguous. This allows for a very efficient decryption algorithm * contiguous. This allows for a very efficient decryption algorithm
* that would not otherwise be possible. * that would not otherwise be possible.
*/ */
p = iv; p = iv;
for (n = m = 0; n < outlen; ++n) { for (n = m = 0; n < outlen; ++n) {
if ((n % TC_AES_BLOCK_SIZE) == 0) { if ((n % TC_AES_BLOCK_SIZE) == 0) {
(void)tc_aes_decrypt(buffer, in, sched); (void)tc_aes_decrypt(buffer, in, sched);
in += TC_AES_BLOCK_SIZE; in += TC_AES_BLOCK_SIZE;
m = 0; m = 0;
} }
*out++ = buffer[m++] ^ *p++; *out++ = buffer[m++] ^ *p++;
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -37,50 +37,50 @@
#include <stdio.h> #include <stdio.h>
int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce, int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
unsigned int nlen, unsigned int mlen) unsigned int nlen, unsigned int mlen)
{ {
/* input sanity check: */ /* input sanity check: */
if (c == (TCCcmMode_t) 0 || if (c == (TCCcmMode_t) 0 ||
sched == (TCAesKeySched_t) 0 || sched == (TCAesKeySched_t) 0 ||
nonce == (uint8_t *) 0) { nonce == (uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (nlen != 13) { } else if (nlen != 13) {
return TC_CRYPTO_FAIL; /* The allowed nonce size is: 13. See documentation.*/ return TC_CRYPTO_FAIL; /* The allowed nonce size is: 13. See documentation.*/
} else if ((mlen < 4) || (mlen > 16) || (mlen & 1)) { } else if ((mlen < 4) || (mlen > 16) || (mlen & 1)) {
return TC_CRYPTO_FAIL; /* The allowed mac sizes are: 4, 6, 8, 10, 12, 14, 16.*/ return TC_CRYPTO_FAIL; /* The allowed mac sizes are: 4, 6, 8, 10, 12, 14, 16.*/
} }
c->mlen = mlen; c->mlen = mlen;
c->sched = sched; c->sched = sched;
c->nonce = nonce; c->nonce = nonce;
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
/** /**
* Variation of CBC-MAC mode used in CCM. * Variation of CBC-MAC mode used in CCM.
*/ */
static void ccm_cbc_mac(uint8_t *T, const uint8_t *data, unsigned int dlen, static void ccm_cbc_mac(uint8_t *T, const uint8_t *data, unsigned int dlen,
unsigned int flag, TCAesKeySched_t sched) unsigned int flag, TCAesKeySched_t sched)
{ {
unsigned int i; unsigned int i;
if (flag > 0) { if (flag > 0) {
T[0] ^= (uint8_t)(dlen >> 8); T[0] ^= (uint8_t)(dlen >> 8);
T[1] ^= (uint8_t)(dlen); T[1] ^= (uint8_t)(dlen);
dlen += 2; i = 2; dlen += 2; i = 2;
} else { } else {
i = 0; i = 0;
} }
while (i < dlen) { while (i < dlen) {
T[i++ % (Nb * Nk)] ^= *data++; T[i++ % (Nb * Nk)] ^= *data++;
if (((i % (Nb * Nk)) == 0) || dlen == i) { if (((i % (Nb * Nk)) == 0) || dlen == i) {
(void) tc_aes_encrypt(T, T, sched); (void) tc_aes_encrypt(T, T, sched);
} }
} }
} }
/** /**
@ -91,176 +91,176 @@ static void ccm_cbc_mac(uint8_t *T, const uint8_t *data, unsigned int dlen,
* 2 bytes of the nonce. * 2 bytes of the nonce.
*/ */
static int ccm_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in, static int ccm_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched) unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched)
{ {
uint8_t buffer[TC_AES_BLOCK_SIZE]; uint8_t buffer[TC_AES_BLOCK_SIZE];
uint8_t nonce[TC_AES_BLOCK_SIZE]; uint8_t nonce[TC_AES_BLOCK_SIZE];
uint16_t block_num; uint16_t block_num;
unsigned int i; unsigned int i;
/* input sanity check: */ /* input sanity check: */
if (out == (uint8_t *) 0 || if (out == (uint8_t *) 0 ||
in == (uint8_t *) 0 || in == (uint8_t *) 0 ||
ctr == (uint8_t *) 0 || ctr == (uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 || sched == (TCAesKeySched_t) 0 ||
inlen == 0 || inlen == 0 ||
outlen == 0 || outlen == 0 ||
outlen != inlen) { outlen != inlen) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* copy the counter to the nonce */ /* copy the counter to the nonce */
(void) _copy(nonce, sizeof(nonce), ctr, sizeof(nonce)); (void) _copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
/* select the last 2 bytes of the nonce to be incremented */ /* select the last 2 bytes of the nonce to be incremented */
block_num = (uint16_t) ((nonce[14] << 8)|(nonce[15])); block_num = (uint16_t) ((nonce[14] << 8) | (nonce[15]));
for (i = 0; i < inlen; ++i) { for (i = 0; i < inlen; ++i) {
if ((i % (TC_AES_BLOCK_SIZE)) == 0) { if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
block_num++; block_num++;
nonce[14] = (uint8_t)(block_num >> 8); nonce[14] = (uint8_t)(block_num >> 8);
nonce[15] = (uint8_t)(block_num); nonce[15] = (uint8_t)(block_num);
if (!tc_aes_encrypt(buffer, nonce, sched)) { if (!tc_aes_encrypt(buffer, nonce, sched)) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
} }
/* update the output */ /* update the output */
*out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++; *out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++;
} }
/* update the counter */ /* update the counter */
ctr[14] = nonce[14]; ctr[15] = nonce[15]; ctr[14] = nonce[14]; ctr[15] = nonce[15];
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen, int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen,
const uint8_t *associated_data, const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload, unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c) unsigned int plen, TCCcmMode_t c)
{ {
/* input sanity check: */ /* input sanity check: */
if ((out == (uint8_t *) 0) || if ((out == (uint8_t *) 0) ||
(c == (TCCcmMode_t) 0) || (c == (TCCcmMode_t) 0) ||
((plen > 0) && (payload == (uint8_t *) 0)) || ((plen > 0) && (payload == (uint8_t *) 0)) ||
((alen > 0) && (associated_data == (uint8_t *) 0)) || ((alen > 0) && (associated_data == (uint8_t *) 0)) ||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */ (alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
(plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */ (plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */
(olen < (plen + c->mlen))) { /* invalid output buffer size */ (olen < (plen + c->mlen))) { /* invalid output buffer size */
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
uint8_t b[Nb * Nk]; uint8_t b[Nb * Nk];
uint8_t tag[Nb * Nk]; uint8_t tag[Nb * Nk];
unsigned int i; unsigned int i;
/* GENERATING THE AUTHENTICATION TAG: */ /* GENERATING THE AUTHENTICATION TAG: */
/* formatting the sequence b for authentication: */ /* formatting the sequence b for authentication: */
b[0] = ((alen > 0) ? 0x40:0) | (((c->mlen - 2) / 2 << 3)) | (1); b[0] = ((alen > 0) ? 0x40 : 0) | (((c->mlen - 2) / 2 << 3)) | (1);
for (i = 1; i <= 13; ++i) { for (i = 1; i <= 13; ++i) {
b[i] = c->nonce[i - 1]; b[i] = c->nonce[i - 1];
} }
b[14] = (uint8_t)(plen >> 8); b[14] = (uint8_t)(plen >> 8);
b[15] = (uint8_t)(plen); b[15] = (uint8_t)(plen);
/* computing the authentication tag using cbc-mac: */ /* computing the authentication tag using cbc-mac: */
(void) tc_aes_encrypt(tag, b, c->sched); (void) tc_aes_encrypt(tag, b, c->sched);
if (alen > 0) { if (alen > 0) {
ccm_cbc_mac(tag, associated_data, alen, 1, c->sched); ccm_cbc_mac(tag, associated_data, alen, 1, c->sched);
} }
if (plen > 0) { if (plen > 0) {
ccm_cbc_mac(tag, payload, plen, 0, c->sched); ccm_cbc_mac(tag, payload, plen, 0, c->sched);
} }
/* ENCRYPTION: */ /* ENCRYPTION: */
/* formatting the sequence b for encryption: */ /* formatting the sequence b for encryption: */
b[0] = 1; /* q - 1 = 2 - 1 = 1 */ b[0] = 1; /* q - 1 = 2 - 1 = 1 */
b[14] = b[15] = TC_ZERO_BYTE; b[14] = b[15] = TC_ZERO_BYTE;
/* encrypting payload using ctr mode: */ /* encrypting payload using ctr mode: */
ccm_ctr_mode(out, plen, payload, plen, b, c->sched); ccm_ctr_mode(out, plen, payload, plen, b, c->sched);
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter for ctr_mode (0):*/ b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter for ctr_mode (0):*/
/* encrypting b and adding the tag to the output: */ /* encrypting b and adding the tag to the output: */
(void) tc_aes_encrypt(b, b, c->sched); (void) tc_aes_encrypt(b, b, c->sched);
out += plen; out += plen;
for (i = 0; i < c->mlen; ++i) { for (i = 0; i < c->mlen; ++i) {
*out++ = tag[i] ^ b[i]; *out++ = tag[i] ^ b[i];
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen, int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen,
const uint8_t *associated_data, const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload, unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c) unsigned int plen, TCCcmMode_t c)
{ {
/* input sanity check: */ /* input sanity check: */
if ((out == (uint8_t *) 0) || if ((out == (uint8_t *) 0) ||
(c == (TCCcmMode_t) 0) || (c == (TCCcmMode_t) 0) ||
((plen > 0) && (payload == (uint8_t *) 0)) || ((plen > 0) && (payload == (uint8_t *) 0)) ||
((alen > 0) && (associated_data == (uint8_t *) 0)) || ((alen > 0) && (associated_data == (uint8_t *) 0)) ||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */ (alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
(plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */ (plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */
(olen < plen - c->mlen)) { /* invalid output buffer size */ (olen < plen - c->mlen)) { /* invalid output buffer size */
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
uint8_t b[Nb * Nk]; uint8_t b[Nb * Nk];
uint8_t tag[Nb * Nk]; uint8_t tag[Nb * Nk];
unsigned int i; unsigned int i;
/* DECRYPTION: */ /* DECRYPTION: */
/* formatting the sequence b for decryption: */ /* formatting the sequence b for decryption: */
b[0] = 1; /* q - 1 = 2 - 1 = 1 */ b[0] = 1; /* q - 1 = 2 - 1 = 1 */
for (i = 1; i < 14; ++i) { for (i = 1; i < 14; ++i) {
b[i] = c->nonce[i - 1]; b[i] = c->nonce[i - 1];
} }
b[14] = b[15] = TC_ZERO_BYTE; /* initial counter value is 0 */ b[14] = b[15] = TC_ZERO_BYTE; /* initial counter value is 0 */
/* decrypting payload using ctr mode: */ /* decrypting payload using ctr mode: */
ccm_ctr_mode(out, plen - c->mlen, payload, plen - c->mlen, b, c->sched); ccm_ctr_mode(out, plen - c->mlen, payload, plen - c->mlen, b, c->sched);
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter value (0) */ b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter value (0) */
/* encrypting b and restoring the tag from input: */ /* encrypting b and restoring the tag from input: */
(void) tc_aes_encrypt(b, b, c->sched); (void) tc_aes_encrypt(b, b, c->sched);
for (i = 0; i < c->mlen; ++i) { for (i = 0; i < c->mlen; ++i) {
tag[i] = *(payload + plen - c->mlen + i) ^ b[i]; tag[i] = *(payload + plen - c->mlen + i) ^ b[i];
} }
/* VERIFYING THE AUTHENTICATION TAG: */ /* VERIFYING THE AUTHENTICATION TAG: */
/* formatting the sequence b for authentication: */ /* formatting the sequence b for authentication: */
b[0] = ((alen > 0) ? 0x40:0)|(((c->mlen - 2) / 2 << 3)) | (1); b[0] = ((alen > 0) ? 0x40 : 0) | (((c->mlen - 2) / 2 << 3)) | (1);
for (i = 1; i < 14; ++i) { for (i = 1; i < 14; ++i) {
b[i] = c->nonce[i - 1]; b[i] = c->nonce[i - 1];
} }
b[14] = (uint8_t)((plen - c->mlen) >> 8); b[14] = (uint8_t)((plen - c->mlen) >> 8);
b[15] = (uint8_t)(plen - c->mlen); b[15] = (uint8_t)(plen - c->mlen);
/* computing the authentication tag using cbc-mac: */ /* computing the authentication tag using cbc-mac: */
(void) tc_aes_encrypt(b, b, c->sched); (void) tc_aes_encrypt(b, b, c->sched);
if (alen > 0) { if (alen > 0) {
ccm_cbc_mac(b, associated_data, alen, 1, c->sched); ccm_cbc_mac(b, associated_data, alen, 1, c->sched);
} }
if (plen > 0) { if (plen > 0) {
ccm_cbc_mac(b, out, plen - c->mlen, 0, c->sched); ccm_cbc_mac(b, out, plen - c->mlen, 0, c->sched);
} }
/* comparing the received tag and the computed one: */ /* comparing the received tag and the computed one: */
if (_compare(b, tag, c->mlen) == 0) { if (_compare(b, tag, c->mlen) == 0) {
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} else { } else {
/* erase the decrypted buffer in case of mac validation failure: */ /* erase the decrypted buffer in case of mac validation failure: */
_set(out, 0, plen - c->mlen); _set(out, 0, plen - c->mlen);
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
} }

