Merge branch 'bugfix/ble_mesh_split_tinycrypt_v3.3' into 'release/v3.3'

Bugfix/ble mesh split tinycrypt (v3.3)

See merge request espressif/esp-idf!9373
This commit is contained in:
Island 2020-07-02 22:45:50 +08:00
commit be526abc13
37 changed files with 5715 additions and 287 deletions

View file

@ -293,6 +293,7 @@ if(CONFIG_BT_ENABLED)
if(CONFIG_BLE_MESH)
list(APPEND COMPONENT_ADD_INCLUDEDIRS
"esp_ble_mesh/mesh_common/include"
"esp_ble_mesh/mesh_common/tinycrypt/include"
"esp_ble_mesh/mesh_core"
"esp_ble_mesh/mesh_core/include"
"esp_ble_mesh/mesh_core/storage"
@ -325,7 +326,21 @@ if(CONFIG_BT_ENABLED)
"esp_ble_mesh/btc/btc_ble_mesh_prov.c"
"esp_ble_mesh/btc/btc_ble_mesh_sensor_model.c"
"esp_ble_mesh/btc/btc_ble_mesh_time_scene_model.c"
"esp_ble_mesh/mesh_common/mesh_aes_encrypt.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/aes_decrypt.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/aes_encrypt.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/cbc_mode.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ccm_mode.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/cmac_mode.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ctr_mode.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ctr_prng.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ecc_dh.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ecc_dsa.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ecc_platform_specific.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/ecc.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/hmac_prng.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/hmac.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/sha256.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/utils.c"
"esp_ble_mesh/mesh_common/mesh_atomic.c"
"esp_ble_mesh/mesh_common/mesh_buf.c"
"esp_ble_mesh/mesh_common/mesh_common.c"

View file

@ -139,6 +139,7 @@ endif
ifdef CONFIG_BLE_MESH
COMPONENT_ADD_INCLUDEDIRS += esp_ble_mesh/mesh_common/include \
esp_ble_mesh/mesh_common/tinycrypt/include \
esp_ble_mesh/mesh_core \
esp_ble_mesh/mesh_core/include \
esp_ble_mesh/mesh_core/storage \
@ -151,6 +152,7 @@ COMPONENT_ADD_INCLUDEDIRS += esp_ble_mesh/mesh_common/include \
esp_ble_mesh/api
COMPONENT_SRCDIRS += esp_ble_mesh/mesh_common \
esp_ble_mesh/mesh_common/tinycrypt/src \
esp_ble_mesh/mesh_core \
esp_ble_mesh/mesh_core/storage \
esp_ble_mesh/btc \

View file

@ -186,15 +186,6 @@ const char *bt_hex(const void *buf, size_t len);
void mem_rcopy(u8_t *dst, u8_t const *src, u16_t len);
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len);
void _set(void *to, uint8_t val, unsigned int len);
uint8_t _double_byte(uint8_t a);
int _compare(const uint8_t *a, const uint8_t *b, size_t size);
#ifdef __cplusplus
}
#endif

View file

@ -10,9 +10,6 @@
#include "mesh_types.h"
#include "mesh_util.h"
#include "mesh_aes_encrypt.h"
#define MASK_TWENTY_SEVEN 0x1b
const char *bt_hex(const void *buf, size_t len)
{
@ -45,39 +42,3 @@ void mem_rcopy(u8_t *dst, u8_t const *src, u16_t len)
*dst++ = *--src;
}
}
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len)
{
if (from_len <= to_len) {
(void)memcpy(to, from, from_len);
return from_len;
} else {
return TC_CRYPTO_FAIL;
}
}
void _set(void *to, uint8_t val, unsigned int len)
{
(void)memset(to, val, len);
}
/*
* Doubles the value of a byte for values up to 127.
*/
uint8_t _double_byte(uint8_t a)
{
return ((a << 1) ^ ((a >> 7) * MASK_TWENTY_SEVEN));
}
int _compare(const uint8_t *a, const uint8_t *b, size_t size)
{
const uint8_t *tempa = a;
const uint8_t *tempb = b;
uint8_t result = 0;
for (unsigned int i = 0; i < size; i++) {
result |= tempa[i] ^ tempb[i];
}
return result;
}

View file

@ -46,11 +46,10 @@
* 2) call tc_aes_encrypt/decrypt to process the data.
*/
#ifndef _BLE_MESH_AES_ENCRYPT_H_
#define _BLE_MESH_AES_ENCRYPT_H_
#ifndef __BLE_MESH_TC_AES_H__
#define __BLE_MESH_TC_AES_H__
#include <stdint.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
@ -59,41 +58,13 @@ extern "C" {
#define Nb (4) /* number of columns (32-bit words) comprising the state */
#define Nk (4) /* number of 32-bit words comprising the key */
#define Nr (10) /* number of rounds */
#define TC_AES_BLOCK_SIZE (Nb*Nk)
#define TC_AES_KEY_SIZE (Nb*Nk)
#define TC_CRYPTO_SUCCESS 1
#define TC_CRYPTO_FAIL 0
#define TC_ZERO_BYTE 0x00
/* padding for last message block */
#define TC_CMAC_PADDING 0x80
#define TC_AES_BLOCK_SIZE (Nb*Nk)
#define TC_AES_KEY_SIZE (Nb*Nk)
typedef struct tc_aes_key_sched_struct {
unsigned int words[Nb * (Nr + 1)];
} *TCAesKeySched_t;
/* struct tc_cmac_struct represents the state of a CMAC computation */
typedef struct tc_cmac_struct {
/* initialization vector */
uint8_t iv[TC_AES_BLOCK_SIZE];
/* used if message length is a multiple of block_size bytes */
uint8_t K1[TC_AES_BLOCK_SIZE];
/* used if message length isn't a multiple block_size bytes */
uint8_t K2[TC_AES_BLOCK_SIZE];
/* where to put bytes that didn't fill a block */
uint8_t leftover[TC_AES_BLOCK_SIZE];
/* identifies the encryption key */
unsigned int keyid;
/* next available leftover location */
unsigned int leftover_offset;
/* AES key schedule */
TCAesKeySched_t sched;
/* calls to tc_cmac_update left before re-key */
uint64_t countdown;
} *TCCmacState_t;
/**
* @brief Set AES-128 encryption key
* Uses key k to initialize s
@ -152,20 +123,8 @@ int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k);
int tc_aes_decrypt(uint8_t *out, const uint8_t *in,
const TCAesKeySched_t s);
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched);
void gf_double(uint8_t *out, uint8_t *in);
int tc_cmac_init(TCCmacState_t s);
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length);
int tc_cmac_final(uint8_t *tag, TCCmacState_t s);
int tc_cmac_erase(TCCmacState_t s);
#ifdef __cplusplus
}
#endif
#endif /* _BLE_MESH_AES_ENCRYPT_H_ */
#endif /* __BLE_MESH_TC_AES_H__ */

View file

@ -0,0 +1,151 @@
/* cbc_mode.h - TinyCrypt interface to a CBC mode implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to a CBC mode implementation.
*
* Overview: CBC (for "cipher block chaining") mode is a NIST approved mode of
* operation defined in SP 800-38a. It can be used with any block
* cipher to provide confidentiality of strings whose lengths are
* multiples of the block_size of the underlying block cipher.
* TinyCrypt hard codes AES as the block cipher.
*
* Security: CBC mode provides data confidentiality given that the maximum
* number q of blocks encrypted under a single key satisfies
* q < 2^63, which is not a practical constraint (it is considered a
* good practice to replace the encryption when q == 2^56). CBC mode
* provides NO data integrity.
*
* CBC mode assumes that the IV value input into the
* tc_cbc_mode_encrypt is randomly generated. The TinyCrypt library
* provides HMAC-PRNG module, which generates suitable IVs. Other
* methods for generating IVs are acceptable, provided that the
* values of the IVs generated appear random to any adversary,
* including someone with complete knowledge of the system design.
*
* The randomness property on which CBC mode's security depends is
* the unpredictability of the IV. Since it is unpredictable, this
* means in practice that CBC mode requires that the IV is stored
* somehow with the ciphertext in order to recover the plaintext.
*
* TinyCrypt CBC encryption prepends the IV to the ciphertext,
* because this affords a more efficient (few buffers) decryption.
* Hence tc_cbc_mode_encrypt assumes the ciphertext buffer is always
* 16 bytes larger than the plaintext buffer.
*
* Requires: AES-128
*
* Usage: 1) call tc_cbc_mode_encrypt to encrypt data.
*
* 2) call tc_cbc_mode_decrypt to decrypt data.
*
*/
#ifndef __BLE_MESH_TC_CBC_MODE_H__
#define __BLE_MESH_TC_CBC_MODE_H__
#include <tinycrypt/aes.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief CBC encryption procedure
* CBC encrypts inlen bytes of the in buffer into the out buffer
* using the encryption key schedule provided, prepends iv to out
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* out == NULL or
* in == NULL or
* ctr == NULL or
* sched == NULL or
* inlen == 0 or
* (inlen % TC_AES_BLOCK_SIZE) != 0 or
* (outlen % TC_AES_BLOCK_SIZE) != 0 or
* outlen != inlen + TC_AES_BLOCK_SIZE
* @note Assumes: - sched has been configured by aes_set_encrypt_key
* - iv contains a 16 byte random string
* - out buffer is large enough to hold the ciphertext + iv
* - out buffer is a contiguous buffer
* - in holds the plaintext and is a contiguous buffer
* - inlen gives the number of bytes in the in buffer
* @param out IN/OUT -- buffer to receive the ciphertext
* @param outlen IN -- length of ciphertext buffer in bytes
* @param in IN -- plaintext to encrypt
* @param inlen IN -- length of plaintext buffer in bytes
* @param iv IN -- the IV for the this encrypt/decrypt
* @param sched IN -- AES key schedule for this encrypt
*/
int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched);
/**
* @brief CBC decryption procedure
* CBC decrypts inlen bytes of the in buffer into the out buffer
* using the provided encryption key schedule
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* out == NULL or
* in == NULL or
* sched == NULL or
* inlen == 0 or
* outlen == 0 or
* (inlen % TC_AES_BLOCK_SIZE) != 0 or
* (outlen % TC_AES_BLOCK_SIZE) != 0 or
* outlen != inlen + TC_AES_BLOCK_SIZE
* @note Assumes:- in == iv + ciphertext, i.e. the iv and the ciphertext are
* contiguous. This allows for a very efficient decryption
* algorithm that would not otherwise be possible
* - sched was configured by aes_set_decrypt_key
* - out buffer is large enough to hold the decrypted plaintext
* and is a contiguous buffer
* - inlen gives the number of bytes in the in buffer
* @param out IN/OUT -- buffer to receive decrypted data
* @param outlen IN -- length of plaintext buffer in bytes
* @param in IN -- ciphertext to decrypt, including IV
* @param inlen IN -- length of ciphertext buffer in bytes
* @param iv IN -- the IV for the this encrypt/decrypt
* @param sched IN -- AES key schedule for this decrypt
*
*/
int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_CBC_MODE_H__ */