View file

@ -78,177 +78,177 @@ const unsigned char gf_wrap = 0x87;
void gf_double(uint8_t *out, uint8_t *in) void gf_double(uint8_t *out, uint8_t *in)
{ {
/* start with low order byte */ /* start with low order byte */
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1); uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */ /* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0; uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
out += (TC_AES_BLOCK_SIZE - 1); out += (TC_AES_BLOCK_SIZE - 1);
for (;;) { for (;;) {
*out-- = (*x << 1) ^ carry; *out-- = (*x << 1) ^ carry;
if (x == in) { if (x == in) {
break; break;
} }
carry = *x-- >> 7; carry = *x-- >> 7;
} }
} }
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched) int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
{ {
/* input sanity check: */ /* input sanity check: */
if (s == (TCCmacState_t) 0 || if (s == (TCCmacState_t) 0 ||
key == (const uint8_t *) 0) { key == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* put s into a known state */ /* put s into a known state */
_set(s, 0, sizeof(*s)); _set(s, 0, sizeof(*s));
s->sched = sched; s->sched = sched;
/* configure the encryption key used by the underlying block cipher */ /* configure the encryption key used by the underlying block cipher */
tc_aes128_set_encrypt_key(s->sched, key); tc_aes128_set_encrypt_key(s->sched, key);
/* compute s->K1 and s->K2 from s->iv using s->keyid */ /* compute s->K1 and s->K2 from s->iv using s->keyid */
_set(s->iv, 0, TC_AES_BLOCK_SIZE); _set(s->iv, 0, TC_AES_BLOCK_SIZE);
tc_aes_encrypt(s->iv, s->iv, s->sched); tc_aes_encrypt(s->iv, s->iv, s->sched);
gf_double (s->K1, s->iv); gf_double (s->K1, s->iv);
gf_double (s->K2, s->K1); gf_double (s->K2, s->K1);
/* reset s->iv to 0 in case someone wants to compute now */ /* reset s->iv to 0 in case someone wants to compute now */
tc_cmac_init(s); tc_cmac_init(s);
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_cmac_erase(TCCmacState_t s) int tc_cmac_erase(TCCmacState_t s)
{ {
if (s == (TCCmacState_t) 0) { if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* destroy the current state */ /* destroy the current state */
_set(s, 0, sizeof(*s)); _set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_cmac_init(TCCmacState_t s) int tc_cmac_init(TCCmacState_t s)
{ {
/* input sanity check: */ /* input sanity check: */
if (s == (TCCmacState_t) 0) { if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* CMAC starts with an all zero initialization vector */ /* CMAC starts with an all zero initialization vector */
_set(s->iv, 0, TC_AES_BLOCK_SIZE); _set(s->iv, 0, TC_AES_BLOCK_SIZE);
/* and the leftover buffer is empty */ /* and the leftover buffer is empty */
_set(s->leftover, 0, TC_AES_BLOCK_SIZE); _set(s->leftover, 0, TC_AES_BLOCK_SIZE);
s->leftover_offset = 0; s->leftover_offset = 0;
/* Set countdown to max number of calls allowed before re-keying: */ /* Set countdown to max number of calls allowed before re-keying: */
s->countdown = MAX_CALLS; s->countdown = MAX_CALLS;
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length) int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
{ {
unsigned int i; unsigned int i;
/* input sanity check: */ /* input sanity check: */
if (s == (TCCmacState_t) 0) { if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
if (data_length == 0) { if (data_length == 0) {
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
if (data == (const uint8_t *) 0) { if (data == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
if (s->countdown == 0) { if (s->countdown == 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
s->countdown--; s->countdown--;
if (s->leftover_offset > 0) { if (s->leftover_offset > 0) {
/* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */ /* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset; size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
if (data_length < remaining_space) { if (data_length < remaining_space) {
/* still not enough data to encrypt this time either */ /* still not enough data to encrypt this time either */
_copy(&s->leftover[s->leftover_offset], data_length, data, data_length); _copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
s->leftover_offset += data_length; s->leftover_offset += data_length;
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
/* leftover block is now full; encrypt it first */ /* leftover block is now full; encrypt it first */
_copy(&s->leftover[s->leftover_offset], _copy(&s->leftover[s->leftover_offset],
remaining_space, remaining_space,
data, data,
remaining_space); remaining_space);
data_length -= remaining_space; data_length -= remaining_space;
data += remaining_space; data += remaining_space;
s->leftover_offset = 0; s->leftover_offset = 0;
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) { for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i]; s->iv[i] ^= s->leftover[i];
} }
tc_aes_encrypt(s->iv, s->iv, s->sched); tc_aes_encrypt(s->iv, s->iv, s->sched);
} }
/* CBC encrypt each (except the last) of the data blocks */ /* CBC encrypt each (except the last) of the data blocks */
while (data_length > TC_AES_BLOCK_SIZE) { while (data_length > TC_AES_BLOCK_SIZE) {
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) { for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= data[i]; s->iv[i] ^= data[i];
} }
tc_aes_encrypt(s->iv, s->iv, s->sched); tc_aes_encrypt(s->iv, s->iv, s->sched);
data += TC_AES_BLOCK_SIZE; data += TC_AES_BLOCK_SIZE;
data_length -= TC_AES_BLOCK_SIZE; data_length -= TC_AES_BLOCK_SIZE;
} }
if (data_length > 0) { if (data_length > 0) {
/* save leftover data for next time */ /* save leftover data for next time */
_copy(s->leftover, data_length, data, data_length); _copy(s->leftover, data_length, data, data_length);
s->leftover_offset = data_length; s->leftover_offset = data_length;
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_cmac_final(uint8_t *tag, TCCmacState_t s) int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
{ {
uint8_t *k; uint8_t *k;
unsigned int i; unsigned int i;
/* input sanity check: */ /* input sanity check: */
if (tag == (uint8_t *) 0 || if (tag == (uint8_t *) 0 ||
s == (TCCmacState_t) 0) { s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
if (s->leftover_offset == TC_AES_BLOCK_SIZE) { if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
/* the last message block is a full-sized block */ /* the last message block is a full-sized block */
k = (uint8_t *) s->K1; k = (uint8_t *) s->K1;
} else { } else {
/* the final message block is not a full-sized block */ /* the final message block is not a full-sized block */
size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset; size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
_set(&s->leftover[s->leftover_offset], 0, remaining); _set(&s->leftover[s->leftover_offset], 0, remaining);
s->leftover[s->leftover_offset] = TC_CMAC_PADDING; s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
k = (uint8_t *) s->K2; k = (uint8_t *) s->K2;
} }
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) { for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i] ^ k[i]; s->iv[i] ^= s->leftover[i] ^ k[i];
} }
tc_aes_encrypt(tag, s->iv, s->sched); tc_aes_encrypt(tag, s->iv, s->sched);
/* erasing state: */ /* erasing state: */
tc_cmac_erase(s); tc_cmac_erase(s);
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -35,51 +35,51 @@
#include <tinycrypt/utils.h> #include <tinycrypt/utils.h>
int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in, int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched) unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched)
{ {
uint8_t buffer[TC_AES_BLOCK_SIZE]; uint8_t buffer[TC_AES_BLOCK_SIZE];
uint8_t nonce[TC_AES_BLOCK_SIZE]; uint8_t nonce[TC_AES_BLOCK_SIZE];
unsigned int block_num; unsigned int block_num;
unsigned int i; unsigned int i;
/* input sanity check: */ /* input sanity check: */
if (out == (uint8_t *) 0 || if (out == (uint8_t *) 0 ||
in == (uint8_t *) 0 || in == (uint8_t *) 0 ||
ctr == (uint8_t *) 0 || ctr == (uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 || sched == (TCAesKeySched_t) 0 ||
inlen == 0 || inlen == 0 ||
outlen == 0 || outlen == 0 ||
outlen != inlen) { outlen != inlen) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* copy the ctr to the nonce */ /* copy the ctr to the nonce */
(void)_copy(nonce, sizeof(nonce), ctr, sizeof(nonce)); (void)_copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
/* select the last 4 bytes of the nonce to be incremented */ /* select the last 4 bytes of the nonce to be incremented */
block_num = (nonce[12] << 24) | (nonce[13] << 16) | block_num = (nonce[12] << 24) | (nonce[13] << 16) |
(nonce[14] << 8) | (nonce[15]); (nonce[14] << 8) | (nonce[15]);
for (i = 0; i < inlen; ++i) { for (i = 0; i < inlen; ++i) {
if ((i % (TC_AES_BLOCK_SIZE)) == 0) { if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
/* encrypt data using the current nonce */ /* encrypt data using the current nonce */
if (tc_aes_encrypt(buffer, nonce, sched)) { if (tc_aes_encrypt(buffer, nonce, sched)) {
block_num++; block_num++;
nonce[12] = (uint8_t)(block_num >> 24); nonce[12] = (uint8_t)(block_num >> 24);
nonce[13] = (uint8_t)(block_num >> 16); nonce[13] = (uint8_t)(block_num >> 16);
nonce[14] = (uint8_t)(block_num >> 8); nonce[14] = (uint8_t)(block_num >> 8);
nonce[15] = (uint8_t)(block_num); nonce[15] = (uint8_t)(block_num);
} else { } else {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
} }
/* update the output */ /* update the output */
*out++ = buffer[i%(TC_AES_BLOCK_SIZE)] ^ *in++; *out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++;
} }
/* update the counter */ /* update the counter */
ctr[12] = nonce[12]; ctr[13] = nonce[13]; ctr[12] = nonce[12]; ctr[13] = nonce[13];
ctr[14] = nonce[14]; ctr[15] = nonce[15]; ctr[14] = nonce[14]; ctr[15] = nonce[15];
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -52,14 +52,14 @@
*/ */
static void arrInc(uint8_t arr[], unsigned int len) static void arrInc(uint8_t arr[], unsigned int len)
{ {
unsigned int i; unsigned int i;
if (0 != arr) { if (0 != arr) {
for (i = len; i > 0U; i--) { for (i = len; i > 0U; i--) {
if (++arr[i-1] != 0U) { if (++arr[i - 1] != 0U) {
break; break;
} }
} }
} }
} }
/** /**
@ -71,209 +71,209 @@ static void arrInc(uint8_t arr[], unsigned int len)
* @param ctx IN/OUT -- CTR PRNG state * @param ctx IN/OUT -- CTR PRNG state
* @param providedData IN -- data used when updating the internal state * @param providedData IN -- data used when updating the internal state
*/ */
static void tc_ctr_prng_update(TCCtrPrng_t * const ctx, uint8_t const * const providedData) static void tc_ctr_prng_update(TCCtrPrng_t *const ctx, uint8_t const *const providedData)
{ {
if (0 != ctx) { if (0 != ctx) {
/* 10.2.1.2 step 1 */ /* 10.2.1.2 step 1 */
uint8_t temp[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE]; uint8_t temp[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
unsigned int len = 0U; unsigned int len = 0U;
/* 10.2.1.2 step 2 */ /* 10.2.1.2 step 2 */
while (len < sizeof temp) { while (len < sizeof temp) {
unsigned int blocklen = sizeof(temp) - len; unsigned int blocklen = sizeof(temp) - len;
uint8_t output_block[TC_AES_BLOCK_SIZE]; uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.2 step 2.1 */ /* 10.2.1.2 step 2.1 */
arrInc(ctx->V, sizeof ctx->V); arrInc(ctx->V, sizeof ctx->V);
/* 10.2.1.2 step 2.2 */ /* 10.2.1.2 step 2.2 */
if (blocklen > TC_AES_BLOCK_SIZE) { if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE; blocklen = TC_AES_BLOCK_SIZE;
} }
(void)tc_aes_encrypt(output_block, ctx->V, &ctx->key); (void)tc_aes_encrypt(output_block, ctx->V, &ctx->key);
/* 10.2.1.2 step 2.3/step 3 */ /* 10.2.1.2 step 2.3/step 3 */
memcpy(&(temp[len]), output_block, blocklen); memcpy(&(temp[len]), output_block, blocklen);
len += blocklen; len += blocklen;
} }
/* 10.2.1.2 step 4 */ /* 10.2.1.2 step 4 */
if (0 != providedData) { if (0 != providedData) {
unsigned int i; unsigned int i;
for (i = 0U; i < sizeof temp; i++) { for (i = 0U; i < sizeof temp; i++) {
temp[i] ^= providedData[i]; temp[i] ^= providedData[i];
} }
} }
/* 10.2.1.2 step 5 */ /* 10.2.1.2 step 5 */
(void)tc_aes128_set_encrypt_key(&ctx->key, temp); (void)tc_aes128_set_encrypt_key(&ctx->key, temp);
/* 10.2.1.2 step 6 */ /* 10.2.1.2 step 6 */
memcpy(ctx->V, &(temp[TC_AES_KEY_SIZE]), TC_AES_BLOCK_SIZE); memcpy(ctx->V, &(temp[TC_AES_KEY_SIZE]), TC_AES_BLOCK_SIZE);
} }
} }
int tc_ctr_prng_init(TCCtrPrng_t * const ctx, int tc_ctr_prng_init(TCCtrPrng_t *const ctx,
uint8_t const * const entropy, uint8_t const *const entropy,
unsigned int entropyLen, unsigned int entropyLen,
uint8_t const * const personalization, uint8_t const *const personalization,
unsigned int pLen) unsigned int pLen)
{ {
int result = TC_CRYPTO_FAIL; int result = TC_CRYPTO_FAIL;
unsigned int i; unsigned int i;
uint8_t personalization_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U}; uint8_t personalization_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE]; uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
uint8_t zeroArr[TC_AES_BLOCK_SIZE] = {0U}; uint8_t zeroArr[TC_AES_BLOCK_SIZE] = {0U};
if (0 != personalization) {
/* 10.2.1.3.1 step 1 */
unsigned int len = pLen;
if (len > sizeof personalization_buf) {
len = sizeof personalization_buf;
}
/* 10.2.1.3.1 step 2 */ if (0 != personalization) {
memcpy(personalization_buf, personalization, len); /* 10.2.1.3.1 step 1 */
} unsigned int len = pLen;
if (len > sizeof personalization_buf) {
len = sizeof personalization_buf;
}
if ((0 != ctx) && (0 != entropy) && (entropyLen >= sizeof seed_material)) { /* 10.2.1.3.1 step 2 */
/* 10.2.1.3.1 step 3 */ memcpy(personalization_buf, personalization, len);
memcpy(seed_material, entropy, sizeof seed_material); }
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= personalization_buf[i];
}
/* 10.2.1.3.1 step 4 */ if ((0 != ctx) && (0 != entropy) && (entropyLen >= sizeof seed_material)) {
(void)tc_aes128_set_encrypt_key(&ctx->key, zeroArr); /* 10.2.1.3.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= personalization_buf[i];
}
/* 10.2.1.3.1 step 5 */ /* 10.2.1.3.1 step 4 */
memset(ctx->V, 0x00, sizeof ctx->V); (void)tc_aes128_set_encrypt_key(&ctx->key, zeroArr);
/* 10.2.1.3.1 step 6 */
tc_ctr_prng_update(ctx, seed_material);
/* 10.2.1.3.1 step 7 */ /* 10.2.1.3.1 step 5 */
ctx->reseedCount = 1U; memset(ctx->V, 0x00, sizeof ctx->V);
result = TC_CRYPTO_SUCCESS; /* 10.2.1.3.1 step 6 */
} tc_ctr_prng_update(ctx, seed_material);
return result;
/* 10.2.1.3.1 step 7 */
ctx->reseedCount = 1U;
result = TC_CRYPTO_SUCCESS;
}
return result;
} }
int tc_ctr_prng_reseed(TCCtrPrng_t * const ctx, int tc_ctr_prng_reseed(TCCtrPrng_t *const ctx,
uint8_t const * const entropy, uint8_t const *const entropy,
unsigned int entropyLen, unsigned int entropyLen,
uint8_t const * const additional_input, uint8_t const *const additional_input,
unsigned int additionallen) unsigned int additionallen)
{ {
unsigned int i; unsigned int i;
int result = TC_CRYPTO_FAIL; int result = TC_CRYPTO_FAIL;
uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U}; uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE]; uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
if (0 != additional_input) { if (0 != additional_input) {
/* 10.2.1.4.1 step 1 */ /* 10.2.1.4.1 step 1 */
unsigned int len = additionallen; unsigned int len = additionallen;
if (len > sizeof additional_input_buf) { if (len > sizeof additional_input_buf) {
len = sizeof additional_input_buf; len = sizeof additional_input_buf;
} }
/* 10.2.1.4.1 step 2 */ /* 10.2.1.4.1 step 2 */
memcpy(additional_input_buf, additional_input, len); memcpy(additional_input_buf, additional_input, len);
} }
unsigned int seedlen = (unsigned int)TC_AES_KEY_SIZE + (unsigned int)TC_AES_BLOCK_SIZE;
if ((0 != ctx) && (entropyLen >= seedlen)) {
/* 10.2.1.4.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= additional_input_buf[i];
}
/* 10.2.1.4.1 step 4 */ unsigned int seedlen = (unsigned int)TC_AES_KEY_SIZE + (unsigned int)TC_AES_BLOCK_SIZE;
tc_ctr_prng_update(ctx, seed_material); if ((0 != ctx) && (entropyLen >= seedlen)) {
/* 10.2.1.4.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= additional_input_buf[i];
}
/* 10.2.1.4.1 step 5 */ /* 10.2.1.4.1 step 4 */
ctx->reseedCount = 1U; tc_ctr_prng_update(ctx, seed_material);
result = TC_CRYPTO_SUCCESS; /* 10.2.1.4.1 step 5 */
} ctx->reseedCount = 1U;
return result;
result = TC_CRYPTO_SUCCESS;
}
return result;
} }
int tc_ctr_prng_generate(TCCtrPrng_t * const ctx, int tc_ctr_prng_generate(TCCtrPrng_t *const ctx,
uint8_t const * const additional_input, uint8_t const *const additional_input,
unsigned int additionallen, unsigned int additionallen,
uint8_t * const out, uint8_t *const out,
unsigned int outlen) unsigned int outlen)
{ {
/* 2^48 - see section 10.2.1 */ /* 2^48 - see section 10.2.1 */
static const uint64_t MAX_REQS_BEFORE_RESEED = 0x1000000000000ULL; static const uint64_t MAX_REQS_BEFORE_RESEED = 0x1000000000000ULL;
/* 2^19 bits - see section 10.2.1 */ /* 2^19 bits - see section 10.2.1 */
static const unsigned int MAX_BYTES_PER_REQ = 65536U; static const unsigned int MAX_BYTES_PER_REQ = 65536U;
unsigned int result = TC_CRYPTO_FAIL; unsigned int result = TC_CRYPTO_FAIL;
if ((0 != ctx) && (0 != out) && (outlen < MAX_BYTES_PER_REQ)) { if ((0 != ctx) && (0 != out) && (outlen < MAX_BYTES_PER_REQ)) {
/* 10.2.1.5.1 step 1 */ /* 10.2.1.5.1 step 1 */
if (ctx->reseedCount > MAX_REQS_BEFORE_RESEED) { if (ctx->reseedCount > MAX_REQS_BEFORE_RESEED) {
result = TC_CTR_PRNG_RESEED_REQ; result = TC_CTR_PRNG_RESEED_REQ;
} else { } else {
uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U}; uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
if (0 != additional_input) { if (0 != additional_input) {
/* 10.2.1.5.1 step 2 */ /* 10.2.1.5.1 step 2 */
unsigned int len = additionallen; unsigned int len = additionallen;
if (len > sizeof additional_input_buf) { if (len > sizeof additional_input_buf) {
len = sizeof additional_input_buf; len = sizeof additional_input_buf;
} }
memcpy(additional_input_buf, additional_input, len); memcpy(additional_input_buf, additional_input, len);
tc_ctr_prng_update(ctx, additional_input_buf); tc_ctr_prng_update(ctx, additional_input_buf);
} }
/* 10.2.1.5.1 step 3 - implicit */
/* 10.2.1.5.1 step 4 */ /* 10.2.1.5.1 step 3 - implicit */
unsigned int len = 0U;
while (len < outlen) {
unsigned int blocklen = outlen - len;
uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.5.1 step 4.1 */ /* 10.2.1.5.1 step 4 */
arrInc(ctx->V, sizeof ctx->V); unsigned int len = 0U;
while (len < outlen) {
unsigned int blocklen = outlen - len;
uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.5.1 step 4.2 */ /* 10.2.1.5.1 step 4.1 */
(void)tc_aes_encrypt(output_block, ctx->V, &ctx->key); arrInc(ctx->V, sizeof ctx->V);
/* 10.2.1.5.1 step 4.3/step 5 */
if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE;
}
memcpy(&(out[len]), output_block, blocklen);
len += blocklen; /* 10.2.1.5.1 step 4.2 */
} (void)tc_aes_encrypt(output_block, ctx->V, &ctx->key);
/* 10.2.1.5.1 step 6 */
tc_ctr_prng_update(ctx, additional_input_buf);
/* 10.2.1.5.1 step 7 */ /* 10.2.1.5.1 step 4.3/step 5 */
ctx->reseedCount++; if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE;
}
memcpy(&(out[len]), output_block, blocklen);
/* 10.2.1.5.1 step 8 */ len += blocklen;
result = TC_CRYPTO_SUCCESS; }
}
}
return result; /* 10.2.1.5.1 step 6 */
tc_ctr_prng_update(ctx, additional_input_buf);
/* 10.2.1.5.1 step 7 */
ctx->reseedCount++;
/* 10.2.1.5.1 step 8 */
result = TC_CRYPTO_SUCCESS;
}
}
return result;
} }
void tc_ctr_prng_uninstantiate(TCCtrPrng_t * const ctx) void tc_ctr_prng_uninstantiate(TCCtrPrng_t *const ctx)
{ {
if (0 != ctx) { if (0 != ctx) {
memset(ctx->key.words, 0x00, sizeof ctx->key.words); memset(ctx->key.words, 0x00, sizeof ctx->key.words);
memset(ctx->V, 0x00, sizeof ctx->V); memset(ctx->V, 0x00, sizeof ctx->V);
ctx->reseedCount = 0U; ctx->reseedCount = 0U;
} }
} }