View file

@ -0,0 +1,211 @@
/* ccm_mode.h - TinyCrypt interface to a CCM mode implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to a CCM mode implementation.
*
* Overview: CCM (for "Counter with CBC-MAC") mode is a NIST approved mode of
* operation defined in SP 800-38C.
*
* TinyCrypt CCM implementation accepts:
*
* 1) Both non-empty payload and associated data (it encrypts and
* authenticates the payload and also authenticates the associated
* data);
* 2) Non-empty payload and empty associated data (it encrypts and
* authenticates the payload);
* 3) Non-empty associated data and empty payload (it degenerates to
* an authentication mode on the associated data).
*
* TinyCrypt CCM implementation accepts associated data of any length
* between 0 and (2^16 - 2^8) bytes.
*
* Security: The mac length parameter is an important parameter to estimate the
* security against collision attacks (that aim at finding different
* messages that produce the same authentication tag). TinyCrypt CCM
* implementation accepts any even integer between 4 and 16, as
* suggested in SP 800-38C.
*
* RFC-3610, which also specifies CCM, presents a few relevant
* security suggestions, such as: it is recommended for most
* applications to use a mac length greater than 8. Besides, the
* usage of the same nonce for two different messages which are
* encrypted with the same key destroys the security of CCM mode.
*
* Requires: AES-128
*
* Usage: 1) call tc_ccm_config to configure.
*
* 2) call tc_ccm_mode_encrypt to encrypt data and generate tag.
*
* 3) call tc_ccm_mode_decrypt to decrypt data and verify tag.
*/
#ifndef __BLE_MESH_TC_CCM_MODE_H__
#define __BLE_MESH_TC_CCM_MODE_H__
#include <tinycrypt/aes.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
/* max additional authenticated size in bytes: 2^16 - 2^8 = 65280 */
#define TC_CCM_AAD_MAX_BYTES 0xff00
/* max message size in bytes: 2^(8L) = 2^16 = 65536 */
#define TC_CCM_PAYLOAD_MAX_BYTES 0x10000
/* struct tc_ccm_mode_struct represents the state of a CCM computation */
typedef struct tc_ccm_mode_struct {
TCAesKeySched_t sched; /* AES key schedule */
uint8_t *nonce; /* nonce required by CCM */
unsigned int mlen; /* mac length in bytes (parameter t in SP-800 38C) */
} *TCCcmMode_t;
/**
* @brief CCM configuration procedure
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* c == NULL or
* sched == NULL or
* nonce == NULL or
* mlen != {4, 6, 8, 10, 12, 16}
* @param c -- CCM state
* @param sched IN -- AES key schedule
* @param nonce IN - nonce
* @param nlen -- nonce length in bytes
* @param mlen -- mac length in bytes (parameter t in SP-800 38C)
*/
int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
unsigned int nlen, unsigned int mlen);
/**
* @brief CCM tag generation and encryption procedure
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* out == NULL or
* c == NULL or
* ((plen > 0) and (payload == NULL)) or
* ((alen > 0) and (associated_data == NULL)) or
* (alen >= TC_CCM_AAD_MAX_BYTES) or
* (plen >= TC_CCM_PAYLOAD_MAX_BYTES) or
* (olen < plen + maclength)
*
* @param out OUT -- encrypted data
* @param olen IN -- output length in bytes
* @param associated_data IN -- associated data
* @param alen IN -- associated data length in bytes
* @param payload IN -- payload
* @param plen IN -- payload length in bytes
* @param c IN -- CCM state
*
* @note: out buffer should be at least (plen + c->mlen) bytes long.
*
* @note: The sequence b for encryption is formatted as follows:
* b = [FLAGS | nonce | counter ], where:
* FLAGS is 1 byte long
* nonce is 13 bytes long
* counter is 2 bytes long
* The byte FLAGS is composed by the following 8 bits:
* 0-2 bits: used to represent the value of q-1
* 3-7 btis: always 0's
*
* @note: The sequence b for authentication is formatted as follows:
* b = [FLAGS | nonce | length(mac length)], where:
* FLAGS is 1 byte long
* nonce is 13 bytes long
* length(mac length) is 2 bytes long
* The byte FLAGS is composed by the following 8 bits:
* 0-2 bits: used to represent the value of q-1
* 3-5 bits: mac length (encoded as: (mlen-2)/2)
* 6: Adata (0 if alen == 0, and 1 otherwise)
* 7: always 0
*/
int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen,
const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c);
/**
* @brief CCM decryption and tag verification procedure
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* out == NULL or
* c == NULL or
* ((plen > 0) and (payload == NULL)) or
* ((alen > 0) and (associated_data == NULL)) or
* (alen >= TC_CCM_AAD_MAX_BYTES) or
* (plen >= TC_CCM_PAYLOAD_MAX_BYTES) or
* (olen < plen - c->mlen)
*
* @param out OUT -- decrypted data
* @param associated_data IN -- associated data
* @param alen IN -- associated data length in bytes
* @param payload IN -- payload
* @param plen IN -- payload length in bytes
* @param c IN -- CCM state
*
* @note: out buffer should be at least (plen - c->mlen) bytes long.
*
* @note: The sequence b for encryption is formatted as follows:
* b = [FLAGS | nonce | counter ], where:
* FLAGS is 1 byte long
* nonce is 13 bytes long
* counter is 2 bytes long
* The byte FLAGS is composed by the following 8 bits:
* 0-2 bits: used to represent the value of q-1
* 3-7 btis: always 0's
*
* @note: The sequence b for authentication is formatted as follows:
* b = [FLAGS | nonce | length(mac length)], where:
* FLAGS is 1 byte long
* nonce is 13 bytes long
* length(mac length) is 2 bytes long
* The byte FLAGS is composed by the following 8 bits:
* 0-2 bits: used to represent the value of q-1
* 3-5 bits: mac length (encoded as: (mlen-2)/2)
* 6: Adata (0 if alen == 0, and 1 otherwise)
* 7: always 0
*/
int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen,
const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload, unsigned int plen,
TCCcmMode_t c);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_CCM_MODE_H__ */

View file

@ -0,0 +1,194 @@
/* cmac_mode.h -- interface to a CMAC implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to a CMAC implementation.
*
* Overview: CMAC is defined NIST in SP 800-38B, and is the standard algorithm
* for computing a MAC using a block cipher. It can compute the MAC
* for a byte string of any length. It is distinguished from CBC-MAC
* in the processing of the final message block; CMAC uses a
* different technique to compute the final message block is full
* size or only partial, while CBC-MAC uses the same technique for
* both. This difference permits CMAC to be applied to variable
* length messages, while all messages authenticated by CBC-MAC must
* be the same length.
*
* Security: AES128-CMAC mode of operation offers 64 bits of security against
* collision attacks. Note however that an external attacker cannot
* generate the tags him/herself without knowing the MAC key. In this
* sense, to attack the collision property of AES128-CMAC, an
* external attacker would need the cooperation of the legal user to
* produce an exponentially high number of tags (e.g. 2^64) to
* finally be able to look for collisions and benefit from them. As
* an extra precaution, the current implementation allows to at most
* 2^48 calls to the tc_cmac_update function before re-calling
* tc_cmac_setup (allowing a new key to be set), as suggested in
* Appendix B of SP 800-38B.
*
* Requires: AES-128
*
* Usage: This implementation provides a "scatter-gather" interface, so that
* the CMAC value can be computed incrementally over a message
* scattered in different segments throughout memory. Experience shows
* this style of interface tends to minimize the burden of programming
* correctly. Like all symmetric key operations, it is session
* oriented.
*
* To begin a CMAC session, use tc_cmac_setup to initialize a struct
* tc_cmac_struct with encryption key and buffer. Our implementation
* always assume that the AES key to be the same size as the block
* cipher block size. Once setup, this data structure can be used for
* many CMAC computations.
*
* Once the state has been setup with a key, computing the CMAC of
* some data requires three steps:
*
* (1) first use tc_cmac_init to initialize a new CMAC computation.
* (2) next mix all of the data into the CMAC computation state using
* tc_cmac_update. If all of the data resides in a single data
* segment then only one tc_cmac_update call is needed; if data
* is scattered throughout memory in n data segments, then n calls
* will be needed. CMAC IS ORDER SENSITIVE, to be able to detect
* attacks that swap bytes, so the order in which data is mixed
* into the state is critical!
* (3) Once all of the data for a message has been mixed, use
* tc_cmac_final to compute the CMAC tag value.
*
* Steps (1)-(3) can be repeated as many times as you want to CMAC
* multiple messages. A practical limit is 2^48 1K messages before you
* have to change the key.
*
* Once you are done computing CMAC with a key, it is a good idea to
* destroy the state so an attacker cannot recover the key; use
* tc_cmac_erase to accomplish this.
*/
#ifndef __BLE_MESH_TC_CMAC_MODE_H__
#define __BLE_MESH_TC_CMAC_MODE_H__
#include <tinycrypt/aes.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
/* padding for last message block */
#define TC_CMAC_PADDING 0x80
/* struct tc_cmac_struct represents the state of a CMAC computation */
typedef struct tc_cmac_struct {
/* initialization vector */
uint8_t iv[TC_AES_BLOCK_SIZE];
/* used if message length is a multiple of block_size bytes */
uint8_t K1[TC_AES_BLOCK_SIZE];
/* used if message length isn't a multiple block_size bytes */
uint8_t K2[TC_AES_BLOCK_SIZE];
/* where to put bytes that didn't fill a block */
uint8_t leftover[TC_AES_BLOCK_SIZE];
/* identifies the encryption key */
unsigned int keyid;
/* next available leftover location */
unsigned int leftover_offset;
/* AES key schedule */
TCAesKeySched_t sched;
/* calls to tc_cmac_update left before re-key */
uint64_t countdown;
} *TCCmacState_t;
/**
* @brief Configures the CMAC state to use the given AES key
* @return returns TC_CRYPTO_SUCCESS (1) after having configured the CMAC state
* returns TC_CRYPTO_FAIL (0) if:
* s == NULL or
* key == NULL
*
* @param s IN/OUT -- the state to set up
* @param key IN -- the key to use
* @param sched IN -- AES key schedule
*/
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key,
TCAesKeySched_t sched);
/**
* @brief Erases the CMAC state
* @return returns TC_CRYPTO_SUCCESS (1) after having configured the CMAC state
* returns TC_CRYPTO_FAIL (0) if:
* s == NULL
*
* @param s IN/OUT -- the state to erase
*/
int tc_cmac_erase(TCCmacState_t s);
/**
* @brief Initializes a new CMAC computation
* @return returns TC_CRYPTO_SUCCESS (1) after having initialized the CMAC state
* returns TC_CRYPTO_FAIL (0) if:
* s == NULL
*
* @param s IN/OUT -- the state to initialize
*/
int tc_cmac_init(TCCmacState_t s);
/**
* @brief Incrementally computes CMAC over the next data segment
* @return returns TC_CRYPTO_SUCCESS (1) after successfully updating the CMAC state
* returns TC_CRYPTO_FAIL (0) if:
* s == NULL or
* if data == NULL when dlen > 0
*
* @param s IN/OUT -- the CMAC state
* @param data IN -- the next data segment to MAC
* @param dlen IN -- the length of data in bytes
*/
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t dlen);
/**
* @brief Generates the tag from the CMAC state
* @return returns TC_CRYPTO_SUCCESS (1) after successfully generating the tag
* returns TC_CRYPTO_FAIL (0) if:
* tag == NULL or
* s == NULL
*
* @param tag OUT -- the CMAC tag
* @param s IN -- CMAC state
*/
int tc_cmac_final(uint8_t *tag, TCCmacState_t s);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_CMAC_MODE_H__ */

View file

@ -0,0 +1,61 @@
/* constants.h - TinyCrypt interface to constants */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to constants.
*
*/
#ifndef __BLE_MESH_TC_CONSTANTS_H__
#define __BLE_MESH_TC_CONSTANTS_H__
#ifdef __cplusplus
extern "C" {
#endif
#include <stdbool.h>
#ifndef NULL
#define NULL ((void *)0)
#endif
#define TC_CRYPTO_SUCCESS 1
#define TC_CRYPTO_FAIL 0
#define TC_ZERO_BYTE 0x00
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_CONSTANTS_H__ */

View file

@ -0,0 +1,108 @@
/* ctr_mode.h - TinyCrypt interface to CTR mode */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to CTR mode.
*
* Overview: CTR (pronounced "counter") mode is a NIST approved mode of
* operation defined in SP 800-38a. It can be used with any
* block cipher to provide confidentiality of strings of any
* length. TinyCrypt hard codes AES128 as the block cipher.
*
* Security: CTR mode achieves confidentiality only if the counter value is
* never reused with a same encryption key. If the counter is
* repeated, than an adversary might be able to defeat the scheme.
*
* A usual method to ensure different counter values refers to
* initialize the counter in a given value (0, for example) and
* increases it every time a new block is enciphered. This naturally
* leaves to a limitation on the number q of blocks that can be
* enciphered using a same key: q < 2^(counter size).
*
* TinyCrypt uses a counter of 32 bits. This means that after 2^32
* block encryptions, the counter will be reused (thus losing CBC
* security). 2^32 block encryptions should be enough for most of
* applications targeting constrained devices. Applications intended
* to encrypt a larger number of blocks must replace the key after
* 2^32 block encryptions.
*
* CTR mode provides NO data integrity.
*
* Requires: AES-128
*
* Usage: 1) call tc_ctr_mode to process the data to encrypt/decrypt.
*
*/
#ifndef __BLE_MESH_TC_CTR_MODE_H__
#define __BLE_MESH_TC_CTR_MODE_H__
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief CTR mode encryption/decryption procedure.
* CTR mode encrypts (or decrypts) inlen bytes from in buffer into out buffer
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* out == NULL or
* in == NULL or
* ctr == NULL or
* sched == NULL or
* inlen == 0 or
* outlen == 0 or
* inlen != outlen
* @note Assumes:- The current value in ctr has NOT been used with sched
* - out points to inlen bytes
* - in points to inlen bytes
* - ctr is an integer counter in littleEndian format
* - sched was initialized by aes_set_encrypt_key
* @param out OUT -- produced ciphertext (plaintext)
* @param outlen IN -- length of ciphertext buffer in bytes
* @param in IN -- data to encrypt (or decrypt)
* @param inlen IN -- length of input data in bytes
* @param ctr IN/OUT -- the current counter value
* @param sched IN -- an initialized AES key schedule
*/
int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_CTR_MODE_H__ */

View file

@ -0,0 +1,166 @@
/* ctr_prng.h - TinyCrypt interface to a CTR-PRNG implementation */
/*
* Copyright (c) 2016, Chris Morrison
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to a CTR-PRNG implementation.
*
* Overview: A pseudo-random number generator (PRNG) generates a sequence
* of numbers that have a distribution close to the one expected
* for a sequence of truly random numbers. The NIST Special
* Publication 800-90A specifies several mechanisms to generate
* sequences of pseudo random numbers, including the CTR-PRNG one
* which is based on AES. TinyCrypt implements CTR-PRNG with
* AES-128.
*
* Security: A cryptographically secure PRNG depends on the existence of an
* entropy source to provide a truly random seed as well as the
* security of the primitives used as the building blocks (AES-128
* in this instance).
*
* Requires: - AES-128
*
* Usage: 1) call tc_ctr_prng_init to seed the prng context
*
* 2) call tc_ctr_prng_reseed to mix in additional entropy into
* the prng context
*
* 3) call tc_ctr_prng_generate to output the pseudo-random data
*
* 4) call tc_ctr_prng_uninstantiate to zero out the prng context
*/
#ifndef __BLE_MESH_TC_CTR_PRNG_H__
#define __BLE_MESH_TC_CTR_PRNG_H__
#include <tinycrypt/aes.h>
#define TC_CTR_PRNG_RESEED_REQ -1
#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
/* updated each time another BLOCKLEN_BYTES bytes are produced */
uint8_t V[TC_AES_BLOCK_SIZE];
/* updated whenever the PRNG is reseeded */
struct tc_aes_key_sched_struct key;
/* number of requests since initialization/reseeding */
uint64_t reseedCount;
} TCCtrPrng_t;
/**
* @brief CTR-PRNG initialization procedure
* Initializes prng context with entropy and personalization string (if any)
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* ctx == NULL,
* entropy == NULL,
* entropyLen < (TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE)
* @note Only the first (TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE) bytes of
* both the entropy and personalization inputs are used -
* supplying additional bytes has no effect.
* @param ctx IN/OUT -- the PRNG context to initialize
* @param entropy IN -- entropy used to seed the PRNG
* @param entropyLen IN -- entropy length in bytes
* @param personalization IN -- personalization string used to seed the PRNG
* (may be null)
* @param plen IN -- personalization length in bytes
*
*/
int tc_ctr_prng_init(TCCtrPrng_t *const ctx,
uint8_t const *const entropy,
unsigned int entropyLen,
uint8_t const *const personalization,
unsigned int pLen);
/**
* @brief CTR-PRNG reseed procedure
* Mixes entropy and additional_input into the prng context
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* ctx == NULL,
* entropy == NULL,
* entropylen < (TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE)
* @note It is better to reseed an existing prng context rather than
* re-initialise, so that any existing entropy in the context is
* presereved. This offers some protection against undetected failures
* of the entropy source.
* @note Assumes tc_ctr_prng_init has been called for ctx
* @param ctx IN/OUT -- the PRNG state
* @param entropy IN -- entropy to mix into the prng
* @param entropylen IN -- length of entropy in bytes
* @param additional_input IN -- additional input to the prng (may be null)
* @param additionallen IN -- additional input length in bytes
*/
int tc_ctr_prng_reseed(TCCtrPrng_t *const ctx,
uint8_t const *const entropy,
unsigned int entropyLen,
uint8_t const *const additional_input,
unsigned int additionallen);
/**
* @brief CTR-PRNG generate procedure
* Generates outlen pseudo-random bytes into out buffer, updates prng
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CTR_PRNG_RESEED_REQ (-1) if a reseed is needed
* returns TC_CRYPTO_FAIL (0) if:
* ctx == NULL,
* out == NULL,
* outlen >= 2^16
* @note Assumes tc_ctr_prng_init has been called for ctx
* @param ctx IN/OUT -- the PRNG context
* @param additional_input IN -- additional input to the prng (may be null)
* @param additionallen IN -- additional input length in bytes
* @param out IN/OUT -- buffer to receive output
* @param outlen IN -- size of out buffer in bytes
*/
int tc_ctr_prng_generate(TCCtrPrng_t *const ctx,
uint8_t const *const additional_input,
unsigned int additionallen,
uint8_t *const out,
unsigned int outlen);
/**
* @brief CTR-PRNG uninstantiate procedure
* Zeroes the internal state of the supplied prng context
* @return none
* @param ctx IN/OUT -- the PRNG context
*/
void tc_ctr_prng_uninstantiate(TCCtrPrng_t *const ctx);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_CTR_PRNG_H__ */