File diff suppressed because it is too large Load diff

View file

@ -1,6 +1,6 @@
/* ec_dh.c - TinyCrypt implementation of EC-DH */ /* ec_dh.c - TinyCrypt implementation of EC-DH */
/* /*
* Copyright (c) 2014, Kenneth MacKay * Copyright (c) 2014, Kenneth MacKay
* All rights reserved. * All rights reserved.
* *
@ -67,132 +67,132 @@ static uECC_RNG_Function g_rng_function = 0;
#endif #endif
int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key, int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key,
unsigned int *d, uECC_Curve curve) unsigned int *d, uECC_Curve curve)
{ {
uECC_word_t _private[NUM_ECC_WORDS]; uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2]; uECC_word_t _public[NUM_ECC_WORDS * 2];
/* This function is designed for test purposes-only (such as validating NIST /* This function is designed for test purposes-only (such as validating NIST
* test vectors) as it uses a provided value for d instead of generating * test vectors) as it uses a provided value for d instead of generating
* it uniformly at random. */ * it uniformly at random. */
memcpy (_private, d, NUM_ECC_BYTES); memcpy (_private, d, NUM_ECC_BYTES);
/* Computing public-key from private: */ /* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) { if (EccPoint_compute_public_key(_public, _private, curve)) {
/* Converting buffers to correct bit order: */ /* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key, uECC_vli_nativeToBytes(private_key,
BITS_TO_BYTES(curve->num_n_bits), BITS_TO_BYTES(curve->num_n_bits),
_private); _private);
uECC_vli_nativeToBytes(public_key, uECC_vli_nativeToBytes(public_key,
curve->num_bytes, curve->num_bytes,
_public); _public);
uECC_vli_nativeToBytes(public_key + curve->num_bytes, uECC_vli_nativeToBytes(public_key + curve->num_bytes,
curve->num_bytes, curve->num_bytes,
_public + curve->num_words); _public + curve->num_words);
/* erasing temporary buffer used to store secret: */ /* erasing temporary buffer used to store secret: */
_set_secure(_private, 0, NUM_ECC_BYTES); _set_secure(_private, 0, NUM_ECC_BYTES);
return 1; return 1;
} }
return 0; return 0;
} }
int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve) int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve)
{ {
uECC_word_t _random[NUM_ECC_WORDS * 2]; uECC_word_t _random[NUM_ECC_WORDS * 2];
uECC_word_t _private[NUM_ECC_WORDS]; uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2]; uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t tries; uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _private uniformly at random: */ /* Generating _private uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng(); uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function || if (!rng_function ||
!rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS*uECC_WORD_SIZE)) { !rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS * uECC_WORD_SIZE)) {
return 0; return 0;
} }
/* computing modular reduction of _random (see FIPS 186.4 B.4.1): */ /* computing modular reduction of _random (see FIPS 186.4 B.4.1): */
uECC_vli_mmod(_private, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits)); uECC_vli_mmod(_private, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
/* Computing public-key from private: */ /* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) { if (EccPoint_compute_public_key(_public, _private, curve)) {
/* Converting buffers to correct bit order: */ /* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key, uECC_vli_nativeToBytes(private_key,
BITS_TO_BYTES(curve->num_n_bits), BITS_TO_BYTES(curve->num_n_bits),
_private); _private);
uECC_vli_nativeToBytes(public_key, uECC_vli_nativeToBytes(public_key,
curve->num_bytes, curve->num_bytes,
_public); _public);
uECC_vli_nativeToBytes(public_key + curve->num_bytes, uECC_vli_nativeToBytes(public_key + curve->num_bytes,
curve->num_bytes, curve->num_bytes,
_public + curve->num_words); _public + curve->num_words);
/* erasing temporary buffer that stored secret: */ /* erasing temporary buffer that stored secret: */
_set_secure(_private, 0, NUM_ECC_BYTES); _set_secure(_private, 0, NUM_ECC_BYTES);
return 1; return 1;
} }
} }
return 0; return 0;
} }
int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key, int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
uint8_t *secret, uECC_Curve curve) uint8_t *secret, uECC_Curve curve)
{ {
uECC_word_t _public[NUM_ECC_WORDS * 2]; uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t _private[NUM_ECC_WORDS]; uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t tmp[NUM_ECC_WORDS]; uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t *p2[2] = {_private, tmp}; uECC_word_t *p2[2] = {_private, tmp};
uECC_word_t *initial_Z = 0; uECC_word_t *initial_Z = 0;
uECC_word_t carry; uECC_word_t carry;
wordcount_t num_words = curve->num_words; wordcount_t num_words = curve->num_words;
wordcount_t num_bytes = curve->num_bytes; wordcount_t num_bytes = curve->num_bytes;
int r; int r;
/* Converting buffers to correct bit order: */ /* Converting buffers to correct bit order: */
uECC_vli_bytesToNative(_private, uECC_vli_bytesToNative(_private,
private_key, private_key,
BITS_TO_BYTES(curve->num_n_bits)); BITS_TO_BYTES(curve->num_n_bits));
uECC_vli_bytesToNative(_public, uECC_vli_bytesToNative(_public,
public_key, public_key,
num_bytes); num_bytes);
uECC_vli_bytesToNative(_public + num_words, uECC_vli_bytesToNative(_public + num_words,
public_key + num_bytes, public_key + num_bytes,
num_bytes); num_bytes);
/* Regularize the bitcount for the private key so that attackers cannot use a /* Regularize the bitcount for the private key so that attackers cannot use a
* side channel attack to learn the number of leading zeros. */ * side channel attack to learn the number of leading zeros. */
carry = regularize_k(_private, _private, tmp, curve); carry = regularize_k(_private, _private, tmp, curve);
/* If an RNG function was specified, try to get a random initial Z value to /* If an RNG function was specified, try to get a random initial Z value to
* improve protection against side-channel attacks. */ * improve protection against side-channel attacks. */
if (g_rng_function) { if (g_rng_function) {
if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) { if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) {
r = 0; r = 0;
goto clear_and_out; goto clear_and_out;
} }
initial_Z = p2[carry]; initial_Z = p2[carry];
} }
EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1, EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1,
curve); curve);
uECC_vli_nativeToBytes(secret, num_bytes, _public); uECC_vli_nativeToBytes(secret, num_bytes, _public);
r = !EccPoint_isZero(_public, curve); r = !EccPoint_isZero(_public, curve);
clear_and_out: clear_and_out:
/* erasing temporary buffer used to store secret: */ /* erasing temporary buffer used to store secret: */
_set_secure(p2, 0, sizeof(p2)); _set_secure(p2, 0, sizeof(p2));
_set_secure(tmp, 0, sizeof(tmp)); _set_secure(tmp, 0, sizeof(tmp));
_set_secure(_private, 0, sizeof(_private)); _set_secure(_private, 0, sizeof(_private));
return r; return r;
} }

View file

@ -64,231 +64,230 @@ static uECC_RNG_Function g_rng_function = 0;
#endif #endif
static void bits2int(uECC_word_t *native, const uint8_t *bits, static void bits2int(uECC_word_t *native, const uint8_t *bits,
unsigned bits_size, uECC_Curve curve) unsigned bits_size, uECC_Curve curve)
{ {
unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits); unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits); unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
int shift; int shift;
uECC_word_t carry; uECC_word_t carry;
uECC_word_t *ptr; uECC_word_t *ptr;
if (bits_size > num_n_bytes) { if (bits_size > num_n_bytes) {
bits_size = num_n_bytes; bits_size = num_n_bytes;
} }
uECC_vli_clear(native, num_n_words); uECC_vli_clear(native, num_n_words);
uECC_vli_bytesToNative(native, bits, bits_size); uECC_vli_bytesToNative(native, bits, bits_size);
if (bits_size * 8 <= (unsigned)curve->num_n_bits) { if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
return; return;
} }
shift = bits_size * 8 - curve->num_n_bits; shift = bits_size * 8 - curve->num_n_bits;
carry = 0; carry = 0;
ptr = native + num_n_words; ptr = native + num_n_words;
while (ptr-- > native) { while (ptr-- > native) {
uECC_word_t temp = *ptr; uECC_word_t temp = *ptr;
*ptr = (temp >> shift) | carry; *ptr = (temp >> shift) | carry;
carry = temp << (uECC_WORD_BITS - shift); carry = temp << (uECC_WORD_BITS - shift);
} }
/* Reduce mod curve_n */ /* Reduce mod curve_n */
if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) { if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
uECC_vli_sub(native, native, curve->n, num_n_words); uECC_vli_sub(native, native, curve->n, num_n_words);
} }
} }
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash, int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uECC_word_t *k, uint8_t *signature, unsigned hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve) uECC_Curve curve)
{ {
uECC_word_t tmp[NUM_ECC_WORDS]; uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t s[NUM_ECC_WORDS]; uECC_word_t s[NUM_ECC_WORDS];
uECC_word_t *k2[2] = {tmp, s}; uECC_word_t *k2[2] = {tmp, s};
uECC_word_t p[NUM_ECC_WORDS * 2]; uECC_word_t p[NUM_ECC_WORDS * 2];
uECC_word_t carry; uECC_word_t carry;
wordcount_t num_words = curve->num_words; wordcount_t num_words = curve->num_words;
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
bitcount_t num_n_bits = curve->num_n_bits; bitcount_t num_n_bits = curve->num_n_bits;