View file

@ -0,0 +1,545 @@
/* ecc.h - TinyCrypt interface to common ECC functions */
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to common ECC functions.
*
* Overview: This software is an implementation of common functions
* necessary to elliptic curve cryptography. This implementation uses
* curve NIST p-256.
*
* Security: The curve NIST p-256 provides approximately 128 bits of security.
*
*/
#ifndef __BLE_MESH_TC_UECC_H__
#define __BLE_MESH_TC_UECC_H__
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/* Word size (4 bytes considering 32-bits architectures) */
#define uECC_WORD_SIZE 4
/* setting max number of calls to prng: */
#ifndef uECC_RNG_MAX_TRIES
#define uECC_RNG_MAX_TRIES 64
#endif
/* defining data types to store word and bit counts: */
typedef int8_t wordcount_t;
typedef int16_t bitcount_t;
/* defining data type for comparison result: */
typedef int8_t cmpresult_t;
/* defining data type to store ECC coordinate/point in 32bits words: */
typedef unsigned int uECC_word_t;
/* defining data type to store an ECC coordinate/point in 64bits words: */
typedef uint64_t uECC_dword_t;
/* defining masks useful for ecc computations: */
#define HIGH_BIT_SET 0x80000000
#define uECC_WORD_BITS 32
#define uECC_WORD_BITS_SHIFT 5
#define uECC_WORD_BITS_MASK 0x01F
/* Number of words of 32 bits to represent an element of the the curve p-256: */
#define NUM_ECC_WORDS 8
/* Number of bytes to represent an element of the the curve p-256: */
#define NUM_ECC_BYTES (uECC_WORD_SIZE*NUM_ECC_WORDS)
/* structure that represents an elliptic curve (e.g. p256):*/
struct uECC_Curve_t;
typedef const struct uECC_Curve_t *uECC_Curve;
struct uECC_Curve_t {
wordcount_t num_words;
wordcount_t num_bytes;
bitcount_t num_n_bits;
uECC_word_t p[NUM_ECC_WORDS];
uECC_word_t n[NUM_ECC_WORDS];
uECC_word_t G[NUM_ECC_WORDS * 2];
uECC_word_t b[NUM_ECC_WORDS];
void (*double_jacobian)(uECC_word_t *X1, uECC_word_t *Y1, uECC_word_t *Z1,
uECC_Curve curve);
void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
};
/*
* @brief computes doubling of point ion jacobian coordinates, in place.
* @param X1 IN/OUT -- x coordinate
* @param Y1 IN/OUT -- y coordinate
* @param Z1 IN/OUT -- z coordinate
* @param curve IN -- elliptic curve
*/
void double_jacobian_default(uECC_word_t *X1, uECC_word_t *Y1,
uECC_word_t *Z1, uECC_Curve curve);
/*
* @brief Computes x^3 + ax + b. result must not overlap x.
* @param result OUT -- x^3 + ax + b
* @param x IN -- value of x
* @param curve IN -- elliptic curve
*/
void x_side_default(uECC_word_t *result, const uECC_word_t *x,
uECC_Curve curve);
/*
* @brief Computes result = product % curve_p
* from http://www.nsa.gov/ia/_files/nist-routines.pdf
* @param result OUT -- product % curve_p
* @param product IN -- value to be reduced mod curve_p
*/
void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product);
/* Bytes to words ordering: */
#define BYTES_TO_WORDS_8(a, b, c, d, e, f, g, h) 0x##d##c##b##a, 0x##h##g##f##e
#define BYTES_TO_WORDS_4(a, b, c, d) 0x##d##c##b##a
#define BITS_TO_WORDS(num_bits) \
((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)
/* definition of curve NIST p-256: */
static const struct uECC_Curve_t curve_secp256r1 = {
NUM_ECC_WORDS,
NUM_ECC_BYTES,
256, /* num_n_bits */ {
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
BYTES_TO_WORDS_8(FF, FF, FF, FF, 00, 00, 00, 00),
BYTES_TO_WORDS_8(00, 00, 00, 00, 00, 00, 00, 00),
BYTES_TO_WORDS_8(01, 00, 00, 00, FF, FF, FF, FF)
}, {
BYTES_TO_WORDS_8(51, 25, 63, FC, C2, CA, B9, F3),
BYTES_TO_WORDS_8(84, 9E, 17, A7, AD, FA, E6, BC),
BYTES_TO_WORDS_8(FF, FF, FF, FF, FF, FF, FF, FF),
BYTES_TO_WORDS_8(00, 00, 00, 00, FF, FF, FF, FF)
}, {
BYTES_TO_WORDS_8(96, C2, 98, D8, 45, 39, A1, F4),
BYTES_TO_WORDS_8(A0, 33, EB, 2D, 81, 7D, 03, 77),
BYTES_TO_WORDS_8(F2, 40, A4, 63, E5, E6, BC, F8),
BYTES_TO_WORDS_8(47, 42, 2C, E1, F2, D1, 17, 6B),
BYTES_TO_WORDS_8(F5, 51, BF, 37, 68, 40, B6, CB),
BYTES_TO_WORDS_8(CE, 5E, 31, 6B, 57, 33, CE, 2B),
BYTES_TO_WORDS_8(16, 9E, 0F, 7C, 4A, EB, E7, 8E),
BYTES_TO_WORDS_8(9B, 7F, 1A, FE, E2, 42, E3, 4F)
}, {
BYTES_TO_WORDS_8(4B, 60, D2, 27, 3E, 3C, CE, 3B),
BYTES_TO_WORDS_8(F6, B0, 53, CC, B0, 06, 1D, 65),
BYTES_TO_WORDS_8(BC, 86, 98, 76, 55, BD, EB, B3),
BYTES_TO_WORDS_8(E7, 93, 3A, AA, D8, 35, C6, 5A)
},
&double_jacobian_default,
&x_side_default,
&vli_mmod_fast_secp256r1
};
uECC_Curve uECC_secp256r1(void);
/*
* @brief Generates a random integer in the range 0 < random < top.
* Both random and top have num_words words.
* @param random OUT -- random integer in the range 0 < random < top
* @param top IN -- upper limit
* @param num_words IN -- number of words
* @return a random integer in the range 0 < random < top
*/
int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
wordcount_t num_words);
/* uECC_RNG_Function type
* The RNG function should fill 'size' random bytes into 'dest'. It should
* return 1 if 'dest' was filled with random data, or 0 if the random data could
* not be generated. The filled-in values should be either truly random, or from
* a cryptographically-secure PRNG.
*
* A correctly functioning RNG function must be set (using uECC_set_rng())
* before calling uECC_make_key() or uECC_sign().
*
* Setting a correctly functioning RNG function improves the resistance to
* side-channel attacks for uECC_shared_secret().
*
* A correct RNG function is set by default. If you are building on another
* POSIX-compliant system that supports /dev/random or /dev/urandom, you can
* define uECC_POSIX to use the predefined RNG.
*/
typedef int(*uECC_RNG_Function)(uint8_t *dest, unsigned int size);
/*
* @brief Set the function that will be used to generate random bytes. The RNG
* function should return 1 if the random data was generated, or 0 if the random
* data could not be generated.
*
* @note On platforms where there is no predefined RNG function, this must be
* called before uECC_make_key() or uECC_sign() are used.
*
* @param rng_function IN -- function that will be used to generate random bytes
*/
void uECC_set_rng(uECC_RNG_Function rng_function);
/*
* @brief provides current uECC_RNG_Function.
* @return Returns the function that will be used to generate random bytes.
*/
uECC_RNG_Function uECC_get_rng(void);
/*
* @brief computes the size of a private key for the curve in bytes.
* @param curve IN -- elliptic curve
* @return size of a private key for the curve in bytes.
*/
int uECC_curve_private_key_size(uECC_Curve curve);
/*
* @brief computes the size of a public key for the curve in bytes.
* @param curve IN -- elliptic curve
* @return the size of a public key for the curve in bytes.
*/
int uECC_curve_public_key_size(uECC_Curve curve);
/*
* @brief Compute the corresponding public key for a private key.
* @param private_key IN -- The private key to compute the public key for
* @param public_key OUT -- Will be filled in with the corresponding public key
* @param curve
* @return Returns 1 if key was computed successfully, 0 if an error occurred.
*/
int uECC_compute_public_key(const uint8_t *private_key,
uint8_t *public_key, uECC_Curve curve);
/*
* @brief Compute public-key.
* @return corresponding public-key.
* @param result OUT -- public-key
* @param private_key IN -- private-key
* @param curve IN -- elliptic curve
*/
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key, uECC_Curve curve);
/*
* @brief Regularize the bitcount for the private key so that attackers cannot
* use a side channel attack to learn the number of leading zeros.
* @return Regularized k
* @param k IN -- private-key
* @param k0 IN/OUT -- regularized k
* @param k1 IN/OUT -- regularized k
* @param curve IN -- elliptic curve
*/
uECC_word_t regularize_k(const uECC_word_t *const k, uECC_word_t *k0,
uECC_word_t *k1, uECC_Curve curve);
/*
* @brief Point multiplication algorithm using Montgomery's ladder with co-Z
* coordinates. See http://eprint.iacr.org/2011/338.pdf.
* @note Result may overlap point.
* @param result OUT -- returns scalar*point
* @param point IN -- elliptic curve point
* @param scalar IN -- scalar
* @param initial_Z IN -- initial value for z
* @param num_bits IN -- number of bits in scalar
* @param curve IN -- elliptic curve
*/
void EccPoint_mult(uECC_word_t *result, const uECC_word_t *point,
const uECC_word_t *scalar, const uECC_word_t *initial_Z,
bitcount_t num_bits, uECC_Curve curve);
/*
* @brief Constant-time comparison to zero - secure way to compare long integers
* @param vli IN -- very long integer
* @param num_words IN -- number of words in the vli
* @return 1 if vli == 0, 0 otherwise.
*/
uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words);
/*
* @brief Check if 'point' is the point at infinity
* @param point IN -- elliptic curve point
* @param curve IN -- elliptic curve
* @return if 'point' is the point at infinity, 0 otherwise.
*/
uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve);
/*
* @brief computes the sign of left - right, in constant time.
* @param left IN -- left term to be compared
* @param right IN -- right term to be compared
* @param num_words IN -- number of words
* @return the sign of left - right
*/
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words);
/*
* @brief computes sign of left - right, not in constant time.
* @note should not be used if inputs are part of a secret
* @param left IN -- left term to be compared
* @param right IN -- right term to be compared
* @param num_words IN -- number of words
* @return the sign of left - right
*/
cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words);
/*
* @brief Computes result = (left - right) % mod.
* @note Assumes that (left < mod) and (right < mod), and that result does not
* overlap mod.
* @param result OUT -- (left - right) % mod
* @param left IN -- leftright term in modular subtraction
* @param right IN -- right term in modular subtraction
* @param mod IN -- mod
* @param num_words IN -- number of words
*/
void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words);
/*
* @brief Computes P' = (x1', y1', Z3), P + Q = (x3, y3, Z3) or
* P => P', Q => P + Q
* @note assumes Input P = (x1, y1, Z), Q = (x2, y2, Z)
* @param X1 IN -- x coordinate of P
* @param Y1 IN -- y coordinate of P
* @param X2 IN -- x coordinate of Q
* @param Y2 IN -- y coordinate of Q
* @param curve IN -- elliptic curve
*/
void XYcZ_add(uECC_word_t *X1, uECC_word_t *Y1, uECC_word_t *X2,
uECC_word_t *Y2, uECC_Curve curve);
/*
* @brief Computes (x1 * z^2, y1 * z^3)
* @param X1 IN -- previous x1 coordinate
* @param Y1 IN -- previous y1 coordinate
* @param Z IN -- z value
* @param curve IN -- elliptic curve
*/
void apply_z(uECC_word_t *X1, uECC_word_t *Y1, const uECC_word_t *const Z,
uECC_Curve curve);
/*
* @brief Check if bit is set.
* @return Returns nonzero if bit 'bit' of vli is set.
* @warning It is assumed that the value provided in 'bit' is within the
* boundaries of the word-array 'vli'.
* @note The bit ordering layout assumed for vli is: {31, 30, ..., 0},
* {63, 62, ..., 32}, {95, 94, ..., 64}, {127, 126,..., 96} for a vli consisting
* of 4 uECC_word_t elements.
*/
uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit);
/*
* @brief Computes result = product % mod, where product is 2N words long.
* @param result OUT -- product % mod
* @param mod IN -- module
* @param num_words IN -- number of words
* @warning Currently only designed to work for curve_p or curve_n.
*/
void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
const uECC_word_t *mod, wordcount_t num_words);
/*
* @brief Computes modular product (using curve->mmod_fast)
* @param result OUT -- (left * right) mod % curve_p
* @param left IN -- left term in product
* @param right IN -- right term in product
* @param curve IN -- elliptic curve
*/
void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, uECC_Curve curve);
/*
* @brief Computes result = left - right.
* @note Can modify in place.
* @param result OUT -- left - right
* @param left IN -- left term in subtraction
* @param right IN -- right term in subtraction
* @param num_words IN -- number of words
* @return borrow
*/
uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words);
/*
* @brief Constant-time comparison function(secure way to compare long ints)
* @param left IN -- left term in comparison
* @param right IN -- right term in comparison
* @param num_words IN -- number of words
* @return Returns 0 if left == right, 1 otherwise.
*/
uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words);
/*
* @brief Computes (left * right) % mod
* @param result OUT -- (left * right) % mod
* @param left IN -- left term in product
* @param right IN -- right term in product
* @param mod IN -- mod
* @param num_words IN -- number of words
*/
void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words);
/*
* @brief Computes (1 / input) % mod
* @note All VLIs are the same size.
* @note See "Euclid's GCD to Montgomery Multiplication to the Great Divide"
* @param result OUT -- (1 / input) % mod
* @param input IN -- value to be modular inverted
* @param mod IN -- mod
* @param num_words -- number of words
*/
void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
const uECC_word_t *mod, wordcount_t num_words);
/*
* @brief Sets dest = src.
* @param dest OUT -- destination buffer
* @param src IN -- origin buffer
* @param num_words IN -- number of words
*/
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
wordcount_t num_words);
/*
* @brief Computes (left + right) % mod.
* @note Assumes that (left < mod) and right < mod), and that result does not
* overlap mod.
* @param result OUT -- (left + right) % mod.
* @param left IN -- left term in addition
* @param right IN -- right term in addition
* @param mod IN -- mod
* @param num_words IN -- number of words
*/
void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words);
/*
* @brief Counts the number of bits required to represent vli.
* @param vli IN -- very long integer
* @param max_words IN -- number of words
* @return number of bits in given vli
*/
bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
const wordcount_t max_words);
/*
* @brief Erases (set to 0) vli
* @param vli IN -- very long integer
* @param num_words IN -- number of words
*/
void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words);
/*
* @brief check if it is a valid point in the curve
* @param point IN -- point to be checked
* @param curve IN -- elliptic curve
* @return 0 if point is valid
* @exception returns -1 if it is a point at infinity
* @exception returns -2 if x or y is smaller than p,
* @exception returns -3 if y^2 != x^3 + ax + b.
*/
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve);
/*
* @brief Check if a public key is valid.
* @param public_key IN -- The public key to be checked.
* @return returns 0 if the public key is valid
* @exception returns -1 if it is a point at infinity
* @exception returns -2 if x or y is smaller than p,
* @exception returns -3 if y^2 != x^3 + ax + b.
* @exception returns -4 if public key is the group generator.
*
* @note Note that you are not required to check for a valid public key before
* using any other uECC functions. However, you may wish to avoid spending CPU
* time computing a shared secret or verifying a signature using an invalid
* public key.
*/
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve);
/*
* @brief Converts an integer in uECC native format to big-endian bytes.
* @param bytes OUT -- bytes representation
* @param num_bytes IN -- number of bytes
* @param native IN -- uECC native representation
*/
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
const unsigned int *native);
/*
* @brief Converts big-endian bytes to an integer in uECC native format.
* @param native OUT -- uECC native representation
* @param bytes IN -- bytes representation
* @param num_bytes IN -- number of bytes
*/
void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
int num_bytes);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_UECC_H__ */

View file

@ -0,0 +1,131 @@
/* ecc_dh.h - TinyCrypt interface to EC-DH implementation */
/*
* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to EC-DH implementation.
*
* Overview: This software is an implementation of EC-DH. This implementation
* uses curve NIST p-256.
*
* Security: The curve NIST p-256 provides approximately 128 bits of security.
*/
#ifndef __BLE_MESH_TC_ECC_DH_H__
#define __BLE_MESH_TC_ECC_DH_H__
#include <tinycrypt/ecc.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Create a public/private key pair.
* @return returns TC_CRYPTO_SUCCESS (1) if the key pair was generated successfully
* returns TC_CRYPTO_FAIL (0) if error while generating key pair
*
* @param p_public_key OUT -- Will be filled in with the public key. Must be at
* least 2 * the curve size (in bytes) long. For curve secp256r1, p_public_key
* must be 64 bytes long.
* @param p_private_key OUT -- Will be filled in with the private key. Must be as
* long as the curve order (for secp256r1, p_private_key must be 32 bytes long).
*
* @note side-channel countermeasure: algorithm strengthened against timing
* attack.
* @warning A cryptographically-secure PRNG function must be set (using
* uECC_set_rng()) before calling uECC_make_key().
*/
int uECC_make_key(uint8_t *p_public_key, uint8_t *p_private_key, uECC_Curve curve);
#ifdef ENABLE_TESTS
/**
* @brief Create a public/private key pair given a specific d.
*
* @note THIS FUNCTION SHOULD BE CALLED ONLY FOR TEST PURPOSES. Refer to
* uECC_make_key() function for real applications.
*/
int uECC_make_key_with_d(uint8_t *p_public_key, uint8_t *p_private_key,
unsigned int *d, uECC_Curve curve);
#endif
/**
* @brief Compute a shared secret given your secret key and someone else's
* public key.
* @return returns TC_CRYPTO_SUCCESS (1) if the shared secret was computed successfully
* returns TC_CRYPTO_FAIL (0) otherwise
*
* @param p_secret OUT -- Will be filled in with the shared secret value. Must be
* the same size as the curve size (for curve secp256r1, secret must be 32 bytes
* long.
* @param p_public_key IN -- The public key of the remote party.
* @param p_private_key IN -- Your private key.
*
* @warning It is recommended to use the output of uECC_shared_secret() as the
* input of a recommended Key Derivation Function (see NIST SP 800-108) in
* order to produce a cryptographically secure symmetric key.
*/
int uECC_shared_secret(const uint8_t *p_public_key, const uint8_t *p_private_key,
uint8_t *p_secret, uECC_Curve curve);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_ECC_DH_H__ */