/* Make sure 0 < k < curve_n */ /* Make sure 0 < k < curve_n */
if (uECC_vli_isZero(k, num_words) || if (uECC_vli_isZero(k, num_words) ||
uECC_vli_cmp(curve->n, k, num_n_words) != 1) { uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
return 0; return 0;
} }
carry = regularize_k(k, tmp, s, curve); carry = regularize_k(k, tmp, s, curve);
EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve); EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
if (uECC_vli_isZero(p, num_words)) { if (uECC_vli_isZero(p, num_words)) {
return 0; return 0;
} }
/* If an RNG function was specified, get a random number /* If an RNG function was specified, get a random number
to prevent side channel analysis of k. */ to prevent side channel analysis of k. */
if (!g_rng_function) { if (!g_rng_function) {
uECC_vli_clear(tmp, num_n_words); uECC_vli_clear(tmp, num_n_words);
tmp[0] = 1; tmp[0] = 1;
} } else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) { return 0;
return 0; }
}
/* Prevent side channel analysis of uECC_vli_modInv() to determine /* Prevent side channel analysis of uECC_vli_modInv() to determine
bits of k / the private key by premultiplying by a random number */ bits of k / the private key by premultiplying by a random number */
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */ uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */ uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */ uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */ uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
/* tmp = d: */ /* tmp = d: */
uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
s[num_n_words - 1] = 0; s[num_n_words - 1] = 0;
uECC_vli_set(s, p, num_words); uECC_vli_set(s, p, num_words);
uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */ uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
bits2int(tmp, message_hash, hash_size, curve); bits2int(tmp, message_hash, hash_size, curve);
uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */ uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */ uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) { if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
return 0; return 0;
} }
uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s); uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
return 1; return 1;
} }
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash, int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uint8_t *signature, uECC_Curve curve) unsigned hash_size, uint8_t *signature, uECC_Curve curve)
{ {
uECC_word_t _random[2*NUM_ECC_WORDS]; uECC_word_t _random[2 * NUM_ECC_WORDS];
uECC_word_t k[NUM_ECC_WORDS]; uECC_word_t k[NUM_ECC_WORDS];
uECC_word_t tries; uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) { for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _random uniformly at random: */ /* Generating _random uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng(); uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function || if (!rng_function ||
!rng_function((uint8_t *)_random, 2*NUM_ECC_WORDS*uECC_WORD_SIZE)) { !rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS * uECC_WORD_SIZE)) {
return 0; return 0;
} }
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1): // computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits)); uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature, if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
curve)) { curve)) {
return 1; return 1;
} }
} }
return 0; return 0;
} }
static bitcount_t smax(bitcount_t a, bitcount_t b) static bitcount_t smax(bitcount_t a, bitcount_t b)
{ {
return (a > b ? a : b); return (a > b ? a : b);
} }
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash, int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
unsigned hash_size, const uint8_t *signature, unsigned hash_size, const uint8_t *signature,
uECC_Curve curve) uECC_Curve curve)
{ {
uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS]; uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
uECC_word_t z[NUM_ECC_WORDS]; uECC_word_t z[NUM_ECC_WORDS];
uECC_word_t sum[NUM_ECC_WORDS * 2]; uECC_word_t sum[NUM_ECC_WORDS * 2];
uECC_word_t rx[NUM_ECC_WORDS]; uECC_word_t rx[NUM_ECC_WORDS];
uECC_word_t ry[NUM_ECC_WORDS]; uECC_word_t ry[NUM_ECC_WORDS];
uECC_word_t tx[NUM_ECC_WORDS]; uECC_word_t tx[NUM_ECC_WORDS];
uECC_word_t ty[NUM_ECC_WORDS]; uECC_word_t ty[NUM_ECC_WORDS];
uECC_word_t tz[NUM_ECC_WORDS]; uECC_word_t tz[NUM_ECC_WORDS];
const uECC_word_t *points[4]; const uECC_word_t *points[4];
const uECC_word_t *point; const uECC_word_t *point;
bitcount_t num_bits; bitcount_t num_bits;
bitcount_t i; bitcount_t i;
uECC_word_t _public[NUM_ECC_WORDS * 2]; uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS]; uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words; wordcount_t num_words = curve->num_words;
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits); wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
rx[num_n_words - 1] = 0; rx[num_n_words - 1] = 0;
r[num_n_words - 1] = 0; r[num_n_words - 1] = 0;
s[num_n_words - 1] = 0; s[num_n_words - 1] = 0;
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes); uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes, uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
curve->num_bytes); curve->num_bytes);
uECC_vli_bytesToNative(r, signature, curve->num_bytes); uECC_vli_bytesToNative(r, signature, curve->num_bytes);
uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes); uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
/* r, s must not be 0. */ /* r, s must not be 0. */
if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) { if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
return 0; return 0;
} }
/* r, s must be < n. */ /* r, s must be < n. */
if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 || if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) { uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
return 0; return 0;
} }
/* Calculate u1 and u2. */ /* Calculate u1 and u2. */
uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */ uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
u1[num_n_words - 1] = 0; u1[num_n_words - 1] = 0;
bits2int(u1, message_hash, hash_size, curve); bits2int(u1, message_hash, hash_size, curve);
uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */ uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */ uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
/* Calculate sum = G + Q. */ /* Calculate sum = G + Q. */
uECC_vli_set(sum, _public, num_words); uECC_vli_set(sum, _public, num_words);
uECC_vli_set(sum + num_words, _public + num_words, num_words); uECC_vli_set(sum + num_words, _public + num_words, num_words);
uECC_vli_set(tx, curve->G, num_words); uECC_vli_set(tx, curve->G, num_words);
uECC_vli_set(ty, curve->G + num_words, num_words); uECC_vli_set(ty, curve->G + num_words, num_words);
uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */ uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
XYcZ_add(tx, ty, sum, sum + num_words, curve); XYcZ_add(tx, ty, sum, sum + num_words, curve);
uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */ uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
apply_z(sum, sum + num_words, z, curve); apply_z(sum, sum + num_words, z, curve);
/* Use Shamir's trick to calculate u1*G + u2*Q */ /* Use Shamir's trick to calculate u1*G + u2*Q */
points[0] = 0; points[0] = 0;
points[1] = curve->G; points[1] = curve->G;
points[2] = _public; points[2] = _public;
points[3] = sum; points[3] = sum;
num_bits = smax(uECC_vli_numBits(u1, num_n_words), num_bits = smax(uECC_vli_numBits(u1, num_n_words),
uECC_vli_numBits(u2, num_n_words)); uECC_vli_numBits(u2, num_n_words));
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) | point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)]; ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
uECC_vli_set(rx, point, num_words); uECC_vli_set(rx, point, num_words);
uECC_vli_set(ry, point + num_words, num_words); uECC_vli_set(ry, point + num_words, num_words);
uECC_vli_clear(z, num_words); uECC_vli_clear(z, num_words);
z[0] = 1; z[0] = 1;
for (i = num_bits - 2; i >= 0; --i) { for (i = num_bits - 2; i >= 0; --i) {
uECC_word_t index; uECC_word_t index;
curve->double_jacobian(rx, ry, z, curve); curve->double_jacobian(rx, ry, z, curve);
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1); index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
point = points[index]; point = points[index];
if (point) { if (point) {
uECC_vli_set(tx, point, num_words); uECC_vli_set(tx, point, num_words);
uECC_vli_set(ty, point + num_words, num_words); uECC_vli_set(ty, point + num_words, num_words);
apply_z(tx, ty, z, curve); apply_z(tx, ty, z, curve);
uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */ uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
XYcZ_add(tx, ty, rx, ry, curve); XYcZ_add(tx, ty, rx, ry, curve);
uECC_vli_modMult_fast(z, z, tz, curve); uECC_vli_modMult_fast(z, z, tz, curve);
} }
} }
uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */ uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
apply_z(rx, ry, z, curve); apply_z(rx, ry, z, curve);
/* v = x1 (mod n) */ /* v = x1 (mod n) */
if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) { if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
uECC_vli_sub(rx, rx, curve->n, num_n_words); uECC_vli_sub(rx, rx, curve->n, num_n_words);
} }
/* Accept only if v == r. */ /* Accept only if v == r. */
return (int)(uECC_vli_equal(rx, r, num_words) == 0); return (int)(uECC_vli_equal(rx, r, num_words) == 0);
} }