View file

@ -0,0 +1,139 @@
/* ecc_dh.h - TinyCrypt interface to EC-DSA implementation */
/*
* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to EC-DSA implementation.
*
* Overview: This software is an implementation of EC-DSA. This implementation
* uses curve NIST p-256.
*
* Security: The curve NIST p-256 provides approximately 128 bits of security.
*
* Usage: - To sign: Compute a hash of the data you wish to sign (SHA-2 is
* recommended) and pass it in to ecdsa_sign function along with your
* private key and a random number. You must use a new non-predictable
* random number to generate each new signature.
* - To verify a signature: Compute the hash of the signed data using
* the same hash as the signer and pass it to this function along with
* the signer's public key and the signature values (r and s).
*/
#ifndef __BLE_MESH_TC_ECC_DSA_H__
#define __BLE_MESH_TC_ECC_DSA_H__
#include <tinycrypt/ecc.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Generate an ECDSA signature for a given hash value.
* @return returns TC_CRYPTO_SUCCESS (1) if the signature generated successfully
* returns TC_CRYPTO_FAIL (0) if an error occurred.
*
* @param p_private_key IN -- Your private key.
* @param p_message_hash IN -- The hash of the message to sign.
* @param p_hash_size IN -- The size of p_message_hash in bytes.
* @param p_signature OUT -- Will be filled in with the signature value. Must be
* at least 2 * curve size long (for secp256r1, signature must be 64 bytes long).
*
* @warning A cryptographically-secure PRNG function must be set (using
* uECC_set_rng()) before calling uECC_sign().
* @note Usage: Compute a hash of the data you wish to sign (SHA-2 is
* recommended) and pass it in to this function along with your private key.
* @note side-channel countermeasure: algorithm strengthened against timing
* attack.
*/
int uECC_sign(const uint8_t *p_private_key, const uint8_t *p_message_hash,
unsigned p_hash_size, uint8_t *p_signature, uECC_Curve curve);
#ifdef ENABLE_TESTS
/*
* THIS FUNCTION SHOULD BE CALLED FOR TEST PURPOSES ONLY.
* Refer to uECC_sign() function for real applications.
*/
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned int hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve);
#endif
/**
* @brief Verify an ECDSA signature.
* @return returns TC_SUCCESS (1) if the signature is valid
* returns TC_FAIL (0) if the signature is invalid.
*
* @param p_public_key IN -- The signer's public key.
* @param p_message_hash IN -- The hash of the signed data.
* @param p_hash_size IN -- The size of p_message_hash in bytes.
* @param p_signature IN -- The signature values.
*
* @note Usage: Compute the hash of the signed data using the same hash as the
* signer and pass it to this function along with the signer's public key and
* the signature values (hash_size and signature).
*/
int uECC_verify(const uint8_t *p_public_key, const uint8_t *p_message_hash,
unsigned int p_hash_size, const uint8_t *p_signature, uECC_Curve curve);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_ECC_DSA_H__ */

View file

@ -0,0 +1,81 @@
/* uECC_platform_specific.h - Interface to platform specific functions*/
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* uECC_platform_specific.h -- Interface to platform specific functions
*/
#ifndef __BLE_MESH_UECC_PLATFORM_SPECIFIC_H_
#define __BLE_MESH_UECC_PLATFORM_SPECIFIC_H_
/*
* The RNG function should fill 'size' random bytes into 'dest'. It should
* return 1 if 'dest' was filled with random data, or 0 if the random data could
* not be generated. The filled-in values should be either truly random, or from
* a cryptographically-secure PRNG.
*
* A cryptographically-secure PRNG function must be set (using uECC_set_rng())
* before calling uECC_make_key() or uECC_sign().
*
* Setting a cryptographically-secure PRNG function improves the resistance to
* side-channel attacks for uECC_shared_secret().
*
* A correct PRNG function is set by default (default_RNG_defined = 1) and works
* for some platforms, such as Unix and Linux. For other platforms, you may need
* to provide another PRNG function.
*/
#define default_RNG_defined 0
int default_CSPRNG(uint8_t *dest, unsigned int size);
#endif /* __BLE_MESH_UECC_PLATFORM_SPECIFIC_H_ */

View file

@ -0,0 +1,139 @@
/* hmac.h - TinyCrypt interface to an HMAC implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to an HMAC implementation.
*
* Overview: HMAC is a message authentication code based on hash functions.
* TinyCrypt hard codes SHA-256 as the hash function. A message
* authentication code based on hash functions is also called a
* keyed cryptographic hash function since it performs a
* transformation specified by a key in an arbitrary length data
* set into a fixed length data set (also called tag).
*
* Security: The security of the HMAC depends on the length of the key and
* on the security of the hash function. Note that HMAC primitives
* are much less affected by collision attacks than their
* corresponding hash functions.
*
* Requires: SHA-256
*
* Usage: 1) call tc_hmac_set_key to set the HMAC key.
*
* 2) call tc_hmac_init to initialize a struct hash_state before
* processing the data.
*
* 3) call tc_hmac_update to process the next input segment;
* tc_hmac_update can be called as many times as needed to process
* all of the segments of the input; the order is important.
*
* 4) call tc_hmac_final to out put the tag.
*/
#ifndef __BLE_MESH_TC_HMAC_H__
#define __BLE_MESH_TC_HMAC_H__
#include <tinycrypt/sha256.h>
#ifdef __cplusplus
extern "C" {
#endif
struct tc_hmac_state_struct {
/* the internal state required by h */
struct tc_sha256_state_struct hash_state;
/* HMAC key schedule */
uint8_t key[2 * TC_SHA256_BLOCK_SIZE];
};
typedef struct tc_hmac_state_struct *TCHmacState_t;
/**
* @brief HMAC set key procedure
* Configures ctx to use key
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if
* ctx == NULL or
* key == NULL or
* key_size == 0
* @param ctx IN/OUT -- the struct tc_hmac_state_struct to initial
* @param key IN -- the HMAC key to configure
* @param key_size IN -- the HMAC key size
*/
int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key,
unsigned int key_size);
/**
* @brief HMAC init procedure
* Initializes ctx to begin the next HMAC operation
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: ctx == NULL or key == NULL
* @param ctx IN/OUT -- struct tc_hmac_state_struct buffer to init
*/
int tc_hmac_init(TCHmacState_t ctx);
/**
* @brief HMAC update procedure
* Mixes data_length bytes addressed by data into state
* @return returns TC_CRYPTO_SUCCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: ctx == NULL or key == NULL
* @note Assumes state has been initialized by tc_hmac_init
* @param ctx IN/OUT -- state of HMAC computation so far
* @param data IN -- data to incorporate into state
* @param data_length IN -- size of data in bytes
*/
int tc_hmac_update(TCHmacState_t ctx, const void *data,
unsigned int data_length);
/**
* @brief HMAC final procedure
* Writes the HMAC tag into the tag buffer
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* tag == NULL or
* ctx == NULL or
* key == NULL or
* taglen != TC_SHA256_DIGEST_SIZE
* @note ctx is erased before exiting. This should never be changed/removed.
* @note Assumes the tag bufer is at least sizeof(hmac_tag_size(state)) bytes
* state has been initialized by tc_hmac_init
* @param tag IN/OUT -- buffer to receive computed HMAC tag
* @param taglen IN -- size of tag in bytes
* @param ctx IN/OUT -- the HMAC state for computing tag
*/
int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx);
#ifdef __cplusplus
}
#endif
#endif /*__BLE_MESH_TC_HMAC_H__*/

View file

@ -0,0 +1,164 @@
/* hmac_prng.h - TinyCrypt interface to an HMAC-PRNG implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to an HMAC-PRNG implementation.
*
* Overview: A pseudo-random number generator (PRNG) generates a sequence
* of numbers that have a distribution close to the one expected
* for a sequence of truly random numbers. The NIST Special
* Publication 800-90A specifies several mechanisms to generate
* sequences of pseudo random numbers, including the HMAC-PRNG one
* which is based on HMAC. TinyCrypt implements HMAC-PRNG with
* certain modifications from the NIST SP 800-90A spec.
*
* Security: A cryptographically secure PRNG depends on the existence of an
* entropy source to provide a truly random seed as well as the
* security of the primitives used as the building blocks (HMAC and
* SHA256, for TinyCrypt).
*
* The NIST SP 800-90A standard tolerates a null personalization,
* while TinyCrypt requires a non-null personalization. This is
* because a personalization string (the host name concatenated
* with a time stamp, for example) is easily computed and might be
* the last line of defense against failure of the entropy source.
*
* Requires: - SHA-256
* - HMAC
*
* Usage: 1) call tc_hmac_prng_init to set the HMAC key and process the
* personalization data.
*
* 2) call tc_hmac_prng_reseed to process the seed and additional
* input.
*
* 3) call tc_hmac_prng_generate to out put the pseudo-random data.
*/
#ifndef __BLE_MESH_TC_HMAC_PRNG_H__
#define __BLE_MESH_TC_HMAC_PRNG_H__
#include <tinycrypt/sha256.h>
#include <tinycrypt/hmac.h>
#ifdef __cplusplus
extern "C" {
#endif
#define TC_HMAC_PRNG_RESEED_REQ -1
struct tc_hmac_prng_struct {
/* the HMAC instance for this PRNG */
struct tc_hmac_state_struct h;
/* the PRNG key */
uint8_t key[TC_SHA256_DIGEST_SIZE];
/* PRNG state */
uint8_t v[TC_SHA256_DIGEST_SIZE];
/* calls to tc_hmac_prng_generate left before re-seed */
unsigned int countdown;
};
typedef struct tc_hmac_prng_struct *TCHmacPrng_t;
/**
* @brief HMAC-PRNG initialization procedure
* Initializes prng with personalization, disables tc_hmac_prng_generate
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* prng == NULL,
* personalization == NULL,
* plen > MAX_PLEN
* @note Assumes: - personalization != NULL.
* The personalization is a platform unique string (e.g., the host
* name) and is the last line of defense against failure of the
* entropy source
* @warning NIST SP 800-90A specifies 3 items as seed material during
* initialization: entropy seed, personalization, and an optional
* nonce. TinyCrypts requires instead a non-null personalization
* (which is easily computed) and indirectly requires an entropy
* seed (since the reseed function is mandatorily called after
* init)
* @param prng IN/OUT -- the PRNG state to initialize
* @param personalization IN -- personalization string
* @param plen IN -- personalization length in bytes
*/
int tc_hmac_prng_init(TCHmacPrng_t prng,
const uint8_t *personalization,
unsigned int plen);
/**
* @brief HMAC-PRNG reseed procedure
* Mixes seed into prng, enables tc_hmac_prng_generate
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* prng == NULL,
* seed == NULL,
* seedlen < MIN_SLEN,
* seendlen > MAX_SLEN,
* additional_input != (const uint8_t *) 0 && additionallen == 0,
* additional_input != (const uint8_t *) 0 && additionallen > MAX_ALEN
* @note Assumes:- tc_hmac_prng_init has been called for prng
* - seed has sufficient entropy.
*
* @param prng IN/OUT -- the PRNG state
* @param seed IN -- entropy to mix into the prng
* @param seedlen IN -- length of seed in bytes
* @param additional_input IN -- additional input to the prng
* @param additionallen IN -- additional input length in bytes
*/
int tc_hmac_prng_reseed(TCHmacPrng_t prng, const uint8_t *seed,
unsigned int seedlen, const uint8_t *additional_input,
unsigned int additionallen);
/**
* @brief HMAC-PRNG generate procedure
* Generates outlen pseudo-random bytes into out buffer, updates prng
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_HMAC_PRNG_RESEED_REQ (-1) if a reseed is needed
* returns TC_CRYPTO_FAIL (0) if:
* out == NULL,
* prng == NULL,
* outlen == 0,
* outlen >= MAX_OUT
* @note Assumes tc_hmac_prng_init has been called for prng
* @param out IN/OUT -- buffer to receive output
* @param outlen IN -- size of out buffer in bytes
* @param prng IN/OUT -- the PRNG state
*/
int tc_hmac_prng_generate(uint8_t *out, unsigned int outlen, TCHmacPrng_t prng);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_HMAC_PRNG_H__ */