View file

@ -71,34 +71,36 @@
#define O_CLOEXEC 0 #define O_CLOEXEC 0
#endif #endif
int default_CSPRNG(uint8_t *dest, unsigned int size) { int default_CSPRNG(uint8_t *dest, unsigned int size)
{
/* input sanity check: */ /* input sanity check: */
if (dest == (uint8_t *) 0 || (size <= 0)) if (dest == (uint8_t *) 0 || (size <= 0)) {
return 0; return 0;
}
int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC); int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
if (fd == -1) { if (fd == -1) {
return 0; fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
return 0;
}
} }
}
char *ptr = (char *)dest; char *ptr = (char *)dest;
size_t left = (size_t) size; size_t left = (size_t) size;
while (left > 0) { while (left > 0) {
ssize_t bytes_read = read(fd, ptr, left); ssize_t bytes_read = read(fd, ptr, left);
if (bytes_read <= 0) { // read failed if (bytes_read <= 0) { // read failed
close(fd); close(fd);
return 0; return 0;
}
left -= bytes_read;
ptr += bytes_read;
} }
left -= bytes_read;
ptr += bytes_read;
}
close(fd); close(fd);
return 1; return 1;
} }
#endif /* platform */ #endif /* platform */

View file

@ -36,112 +36,112 @@
static void rekey(uint8_t *key, const uint8_t *new_key, unsigned int key_size) static void rekey(uint8_t *key, const uint8_t *new_key, unsigned int key_size)
{ {
const uint8_t inner_pad = (uint8_t) 0x36; const uint8_t inner_pad = (uint8_t) 0x36;
const uint8_t outer_pad = (uint8_t) 0x5c; const uint8_t outer_pad = (uint8_t) 0x5c;
unsigned int i; unsigned int i;
for (i = 0; i < key_size; ++i) { for (i = 0; i < key_size; ++i) {
key[i] = inner_pad ^ new_key[i]; key[i] = inner_pad ^ new_key[i];
key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i]; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i];
} }
for (; i < TC_SHA256_BLOCK_SIZE; ++i) { for (; i < TC_SHA256_BLOCK_SIZE; ++i) {
key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad; key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad;
} }
} }
int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key, int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key,
unsigned int key_size) unsigned int key_size)
{ {
/* Input sanity check */ /* Input sanity check */
if (ctx == (TCHmacState_t) 0 || if (ctx == (TCHmacState_t) 0 ||
key == (const uint8_t *) 0 || key == (const uint8_t *) 0 ||
key_size == 0) { key_size == 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
const uint8_t dummy_key[TC_SHA256_BLOCK_SIZE]; const uint8_t dummy_key[TC_SHA256_BLOCK_SIZE];
struct tc_hmac_state_struct dummy_state; struct tc_hmac_state_struct dummy_state;
if (key_size <= TC_SHA256_BLOCK_SIZE) { if (key_size <= TC_SHA256_BLOCK_SIZE) {
/* /*
* The next three calls are dummy calls just to avoid * The next three calls are dummy calls just to avoid
* certain timing attacks. Without these dummy calls, * certain timing attacks. Without these dummy calls,
* adversaries would be able to learn whether the key_size is * adversaries would be able to learn whether the key_size is
* greater than TC_SHA256_BLOCK_SIZE by measuring the time * greater than TC_SHA256_BLOCK_SIZE by measuring the time
* consumed in this process. * consumed in this process.
*/ */
(void)tc_sha256_init(&dummy_state.hash_state); (void)tc_sha256_init(&dummy_state.hash_state);
(void)tc_sha256_update(&dummy_state.hash_state, (void)tc_sha256_update(&dummy_state.hash_state,
dummy_key, dummy_key,
key_size); key_size);
(void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE], (void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE],
&dummy_state.hash_state); &dummy_state.hash_state);
/* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */ /* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */
rekey(ctx->key, key, key_size); rekey(ctx->key, key, key_size);
} else { } else {
(void)tc_sha256_init(&ctx->hash_state); (void)tc_sha256_init(&ctx->hash_state);
(void)tc_sha256_update(&ctx->hash_state, key, key_size); (void)tc_sha256_update(&ctx->hash_state, key, key_size);
(void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE], (void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE],
&ctx->hash_state); &ctx->hash_state);
rekey(ctx->key, rekey(ctx->key,
&ctx->key[TC_SHA256_DIGEST_SIZE], &ctx->key[TC_SHA256_DIGEST_SIZE],
TC_SHA256_DIGEST_SIZE); TC_SHA256_DIGEST_SIZE);
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_hmac_init(TCHmacState_t ctx) int tc_hmac_init(TCHmacState_t ctx)
{ {
/* input sanity check: */ /* input sanity check: */
if (ctx == (TCHmacState_t) 0) { if (ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
(void) tc_sha256_init(&ctx->hash_state); (void) tc_sha256_init(&ctx->hash_state);
(void) tc_sha256_update(&ctx->hash_state, ctx->key, TC_SHA256_BLOCK_SIZE); (void) tc_sha256_update(&ctx->hash_state, ctx->key, TC_SHA256_BLOCK_SIZE);
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_hmac_update(TCHmacState_t ctx, int tc_hmac_update(TCHmacState_t ctx,
const void *data, const void *data,
unsigned int data_length) unsigned int data_length)
{ {
/* input sanity check: */ /* input sanity check: */
if (ctx == (TCHmacState_t) 0) { if (ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
(void)tc_sha256_update(&ctx->hash_state, data, data_length); (void)tc_sha256_update(&ctx->hash_state, data, data_length);
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx) int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx)
{ {
/* input sanity check: */ /* input sanity check: */
if (tag == (uint8_t *) 0 || if (tag == (uint8_t *) 0 ||
taglen != TC_SHA256_DIGEST_SIZE || taglen != TC_SHA256_DIGEST_SIZE ||
ctx == (TCHmacState_t) 0) { ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
(void) tc_sha256_final(tag, &ctx->hash_state); (void) tc_sha256_final(tag, &ctx->hash_state);
(void)tc_sha256_init(&ctx->hash_state); (void)tc_sha256_init(&ctx->hash_state);
(void)tc_sha256_update(&ctx->hash_state, (void)tc_sha256_update(&ctx->hash_state,
&ctx->key[TC_SHA256_BLOCK_SIZE], &ctx->key[TC_SHA256_BLOCK_SIZE],
TC_SHA256_BLOCK_SIZE); TC_SHA256_BLOCK_SIZE);
(void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE); (void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE);
(void)tc_sha256_final(tag, &ctx->hash_state); (void)tc_sha256_final(tag, &ctx->hash_state);
/* destroy the current state */ /* destroy the current state */
_set(ctx, 0, sizeof(*ctx)); _set(ctx, 0, sizeof(*ctx));
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -77,154 +77,158 @@ static const unsigned int MAX_OUT = (1 << 19);
*/ */
static void update(TCHmacPrng_t prng, const uint8_t *data, unsigned int datalen, const uint8_t *additional_data, unsigned int additional_datalen) static void update(TCHmacPrng_t prng, const uint8_t *data, unsigned int datalen, const uint8_t *additional_data, unsigned int additional_datalen)
{ {
const uint8_t separator0 = 0x00; const uint8_t separator0 = 0x00;
const uint8_t separator1 = 0x01; const uint8_t separator1 = 0x01;
/* configure the new prng key into the prng's instance of hmac */ /* configure the new prng key into the prng's instance of hmac */
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key)); tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use current state, e and separator 0 to compute a new prng key: */ /* use current state, e and separator 0 to compute a new prng key: */
(void)tc_hmac_init(&prng->h); (void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v)); (void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_update(&prng->h, &separator0, sizeof(separator0)); (void)tc_hmac_update(&prng->h, &separator0, sizeof(separator0));