View file

@ -0,0 +1,129 @@
/* sha256.h - TinyCrypt interface to a SHA-256 implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to a SHA-256 implementation.
*
* Overview: SHA-256 is a NIST approved cryptographic hashing algorithm
* specified in FIPS 180. A hash algorithm maps data of arbitrary
* size to data of fixed length.
*
* Security: SHA-256 provides 128 bits of security against collision attacks
* and 256 bits of security against pre-image attacks. SHA-256 does
* NOT behave like a random oracle, but it can be used as one if
* the string being hashed is prefix-free encoded before hashing.
*
* Usage: 1) call tc_sha256_init to initialize a struct
* tc_sha256_state_struct before hashing a new string.
*
* 2) call tc_sha256_update to hash the next string segment;
* tc_sha256_update can be called as many times as needed to hash
* all of the segments of a string; the order is important.
*
* 3) call tc_sha256_final to out put the digest from a hashing
* operation.
*/
#ifndef __BLE_MESH_TC_SHA256_H__
#define __BLE_MESH_TC_SHA256_H__
#include <stddef.h>
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define TC_SHA256_BLOCK_SIZE (64)
#define TC_SHA256_DIGEST_SIZE (32)
#define TC_SHA256_STATE_BLOCKS (TC_SHA256_DIGEST_SIZE/4)
struct tc_sha256_state_struct {
unsigned int iv[TC_SHA256_STATE_BLOCKS];
uint64_t bits_hashed;
uint8_t leftover[TC_SHA256_BLOCK_SIZE];
size_t leftover_offset;
};
typedef struct tc_sha256_state_struct *TCSha256State_t;
/**
* @brief SHA256 initialization procedure
* Initializes s
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if s == NULL
* @param s Sha256 state struct
*/
int tc_sha256_init(TCSha256State_t s);
/**
* @brief SHA256 update procedure
* Hashes data_length bytes addressed by data into state s
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* s == NULL,
* s->iv == NULL,
* data == NULL
* @note Assumes s has been initialized by tc_sha256_init
* @warning The state buffer 'leftover' is left in memory after processing
* If your application intends to have sensitive data in this
* buffer, remind to erase it after the data has been processed
* @param s Sha256 state struct
* @param data message to hash
* @param datalen length of message to hash
*/
int tc_sha256_update (TCSha256State_t s, const uint8_t *data, size_t datalen);
/**
* @brief SHA256 final procedure
* Inserts the completed hash computation into digest
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* s == NULL,
* s->iv == NULL,
* digest == NULL
* @note Assumes: s has been initialized by tc_sha256_init
* digest points to at least TC_SHA256_DIGEST_SIZE bytes
* @warning The state buffer 'leftover' is left in memory after processing
* If your application intends to have sensitive data in this
* buffer, remind to erase it after the data has been processed
* @param digest unsigned eight bit integer
* @param Sha256 state struct
*/
int tc_sha256_final(uint8_t *digest, TCSha256State_t s);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_SHA256_H__ */

View file

@ -0,0 +1,121 @@
/* utils.h - TinyCrypt interface to platform-dependent run-time operations */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief Interface to platform-dependent run-time operations.
*
*/
#ifndef __BLE_MESH_TC_UTILS_H__
#define __BLE_MESH_TC_UTILS_H__
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @brief Copy the the buffer 'from' to the buffer 'to'.
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if:
* from_len > to_len.
*
* @param to OUT -- destination buffer
* @param to_len IN -- length of destination buffer
* @param from IN -- origin buffer
* @param from_len IN -- length of origin buffer
*/
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len);
/**
* @brief Set the value 'val' into the buffer 'to', 'len' times.
*
* @param to OUT -- destination buffer
* @param val IN -- value to be set in 'to'
* @param len IN -- number of times the value will be copied
*/
void _set(void *to, uint8_t val, unsigned int len);
/**
* @brief Set the value 'val' into the buffer 'to', 'len' times, in a way
* which does not risk getting optimized out by the compiler
* In cases where the compiler does not set __GNUC__ and where the
* optimization level removes the memset, it may be necessary to
* implement a _set_secure function and define the
* TINYCRYPT_ARCH_HAS_SET_SECURE, which then can ensure that the
* memset does not get optimized out.
*
* @param to OUT -- destination buffer
* @param val IN -- value to be set in 'to'
* @param len IN -- number of times the value will be copied
*/
#ifdef TINYCRYPT_ARCH_HAS_SET_SECURE
extern void _set_secure(void *to, uint8_t val, unsigned int len);
#else /* ! TINYCRYPT_ARCH_HAS_SET_SECURE */
static inline void _set_secure(void *to, uint8_t val, unsigned int len)
{
(void) memset(to, val, len);
#ifdef __GNUC__
__asm__ __volatile__("" :: "g"(to) : "memory");
#endif /* __GNUC__ */
}
#endif /* TINYCRYPT_ARCH_HAS_SET_SECURE */
/*
* @brief AES specific doubling function, which utilizes
* the finite field used by AES.
* @return Returns a^2
*
* @param a IN/OUT -- value to be doubled
*/
uint8_t _double_byte(uint8_t a);
/*
* @brief Constant-time algorithm to compare if two sequences of bytes are equal
* @return Returns 0 if equal, and non-zero otherwise
*
* @param a IN -- sequence of bytes a
* @param b IN -- sequence of bytes b
* @param size IN -- size of sequences a and b
*/
int _compare(const uint8_t *a, const uint8_t *b, size_t size);
#ifdef __cplusplus
}
#endif
#endif /* __BLE_MESH_TC_UTILS_H__ */

View file

@ -0,0 +1,164 @@
/* aes_decrypt.c - TinyCrypt implementation of AES decryption procedure */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
static const uint8_t inv_sbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e,
0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87,
0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32,
0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49,
0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16,
0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50,
0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05,
0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02,
0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8,
0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89,
0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b,
0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59,
0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d,
0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63,
0x55, 0x21, 0x0c, 0x7d
};
int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k)
{
return tc_aes128_set_encrypt_key(s, k);
}
#define mult8(a)(_double_byte(_double_byte(_double_byte(a))))
#define mult9(a)(mult8(a)^(a))
#define multb(a)(mult8(a)^_double_byte(a)^(a))
#define multd(a)(mult8(a)^_double_byte(_double_byte(a))^(a))
#define multe(a)(mult8(a)^_double_byte(_double_byte(a))^_double_byte(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{
out[0] = multe(in[0]) ^ multb(in[1]) ^ multd(in[2]) ^ mult9(in[3]);
out[1] = mult9(in[0]) ^ multe(in[1]) ^ multb(in[2]) ^ multd(in[3]);
out[2] = multd(in[0]) ^ mult9(in[1]) ^ multe(in[2]) ^ multb(in[3]);
out[3] = multb(in[0]) ^ multd(in[1]) ^ mult9(in[2]) ^ multe(in[3]);
}
static inline void inv_mix_columns(uint8_t *s)
{
uint8_t t[Nb * Nk];
mult_row_column(t, s);
mult_row_column(&t[Nb], s + Nb);
mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void)_copy(s, sizeof(t), t, sizeof(t));
}
static inline void add_round_key(uint8_t *s, const unsigned int *k)
{
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
}
static inline void inv_sub_bytes(uint8_t *s)
{
unsigned int i;
for (i = 0; i < (Nb * Nk); ++i) {
s[i] = inv_sbox[s[i]];
}
}
/*
* This inv_shift_rows also implements the matrix flip required for
* inv_mix_columns, but performs it here to reduce the number of memory
* operations.
*/
static inline void inv_shift_rows(uint8_t *s)
{
uint8_t t[Nb * Nk];
t[0] = s[0]; t[1] = s[13]; t[2] = s[10]; t[3] = s[7];
t[4] = s[4]; t[5] = s[1]; t[6] = s[14]; t[7] = s[11];
t[8] = s[8]; t[9] = s[5]; t[10] = s[2]; t[11] = s[15];
t[12] = s[12]; t[13] = s[9]; t[14] = s[6]; t[15] = s[3];
(void)_copy(s, sizeof(t), t, sizeof(t));
}
int tc_aes_decrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{
uint8_t state[Nk * Nb];
unsigned int i;
if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words + Nb * Nr);
for (i = Nr - 1; i > 0; --i) {
inv_shift_rows(state);
inv_sub_bytes(state);
add_round_key(state, s->words + Nb * i);
inv_mix_columns(state);
}
inv_shift_rows(state);
inv_sub_bytes(state);
add_round_key(state, s->words);
(void)_copy(out, sizeof(state), state, sizeof(state));
/*zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,191 @@
/* aes_encrypt.c - TinyCrypt implementation of AES encryption procedure */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/aes.h>
#include <tinycrypt/utils.h>
#include <tinycrypt/constants.h>
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16
};
static inline unsigned int rotword(unsigned int a)
{
return (((a) >> 24) | ((a) << 8));
}
#define subbyte(a, o)(sbox[((a) >> (o))&0xff] << (o))
#define subword(a)(subbyte(a, 24)|subbyte(a, 16)|subbyte(a, 8)|subbyte(a, 0))
int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k)
{
const unsigned int rconst[11] = {
0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000
};
unsigned int i;
unsigned int t;
if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
} else if (k == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
for (i = 0; i < Nk; ++i) {
s->words[i] = (k[Nb * i] << 24) | (k[Nb * i + 1] << 16) |
(k[Nb * i + 2] << 8) | (k[Nb * i + 3]);
}
for (; i < (Nb * (Nr + 1)); ++i) {
t = s->words[i - 1];
if ((i % Nk) == 0) {
t = subword(rotword(t)) ^ rconst[i / Nk];
}
s->words[i] = s->words[i - Nk] ^ t;
}
return TC_CRYPTO_SUCCESS;
}
static inline void add_round_key(uint8_t *s, const unsigned int *k)
{
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
}
static inline void sub_bytes(uint8_t *s)
{
unsigned int i;
for (i = 0; i < (Nb * Nk); ++i) {
s[i] = sbox[s[i]];
}
}
#define triple(a)(_double_byte(a)^(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{
out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3];
out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3];
out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]);
out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]);
}
static inline void mix_columns(uint8_t *s)
{
uint8_t t[Nb * Nk];
mult_row_column(t, s);
mult_row_column(&t[Nb], s + Nb);
mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void) _copy(s, sizeof(t), t, sizeof(t));
}
/*
* This shift_rows also implements the matrix flip required for mix_columns, but
* performs it here to reduce the number of memory operations.
*/
static inline void shift_rows(uint8_t *s)
{
uint8_t t[Nb * Nk];
t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15];
t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3];
t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7];
t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11];
(void) _copy(s, sizeof(t), t, sizeof(t));
}
int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{
uint8_t state[Nk * Nb];
unsigned int i;
if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words);
for (i = 0; i < (Nr - 1); ++i) {
sub_bytes(state);
shift_rows(state);
mix_columns(state);
add_round_key(state, s->words + Nb * (i + 1));
}
sub_bytes(state);
shift_rows(state);
add_round_key(state, s->words + Nb * (i + 1));
(void)_copy(out, sizeof(state), state, sizeof(state));
/* zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,114 @@
/* cbc_mode.c - TinyCrypt implementation of CBC mode encryption & decryption */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/cbc_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
int tc_cbc_mode_encrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
unsigned int n, m;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
in == (const uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
(inlen % TC_AES_BLOCK_SIZE) != 0 ||
(outlen % TC_AES_BLOCK_SIZE) != 0 ||
outlen != inlen + TC_AES_BLOCK_SIZE) {
return TC_CRYPTO_FAIL;
}
/* copy iv to the buffer */
(void)_copy(buffer, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE);
/* copy iv to the output buffer */
(void)_copy(out, TC_AES_BLOCK_SIZE, iv, TC_AES_BLOCK_SIZE);
out += TC_AES_BLOCK_SIZE;
for (n = m = 0; n < inlen; ++n) {
buffer[m++] ^= *in++;
if (m == TC_AES_BLOCK_SIZE) {
(void)tc_aes_encrypt(buffer, buffer, sched);
(void)_copy(out, TC_AES_BLOCK_SIZE,
buffer, TC_AES_BLOCK_SIZE);
out += TC_AES_BLOCK_SIZE;
m = 0;
}
}
return TC_CRYPTO_SUCCESS;
}
int tc_cbc_mode_decrypt(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, const uint8_t *iv,
const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
const uint8_t *p;
unsigned int n, m;
/* sanity check the inputs */
if (out == (uint8_t *) 0 ||
in == (const uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
(inlen % TC_AES_BLOCK_SIZE) != 0 ||
(outlen % TC_AES_BLOCK_SIZE) != 0 ||
outlen != inlen) {
return TC_CRYPTO_FAIL;
}
/*
* Note that in == iv + ciphertext, i.e. the iv and the ciphertext are
* contiguous. This allows for a very efficient decryption algorithm
* that would not otherwise be possible.
*/
p = iv;
for (n = m = 0; n < outlen; ++n) {
if ((n % TC_AES_BLOCK_SIZE) == 0) {
(void)tc_aes_decrypt(buffer, in, sched);
in += TC_AES_BLOCK_SIZE;
m = 0;
}
*out++ = buffer[m++] ^ *p++;
}
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,266 @@
/* ccm_mode.c - TinyCrypt implementation of CCM mode */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/ccm_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
#include <stdio.h>
int tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
unsigned int nlen, unsigned int mlen)
{
/* input sanity check: */
if (c == (TCCcmMode_t) 0 ||
sched == (TCAesKeySched_t) 0 ||
nonce == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (nlen != 13) {
return TC_CRYPTO_FAIL; /* The allowed nonce size is: 13. See documentation.*/
} else if ((mlen < 4) || (mlen > 16) || (mlen & 1)) {
return TC_CRYPTO_FAIL; /* The allowed mac sizes are: 4, 6, 8, 10, 12, 14, 16.*/
}
c->mlen = mlen;
c->sched = sched;
c->nonce = nonce;
return TC_CRYPTO_SUCCESS;
}
/**
* Variation of CBC-MAC mode used in CCM.
*/
static void ccm_cbc_mac(uint8_t *T, const uint8_t *data, unsigned int dlen,
unsigned int flag, TCAesKeySched_t sched)
{
unsigned int i;
if (flag > 0) {
T[0] ^= (uint8_t)(dlen >> 8);
T[1] ^= (uint8_t)(dlen);
dlen += 2; i = 2;
} else {
i = 0;
}
while (i < dlen) {
T[i++ % (Nb * Nk)] ^= *data++;
if (((i % (Nb * Nk)) == 0) || dlen == i) {
(void) tc_aes_encrypt(T, T, sched);
}
}
}
/**
* Variation of CTR mode used in CCM.
* The CTR mode used by CCM is slightly different than the conventional CTR
* mode (the counter is increased before encryption, instead of after
* encryption). Besides, it is assumed that the counter is stored in the last
* 2 bytes of the nonce.
*/
static int ccm_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
uint8_t nonce[TC_AES_BLOCK_SIZE];
uint16_t block_num;
unsigned int i;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
in == (uint8_t *) 0 ||
ctr == (uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
outlen != inlen) {
return TC_CRYPTO_FAIL;
}
/* copy the counter to the nonce */
(void) _copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
/* select the last 2 bytes of the nonce to be incremented */
block_num = (uint16_t) ((nonce[14] << 8) | (nonce[15]));
for (i = 0; i < inlen; ++i) {
if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
block_num++;
nonce[14] = (uint8_t)(block_num >> 8);
nonce[15] = (uint8_t)(block_num);
if (!tc_aes_encrypt(buffer, nonce, sched)) {
return TC_CRYPTO_FAIL;
}
}
/* update the output */
*out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++;
}
/* update the counter */
ctr[14] = nonce[14]; ctr[15] = nonce[15];
return TC_CRYPTO_SUCCESS;
}
int tc_ccm_generation_encryption(uint8_t *out, unsigned int olen,
const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c)
{
/* input sanity check: */
if ((out == (uint8_t *) 0) ||
(c == (TCCcmMode_t) 0) ||
((plen > 0) && (payload == (uint8_t *) 0)) ||
((alen > 0) && (associated_data == (uint8_t *) 0)) ||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
(plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */
(olen < (plen + c->mlen))) { /* invalid output buffer size */
return TC_CRYPTO_FAIL;
}
uint8_t b[Nb * Nk];
uint8_t tag[Nb * Nk];
unsigned int i;
/* GENERATING THE AUTHENTICATION TAG: */
/* formatting the sequence b for authentication: */
b[0] = ((alen > 0) ? 0x40 : 0) | (((c->mlen - 2) / 2 << 3)) | (1);
for (i = 1; i <= 13; ++i) {
b[i] = c->nonce[i - 1];
}
b[14] = (uint8_t)(plen >> 8);
b[15] = (uint8_t)(plen);
/* computing the authentication tag using cbc-mac: */
(void) tc_aes_encrypt(tag, b, c->sched);
if (alen > 0) {
ccm_cbc_mac(tag, associated_data, alen, 1, c->sched);
}
if (plen > 0) {
ccm_cbc_mac(tag, payload, plen, 0, c->sched);
}
/* ENCRYPTION: */
/* formatting the sequence b for encryption: */
b[0] = 1; /* q - 1 = 2 - 1 = 1 */
b[14] = b[15] = TC_ZERO_BYTE;
/* encrypting payload using ctr mode: */
ccm_ctr_mode(out, plen, payload, plen, b, c->sched);
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter for ctr_mode (0):*/
/* encrypting b and adding the tag to the output: */
(void) tc_aes_encrypt(b, b, c->sched);
out += plen;
for (i = 0; i < c->mlen; ++i) {
*out++ = tag[i] ^ b[i];
}
return TC_CRYPTO_SUCCESS;
}
int tc_ccm_decryption_verification(uint8_t *out, unsigned int olen,
const uint8_t *associated_data,
unsigned int alen, const uint8_t *payload,
unsigned int plen, TCCcmMode_t c)
{
/* input sanity check: */
if ((out == (uint8_t *) 0) ||
(c == (TCCcmMode_t) 0) ||
((plen > 0) && (payload == (uint8_t *) 0)) ||
((alen > 0) && (associated_data == (uint8_t *) 0)) ||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
(plen >= TC_CCM_PAYLOAD_MAX_BYTES) || /* payload size unsupported */
(olen < plen - c->mlen)) { /* invalid output buffer size */
return TC_CRYPTO_FAIL;
}
uint8_t b[Nb * Nk];
uint8_t tag[Nb * Nk];
unsigned int i;
/* DECRYPTION: */
/* formatting the sequence b for decryption: */
b[0] = 1; /* q - 1 = 2 - 1 = 1 */
for (i = 1; i < 14; ++i) {
b[i] = c->nonce[i - 1];
}
b[14] = b[15] = TC_ZERO_BYTE; /* initial counter value is 0 */
/* decrypting payload using ctr mode: */
ccm_ctr_mode(out, plen - c->mlen, payload, plen - c->mlen, b, c->sched);
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter value (0) */
/* encrypting b and restoring the tag from input: */
(void) tc_aes_encrypt(b, b, c->sched);
for (i = 0; i < c->mlen; ++i) {
tag[i] = *(payload + plen - c->mlen + i) ^ b[i];
}
/* VERIFYING THE AUTHENTICATION TAG: */
/* formatting the sequence b for authentication: */
b[0] = ((alen > 0) ? 0x40 : 0) | (((c->mlen - 2) / 2 << 3)) | (1);
for (i = 1; i < 14; ++i) {
b[i] = c->nonce[i - 1];
}
b[14] = (uint8_t)((plen - c->mlen) >> 8);
b[15] = (uint8_t)(plen - c->mlen);
/* computing the authentication tag using cbc-mac: */
(void) tc_aes_encrypt(b, b, c->sched);
if (alen > 0) {
ccm_cbc_mac(b, associated_data, alen, 1, c->sched);
}
if (plen > 0) {
ccm_cbc_mac(b, out, plen - c->mlen, 0, c->sched);
}
/* comparing the received tag and the computed one: */
if (_compare(b, tag, c->mlen) == 0) {
return TC_CRYPTO_SUCCESS;
} else {
/* erase the decrypted buffer in case of mac validation failure: */
_set(out, 0, plen - c->mlen);
return TC_CRYPTO_FAIL;
}
}