if (data && datalen) if (data && datalen) {
(void)tc_hmac_update(&prng->h, data, datalen); (void)tc_hmac_update(&prng->h, data, datalen);
if (additional_data && additional_datalen) }
(void)tc_hmac_update(&prng->h, additional_data, additional_datalen); if (additional_data && additional_datalen) {
(void)tc_hmac_update(&prng->h, additional_data, additional_datalen);
}
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h); (void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h);
/* configure the new prng key into the prng's instance of hmac */ /* configure the new prng key into the prng's instance of hmac */
(void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key)); (void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use the new key to compute a new state variable v */ /* use the new key to compute a new state variable v */
(void)tc_hmac_init(&prng->h); (void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v)); (void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h); (void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
if (data == 0 || datalen == 0) if (data == 0 || datalen == 0) {
return; return;
}
/* configure the new prng key into the prng's instance of hmac */ /* configure the new prng key into the prng's instance of hmac */
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key)); tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use current state, e and separator 1 to compute a new prng key: */ /* use current state, e and separator 1 to compute a new prng key: */
(void)tc_hmac_init(&prng->h); (void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v)); (void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_update(&prng->h, &separator1, sizeof(separator1)); (void)tc_hmac_update(&prng->h, &separator1, sizeof(separator1));
(void)tc_hmac_update(&prng->h, data, datalen); (void)tc_hmac_update(&prng->h, data, datalen);
if (additional_data && additional_datalen) if (additional_data && additional_datalen) {
(void)tc_hmac_update(&prng->h, additional_data, additional_datalen); (void)tc_hmac_update(&prng->h, additional_data, additional_datalen);
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h); }
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h);
/* configure the new prng key into the prng's instance of hmac */ /* configure the new prng key into the prng's instance of hmac */
(void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key)); (void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use the new key to compute a new state variable v */ /* use the new key to compute a new state variable v */
(void)tc_hmac_init(&prng->h); (void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v)); (void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h); (void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
} }
int tc_hmac_prng_init(TCHmacPrng_t prng, int tc_hmac_prng_init(TCHmacPrng_t prng,
const uint8_t *personalization, const uint8_t *personalization,
unsigned int plen) unsigned int plen)
{ {
/* input sanity check: */ /* input sanity check: */
if (prng == (TCHmacPrng_t) 0 || if (prng == (TCHmacPrng_t) 0 ||
personalization == (uint8_t *) 0 || personalization == (uint8_t *) 0 ||
plen > MAX_PLEN) { plen > MAX_PLEN) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* put the generator into a known state: */ /* put the generator into a known state: */
_set(prng->key, 0x00, sizeof(prng->key)); _set(prng->key, 0x00, sizeof(prng->key));
_set(prng->v, 0x01, sizeof(prng->v)); _set(prng->v, 0x01, sizeof(prng->v));
update(prng, personalization, plen, 0, 0); update(prng, personalization, plen, 0, 0);
/* force a reseed before allowing tc_hmac_prng_generate to succeed: */ /* force a reseed before allowing tc_hmac_prng_generate to succeed: */
prng->countdown = 0; prng->countdown = 0;
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_hmac_prng_reseed(TCHmacPrng_t prng, int tc_hmac_prng_reseed(TCHmacPrng_t prng,
const uint8_t *seed, const uint8_t *seed,
unsigned int seedlen, unsigned int seedlen,
const uint8_t *additional_input, const uint8_t *additional_input,
unsigned int additionallen) unsigned int additionallen)
{ {
/* input sanity check: */ /* input sanity check: */
if (prng == (TCHmacPrng_t) 0 || if (prng == (TCHmacPrng_t) 0 ||
seed == (const uint8_t *) 0 || seed == (const uint8_t *) 0 ||
seedlen < MIN_SLEN || seedlen < MIN_SLEN ||
seedlen > MAX_SLEN) { seedlen > MAX_SLEN) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
if (additional_input != (const uint8_t *) 0) { if (additional_input != (const uint8_t *) 0) {
/* /*
* Abort if additional_input is provided but has inappropriate * Abort if additional_input is provided but has inappropriate
* length * length
*/ */
if (additionallen == 0 || if (additionallen == 0 ||
additionallen > MAX_ALEN) { additionallen > MAX_ALEN) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else { } else {
/* call update for the seed and additional_input */ /* call update for the seed and additional_input */
update(prng, seed, seedlen, additional_input, additionallen); update(prng, seed, seedlen, additional_input, additionallen);
} }
} else { } else {
/* call update only for the seed */ /* call update only for the seed */
update(prng, seed, seedlen, 0, 0); update(prng, seed, seedlen, 0, 0);
} }
/* ... and enable hmac_prng_generate */ /* ... and enable hmac_prng_generate */
prng->countdown = MAX_GENS; prng->countdown = MAX_GENS;
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_hmac_prng_generate(uint8_t *out, unsigned int outlen, TCHmacPrng_t prng) int tc_hmac_prng_generate(uint8_t *out, unsigned int outlen, TCHmacPrng_t prng)
{ {
unsigned int bufferlen; unsigned int bufferlen;
/* input sanity check: */ /* input sanity check: */
if (out == (uint8_t *) 0 || if (out == (uint8_t *) 0 ||
prng == (TCHmacPrng_t) 0 || prng == (TCHmacPrng_t) 0 ||
outlen == 0 || outlen == 0 ||
outlen > MAX_OUT) { outlen > MAX_OUT) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (prng->countdown == 0) { } else if (prng->countdown == 0) {
return TC_HMAC_PRNG_RESEED_REQ; return TC_HMAC_PRNG_RESEED_REQ;
} }
prng->countdown--; prng->countdown--;
while (outlen != 0) { while (outlen != 0) {
/* configure the new prng key into the prng's instance of hmac */ /* configure the new prng key into the prng's instance of hmac */
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key)); tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* operate HMAC in OFB mode to create "random" outputs */ /* operate HMAC in OFB mode to create "random" outputs */
(void)tc_hmac_init(&prng->h); (void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v)); (void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h); (void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
bufferlen = (TC_SHA256_DIGEST_SIZE > outlen) ? bufferlen = (TC_SHA256_DIGEST_SIZE > outlen) ?
outlen : TC_SHA256_DIGEST_SIZE; outlen : TC_SHA256_DIGEST_SIZE;
(void)_copy(out, bufferlen, prng->v, bufferlen); (void)_copy(out, bufferlen, prng->v, bufferlen);
out += bufferlen; out += bufferlen;
outlen = (outlen > TC_SHA256_DIGEST_SIZE) ? outlen = (outlen > TC_SHA256_DIGEST_SIZE) ?
(outlen - TC_SHA256_DIGEST_SIZE) : 0; (outlen - TC_SHA256_DIGEST_SIZE) : 0;
} }
/* block future PRNG compromises from revealing past state */ /* block future PRNG compromises from revealing past state */
update(prng, 0, 0, 0, 0); update(prng, 0, 0, 0, 0);
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }

View file

@ -38,101 +38,101 @@ static void compress(unsigned int *iv, const uint8_t *data);
int tc_sha256_init(TCSha256State_t s) int tc_sha256_init(TCSha256State_t s)
{ {
/* input sanity check: */ /* input sanity check: */
if (s == (TCSha256State_t) 0) { if (s == (TCSha256State_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
/* /*
* Setting the initial state values. * Setting the initial state values.
* These values correspond to the first 32 bits of the fractional parts * These values correspond to the first 32 bits of the fractional parts
* of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17 * of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17
* and 19. * and 19.
*/ */
_set((uint8_t *) s, 0x00, sizeof(*s)); _set((uint8_t *) s, 0x00, sizeof(*s));
s->iv[0] = 0x6a09e667; s->iv[0] = 0x6a09e667;
s->iv[1] = 0xbb67ae85; s->iv[1] = 0xbb67ae85;
s->iv[2] = 0x3c6ef372; s->iv[2] = 0x3c6ef372;
s->iv[3] = 0xa54ff53a; s->iv[3] = 0xa54ff53a;
s->iv[4] = 0x510e527f; s->iv[4] = 0x510e527f;
s->iv[5] = 0x9b05688c; s->iv[5] = 0x9b05688c;
s->iv[6] = 0x1f83d9ab; s->iv[6] = 0x1f83d9ab;
s->iv[7] = 0x5be0cd19; s->iv[7] = 0x5be0cd19;
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen) int tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen)
{ {
/* input sanity check: */ /* input sanity check: */
if (s == (TCSha256State_t) 0 || if (s == (TCSha256State_t) 0 ||
data == (void *) 0) { data == (void *) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} else if (datalen == 0) { } else if (datalen == 0) {
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
while (datalen-- > 0) { while (datalen-- > 0) {
s->leftover[s->leftover_offset++] = *(data++); s->leftover[s->leftover_offset++] = *(data++);
if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) { if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) {
compress(s->iv, s->leftover); compress(s->iv, s->leftover);
s->leftover_offset = 0; s->leftover_offset = 0;
s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3); s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3);
} }
} }
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
int tc_sha256_final(uint8_t *digest, TCSha256State_t s) int tc_sha256_final(uint8_t *digest, TCSha256State_t s)
{ {
unsigned int i; unsigned int i;
/* input sanity check: */ /* input sanity check: */
if (digest == (uint8_t *) 0 || if (digest == (uint8_t *) 0 ||
s == (TCSha256State_t) 0) { s == (TCSha256State_t) 0) {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
s->bits_hashed += (s->leftover_offset << 3); s->bits_hashed += (s->leftover_offset << 3);
s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */ s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */
if (s->leftover_offset > (sizeof(s->leftover) - 8)) { if (s->leftover_offset > (sizeof(s->leftover) - 8)) {
/* there is not room for all the padding in this block */ /* there is not room for all the padding in this block */
_set(s->leftover + s->leftover_offset, 0x00, _set(s->leftover + s->leftover_offset, 0x00,
sizeof(s->leftover) - s->leftover_offset); sizeof(s->leftover) - s->leftover_offset);
compress(s->iv, s->leftover); compress(s->iv, s->leftover);
s->leftover_offset = 0; s->leftover_offset = 0;
} }
/* add the padding and the length in big-Endian format */ /* add the padding and the length in big-Endian format */
_set(s->leftover + s->leftover_offset, 0x00, _set(s->leftover + s->leftover_offset, 0x00,
sizeof(s->leftover) - 8 - s->leftover_offset); sizeof(s->leftover) - 8 - s->leftover_offset);
s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed); s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed);
s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8); s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8);
s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16); s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16);
s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24); s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24);
s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32); s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32);
s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40); s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40);
s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48); s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48);
s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56); s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56);
/* hash the padding and length */ /* hash the padding and length */
compress(s->iv, s->leftover); compress(s->iv, s->leftover);
/* copy the iv out to digest */ /* copy the iv out to digest */
for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) { for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) {
unsigned int t = *((unsigned int *) &s->iv[i]); unsigned int t = *((unsigned int *) &s->iv[i]);
*digest++ = (uint8_t)(t >> 24); *digest++ = (uint8_t)(t >> 24);
*digest++ = (uint8_t)(t >> 16); *digest++ = (uint8_t)(t >> 16);
*digest++ = (uint8_t)(t >> 8); *digest++ = (uint8_t)(t >> 8);
*digest++ = (uint8_t)(t); *digest++ = (uint8_t)(t);
} }
/* destroy the current state */ /* destroy the current state */
_set(s, 0, sizeof(*s)); _set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS; return TC_CRYPTO_SUCCESS;
} }
/* /*
@ -141,22 +141,22 @@ int tc_sha256_final(uint8_t *digest, TCSha256State_t s)
* cube roots of the first 64 primes between 2 and 311. * cube roots of the first 64 primes between 2 and 311.
*/ */
static const unsigned int k256[64] = { static const unsigned int k256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
}; };
static inline unsigned int ROTR(unsigned int a, unsigned int n) static inline unsigned int ROTR(unsigned int a, unsigned int n)
{ {
return (((a) >> n) | ((a) << (32 - n))); return (((a) >> n) | ((a) << (32 - n)));
} }
#define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22)) #define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22))
@ -169,49 +169,49 @@ static inline unsigned int ROTR(unsigned int a, unsigned int n)
static inline unsigned int BigEndian(const uint8_t **c) static inline unsigned int BigEndian(const uint8_t **c)
{ {
unsigned int n = 0; unsigned int n = 0;
n = (((unsigned int)(*((*c)++))) << 24); n = (((unsigned int)(*((*c)++))) << 24);
n |= ((unsigned int)(*((*c)++)) << 16); n |= ((unsigned int)(*((*c)++)) << 16);
n |= ((unsigned int)(*((*c)++)) << 8); n |= ((unsigned int)(*((*c)++)) << 8);
n |= ((unsigned int)(*((*c)++))); n |= ((unsigned int)(*((*c)++)));
return n; return n;
} }
static void compress(unsigned int *iv, const uint8_t *data) static void compress(unsigned int *iv, const uint8_t *data)
{ {
unsigned int a, b, c, d, e, f, g, h; unsigned int a, b, c, d, e, f, g, h;
unsigned int s0, s1; unsigned int s0, s1;
unsigned int t1, t2; unsigned int t1, t2;
unsigned int work_space[16]; unsigned int work_space[16];
unsigned int n; unsigned int n;
unsigned int i; unsigned int i;
a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3]; a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3];
e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7]; e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7];
for (i = 0; i < 16; ++i) { for (i = 0; i < 16; ++i) {
n = BigEndian(&data); n = BigEndian(&data);
t1 = work_space[i] = n; t1 = work_space[i] = n;
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i]; t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
t2 = Sigma0(a) + Maj(a, b, c); t2 = Sigma0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + t1; h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2; d = c; c = b; b = a; a = t1 + t2;
} }
for ( ; i < 64; ++i) { for ( ; i < 64; ++i) {
s0 = work_space[(i+1)&0x0f]; s0 = work_space[(i + 1) & 0x0f];
s0 = sigma0(s0); s0 = sigma0(s0);
s1 = work_space[(i+14)&0x0f]; s1 = work_space[(i + 14) & 0x0f];
s1 = sigma1(s1); s1 = sigma1(s1);
t1 = work_space[i&0xf] += s0 + s1 + work_space[(i+9)&0xf]; t1 = work_space[i & 0xf] += s0 + s1 + work_space[(i + 9) & 0xf];
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i]; t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
t2 = Sigma0(a) + Maj(a, b, c); t2 = Sigma0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + t1; h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2; d = c; c = b; b = a; a = t1 + t2;
} }
iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d; iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d;
iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h; iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h;
} }

View file

@ -38,19 +38,19 @@
#define MASK_TWENTY_SEVEN 0x1b #define MASK_TWENTY_SEVEN 0x1b
unsigned int _copy(uint8_t *to, unsigned int to_len, unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len) const uint8_t *from, unsigned int from_len)
{ {
if (from_len <= to_len) { if (from_len <= to_len) {
(void)memcpy(to, from, from_len); (void)memcpy(to, from, from_len);
return from_len; return from_len;
} else { } else {
return TC_CRYPTO_FAIL; return TC_CRYPTO_FAIL;
} }
} }
void _set(void *to, uint8_t val, unsigned int len) void _set(void *to, uint8_t val, unsigned int len)
{ {
(void)memset(to, val, len); (void)memset(to, val, len);
} }
/* /*
@ -58,17 +58,17 @@ void _set(void *to, uint8_t val, unsigned int len)
*/ */
uint8_t _double_byte(uint8_t a) uint8_t _double_byte(uint8_t a)
{ {
return ((a<<1) ^ ((a>>7) * MASK_TWENTY_SEVEN)); return ((a << 1) ^ ((a >> 7) * MASK_TWENTY_SEVEN));
} }
int _compare(const uint8_t *a, const uint8_t *b, size_t size) int _compare(const uint8_t *a, const uint8_t *b, size_t size)
{ {
const uint8_t *tempa = a; const uint8_t *tempa = a;
const uint8_t *tempb = b; const uint8_t *tempb = b;
uint8_t result = 0; uint8_t result = 0;
for (unsigned int i = 0; i < size; i++) { for (unsigned int i = 0; i < size; i++) {
result |= tempa[i] ^ tempb[i]; result |= tempa[i] ^ tempb[i];
} }
return result; return result;
} }