View file

@ -1,4 +1,4 @@
/* aes_encrypt.c - TinyCrypt implementation of AES encryption procedure */
/* cmac_mode.c - TinyCrypt CMAC mode implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
@ -30,11 +30,13 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "mesh_util.h"
#include "mesh_aes_encrypt.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/cmac_mode.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
/* max number of calls until change the key (2^48).*/
const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
static const uint64_t MAX_CALLS = ((uint64_t)1 << 48);
/*
* gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
@ -64,160 +66,32 @@ const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
*/
const unsigned char gf_wrap = 0x87;
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16
};
static inline unsigned int rotword(unsigned int a)
{
return (((a) >> 24) | ((a) << 8));
}
#define subbyte(a, o) (sbox[((a) >> (o))&0xff] << (o))
#define subword(a) (subbyte(a, 24)|subbyte(a, 16)|subbyte(a, 8)|subbyte(a, 0))
int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k)
{
const unsigned int rconst[11] = {
0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000
};
unsigned int i;
unsigned int t;
if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
} else if (k == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
for (i = 0; i < Nk; ++i) {
s->words[i] = (k[Nb * i] << 24) | (k[Nb * i + 1] << 16) |
(k[Nb * i + 2] << 8) | (k[Nb * i + 3]);
}
for (; i < (Nb * (Nr + 1)); ++i) {
t = s->words[i - 1];
if ((i % Nk) == 0) {
t = subword(rotword(t)) ^ rconst[i / Nk];
}
s->words[i] = s->words[i - Nk] ^ t;
}
return TC_CRYPTO_SUCCESS;
}
static inline void add_round_key(uint8_t *s, const unsigned int *k)
{
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
}
static inline void sub_bytes(uint8_t *s)
{
unsigned int i;
for (i = 0; i < (Nb * Nk); ++i) {
s[i] = sbox[s[i]];
}
}
#define triple(a)(_double_byte(a)^(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{
out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3];
out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3];
out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]);
out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]);
}
static inline void mix_columns(uint8_t *s)
{
uint8_t t[Nb * Nk] = {0};
mult_row_column(t, s);
mult_row_column(&t[Nb], s + Nb);
mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void) _copy(s, sizeof(t), t, sizeof(t));
}
/*
* This shift_rows also implements the matrix flip required for mix_columns, but
* performs it here to reduce the number of memory operations.
* assumes: out != NULL and points to a GF(2^n) value to receive the
* doubled value;
* in != NULL and points to a 16 byte GF(2^n) value
* to double;
* the in and out buffers do not overlap.
* effects: doubles the GF(2^n) value pointed to by "in" and places
* the result in the GF(2^n) value pointed to by "out."
*/
static inline void shift_rows(uint8_t *s)
void gf_double(uint8_t *out, uint8_t *in)
{
uint8_t t[Nb * Nk] = {0};
t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15];
t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3];
t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7];
t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11];
(void) _copy(s, sizeof(t), t, sizeof(t));
}
/* start with low order byte */
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{
uint8_t state[Nk * Nb] = {0};
unsigned int i;
/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
out += (TC_AES_BLOCK_SIZE - 1);
for (;;) {
*out-- = (*x << 1) ^ carry;
if (x == in) {
break;
}
carry = *x-- >> 7;
}
(void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words);
for (i = 0; i < (Nr - 1); ++i) {
sub_bytes(state);
shift_rows(state);
mix_columns(state);
add_round_key(state, s->words + Nb * (i + 1));
}
sub_bytes(state);
shift_rows(state);
add_round_key(state, s->words + Nb * (i + 1));
(void)_copy(out, sizeof(state), state, sizeof(state));
/* zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
@ -248,32 +122,16 @@ int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
return TC_CRYPTO_SUCCESS;
}
/*
* assumes: out != NULL and points to a GF(2^n) value to receive the
* doubled value;
* in != NULL and points to a 16 byte GF(2^n) value
* to double;
* the in and out buffers do not overlap.
* effects: doubles the GF(2^n) value pointed to by "in" and places
* the result in the GF(2^n) value pointed to by "out."
*/
void gf_double(uint8_t *out, uint8_t *in)
int tc_cmac_erase(TCCmacState_t s)
{
/* start with low order byte */
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
out += (TC_AES_BLOCK_SIZE - 1);
for (;;) {
*out-- = (*x << 1) ^ carry;
if (x == in) {
break;
}
carry = *x-- >> 7;
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
/* destroy the current state */
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_init(TCCmacState_t s)
@ -363,7 +221,7 @@ int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
{
uint8_t *k = NULL;
uint8_t *k;
unsigned int i;
/* input sanity check: */
@ -394,15 +252,3 @@ int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_erase(TCCmacState_t s)
{
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
/* destroy the current state */
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,85 @@
/* ctr_mode.c - TinyCrypt CTR mode implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/constants.h>
#include <tinycrypt/ctr_mode.h>
#include <tinycrypt/utils.h>
int tc_ctr_mode(uint8_t *out, unsigned int outlen, const uint8_t *in,
unsigned int inlen, uint8_t *ctr, const TCAesKeySched_t sched)
{
uint8_t buffer[TC_AES_BLOCK_SIZE];
uint8_t nonce[TC_AES_BLOCK_SIZE];
unsigned int block_num;
unsigned int i;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
in == (uint8_t *) 0 ||
ctr == (uint8_t *) 0 ||
sched == (TCAesKeySched_t) 0 ||
inlen == 0 ||
outlen == 0 ||
outlen != inlen) {
return TC_CRYPTO_FAIL;
}
/* copy the ctr to the nonce */
(void)_copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
/* select the last 4 bytes of the nonce to be incremented */
block_num = (nonce[12] << 24) | (nonce[13] << 16) |
(nonce[14] << 8) | (nonce[15]);
for (i = 0; i < inlen; ++i) {
if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
/* encrypt data using the current nonce */
if (tc_aes_encrypt(buffer, nonce, sched)) {
block_num++;
nonce[12] = (uint8_t)(block_num >> 24);
nonce[13] = (uint8_t)(block_num >> 16);
nonce[14] = (uint8_t)(block_num >> 8);
nonce[15] = (uint8_t)(block_num);
} else {
return TC_CRYPTO_FAIL;
}
}
/* update the output */
*out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++;
}
/* update the counter */
ctr[12] = nonce[12]; ctr[13] = nonce[13];
ctr[14] = nonce[14]; ctr[15] = nonce[15];
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,279 @@
/* ctr_prng.c - TinyCrypt implementation of CTR-PRNG */
/*
* Copyright (c) 2016, Chris Morrison
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/ctr_prng.h>
#include <tinycrypt/utils.h>
#include <tinycrypt/constants.h>
#include <string.h>
/*
* This PRNG is based on the CTR_DRBG described in Recommendation for Random
* Number Generation Using Deterministic Random Bit Generators,
* NIST SP 800-90A Rev. 1.
*
* Annotations to particular steps (e.g. 10.2.1.2 Step 1) refer to the steps
* described in that document.
*
*/
/**
* @brief Array incrementer
* Treats the supplied array as one contiguous number (MSB in arr[0]), and
* increments it by one
* @return none
* @param arr IN/OUT -- array to be incremented
* @param len IN -- size of arr in bytes
*/
static void arrInc(uint8_t arr[], unsigned int len)
{
unsigned int i;
if (0 != arr) {
for (i = len; i > 0U; i--) {
if (++arr[i - 1] != 0U) {
break;
}
}
}
}
/**
* @brief CTR PRNG update
* Updates the internal state of supplied the CTR PRNG context
* increments it by one
* @return none
* @note Assumes: providedData is (TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE) bytes long
* @param ctx IN/OUT -- CTR PRNG state
* @param providedData IN -- data used when updating the internal state
*/
static void tc_ctr_prng_update(TCCtrPrng_t *const ctx, uint8_t const *const providedData)
{
if (0 != ctx) {
/* 10.2.1.2 step 1 */
uint8_t temp[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
unsigned int len = 0U;
/* 10.2.1.2 step 2 */
while (len < sizeof temp) {
unsigned int blocklen = sizeof(temp) - len;
uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.2 step 2.1 */
arrInc(ctx->V, sizeof ctx->V);
/* 10.2.1.2 step 2.2 */
if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE;
}
(void)tc_aes_encrypt(output_block, ctx->V, &ctx->key);
/* 10.2.1.2 step 2.3/step 3 */
memcpy(&(temp[len]), output_block, blocklen);
len += blocklen;
}
/* 10.2.1.2 step 4 */
if (0 != providedData) {
unsigned int i;
for (i = 0U; i < sizeof temp; i++) {
temp[i] ^= providedData[i];
}
}
/* 10.2.1.2 step 5 */
(void)tc_aes128_set_encrypt_key(&ctx->key, temp);
/* 10.2.1.2 step 6 */
memcpy(ctx->V, &(temp[TC_AES_KEY_SIZE]), TC_AES_BLOCK_SIZE);
}
}
int tc_ctr_prng_init(TCCtrPrng_t *const ctx,
uint8_t const *const entropy,
unsigned int entropyLen,
uint8_t const *const personalization,
unsigned int pLen)
{
int result = TC_CRYPTO_FAIL;
unsigned int i;
uint8_t personalization_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
uint8_t zeroArr[TC_AES_BLOCK_SIZE] = {0U};
if (0 != personalization) {
/* 10.2.1.3.1 step 1 */
unsigned int len = pLen;
if (len > sizeof personalization_buf) {
len = sizeof personalization_buf;
}
/* 10.2.1.3.1 step 2 */
memcpy(personalization_buf, personalization, len);
}
if ((0 != ctx) && (0 != entropy) && (entropyLen >= sizeof seed_material)) {
/* 10.2.1.3.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= personalization_buf[i];
}
/* 10.2.1.3.1 step 4 */
(void)tc_aes128_set_encrypt_key(&ctx->key, zeroArr);
/* 10.2.1.3.1 step 5 */
memset(ctx->V, 0x00, sizeof ctx->V);
/* 10.2.1.3.1 step 6 */
tc_ctr_prng_update(ctx, seed_material);
/* 10.2.1.3.1 step 7 */
ctx->reseedCount = 1U;
result = TC_CRYPTO_SUCCESS;
}
return result;
}
int tc_ctr_prng_reseed(TCCtrPrng_t *const ctx,
uint8_t const *const entropy,
unsigned int entropyLen,
uint8_t const *const additional_input,
unsigned int additionallen)
{
unsigned int i;
int result = TC_CRYPTO_FAIL;
uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
uint8_t seed_material[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE];
if (0 != additional_input) {
/* 10.2.1.4.1 step 1 */
unsigned int len = additionallen;
if (len > sizeof additional_input_buf) {
len = sizeof additional_input_buf;
}
/* 10.2.1.4.1 step 2 */
memcpy(additional_input_buf, additional_input, len);
}
unsigned int seedlen = (unsigned int)TC_AES_KEY_SIZE + (unsigned int)TC_AES_BLOCK_SIZE;
if ((0 != ctx) && (entropyLen >= seedlen)) {
/* 10.2.1.4.1 step 3 */
memcpy(seed_material, entropy, sizeof seed_material);
for (i = 0U; i < sizeof seed_material; i++) {
seed_material[i] ^= additional_input_buf[i];
}
/* 10.2.1.4.1 step 4 */
tc_ctr_prng_update(ctx, seed_material);
/* 10.2.1.4.1 step 5 */
ctx->reseedCount = 1U;
result = TC_CRYPTO_SUCCESS;
}
return result;
}
int tc_ctr_prng_generate(TCCtrPrng_t *const ctx,
uint8_t const *const additional_input,
unsigned int additionallen,
uint8_t *const out,
unsigned int outlen)
{
/* 2^48 - see section 10.2.1 */
static const uint64_t MAX_REQS_BEFORE_RESEED = 0x1000000000000ULL;
/* 2^19 bits - see section 10.2.1 */
static const unsigned int MAX_BYTES_PER_REQ = 65536U;
unsigned int result = TC_CRYPTO_FAIL;
if ((0 != ctx) && (0 != out) && (outlen < MAX_BYTES_PER_REQ)) {
/* 10.2.1.5.1 step 1 */
if (ctx->reseedCount > MAX_REQS_BEFORE_RESEED) {
result = TC_CTR_PRNG_RESEED_REQ;
} else {
uint8_t additional_input_buf[TC_AES_KEY_SIZE + TC_AES_BLOCK_SIZE] = {0U};
if (0 != additional_input) {
/* 10.2.1.5.1 step 2 */
unsigned int len = additionallen;
if (len > sizeof additional_input_buf) {
len = sizeof additional_input_buf;
}
memcpy(additional_input_buf, additional_input, len);
tc_ctr_prng_update(ctx, additional_input_buf);
}
/* 10.2.1.5.1 step 3 - implicit */
/* 10.2.1.5.1 step 4 */
unsigned int len = 0U;
while (len < outlen) {
unsigned int blocklen = outlen - len;
uint8_t output_block[TC_AES_BLOCK_SIZE];
/* 10.2.1.5.1 step 4.1 */
arrInc(ctx->V, sizeof ctx->V);
/* 10.2.1.5.1 step 4.2 */
(void)tc_aes_encrypt(output_block, ctx->V, &ctx->key);
/* 10.2.1.5.1 step 4.3/step 5 */
if (blocklen > TC_AES_BLOCK_SIZE) {
blocklen = TC_AES_BLOCK_SIZE;
}
memcpy(&(out[len]), output_block, blocklen);
len += blocklen;
}
/* 10.2.1.5.1 step 6 */
tc_ctr_prng_update(ctx, additional_input_buf);
/* 10.2.1.5.1 step 7 */
ctx->reseedCount++;
/* 10.2.1.5.1 step 8 */
result = TC_CRYPTO_SUCCESS;
}
}
return result;
}
void tc_ctr_prng_uninstantiate(TCCtrPrng_t *const ctx)
{
if (0 != ctx) {
memset(ctx->key.words, 0x00, sizeof ctx->key.words);
memset(ctx->V, 0x00, sizeof ctx->V);
ctx->reseedCount = 0U;
}
}

View file

@ -0,0 +1,939 @@
/* ecc.c - TinyCrypt implementation of common ECC functions */
/*
* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_platform_specific.h>
#include <string.h>
/* IMPORTANT: Make sure a cryptographically-secure PRNG is set and the platform
* has access to enough entropy in order to feed the PRNG regularly. */
#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
#else
static uECC_RNG_Function g_rng_function = 0;
#endif
void uECC_set_rng(uECC_RNG_Function rng_function)
{
g_rng_function = rng_function;
}
uECC_RNG_Function uECC_get_rng(void)
{
return g_rng_function;
}
int uECC_curve_private_key_size(uECC_Curve curve)
{
return BITS_TO_BYTES(curve->num_n_bits);
}
int uECC_curve_public_key_size(uECC_Curve curve)
{
return 2 * curve->num_bytes;
}
void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words)
{
wordcount_t i;
for (i = 0; i < num_words; ++i) {
vli[i] = 0;
}
}
uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words)
{
uECC_word_t bits = 0;
wordcount_t i;
for (i = 0; i < num_words; ++i) {
bits |= vli[i];
}
return (bits == 0);
}
uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit)
{
return (vli[bit >> uECC_WORD_BITS_SHIFT] &
((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
}
/* Counts the number of words in vli. */
static wordcount_t vli_numDigits(const uECC_word_t *vli,
const wordcount_t max_words)
{
wordcount_t i;
/* Search from the end until we find a non-zero digit. We do it in reverse
* because we expect that most digits will be nonzero. */
for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
}
return (i + 1);
}
bitcount_t uECC_vli_numBits(const uECC_word_t *vli,
const wordcount_t max_words)
{
uECC_word_t i;
uECC_word_t digit;
wordcount_t num_digits = vli_numDigits(vli, max_words);
if (num_digits == 0) {
return 0;
}
digit = vli[num_digits - 1];
for (i = 0; digit; ++i) {
digit >>= 1;
}
return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
}
void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src,
wordcount_t num_words)
{
wordcount_t i;
for (i = 0; i < num_words; ++i) {
dest[i] = src[i];
}
}
cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
const uECC_word_t *right,
wordcount_t num_words)
{
wordcount_t i;
for (i = num_words - 1; i >= 0; --i) {
if (left[i] > right[i]) {
return 1;
} else if (left[i] < right[i]) {
return -1;
}
}
return 0;
}
uECC_word_t uECC_vli_equal(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words)
{
uECC_word_t diff = 0;
wordcount_t i;
for (i = num_words - 1; i >= 0; --i) {
diff |= (left[i] ^ right[i]);
}
return !(diff == 0);
}
uECC_word_t cond_set(uECC_word_t p_true, uECC_word_t p_false, unsigned int cond)
{
return (p_true * (cond)) | (p_false * (!cond));
}
/* Computes result = left - right, returning borrow, in constant time.
* Can modify in place. */
uECC_word_t uECC_vli_sub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words)
{
uECC_word_t borrow = 0;
wordcount_t i;
for (i = 0; i < num_words; ++i) {
uECC_word_t diff = left[i] - right[i] - borrow;
uECC_word_t val = (diff > left[i]);
borrow = cond_set(val, borrow, (diff != left[i]));
result[i] = diff;
}
return borrow;
}
/* Computes result = left + right, returning carry, in constant time.
* Can modify in place. */
static uECC_word_t uECC_vli_add(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words)
{
uECC_word_t carry = 0;
wordcount_t i;
for (i = 0; i < num_words; ++i) {
uECC_word_t sum = left[i] + right[i] + carry;
uECC_word_t val = (sum < left[i]);
carry = cond_set(val, carry, (sum != left[i]));
result[i] = sum;
}
return carry;
}
cmpresult_t uECC_vli_cmp(const uECC_word_t *left, const uECC_word_t *right,
wordcount_t num_words)
{
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
return (!equal - 2 * neg);
}
/* Computes vli = vli >> 1. */
static void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words)
{
uECC_word_t *end = vli;
uECC_word_t carry = 0;
vli += num_words;
while (vli-- > end) {
uECC_word_t temp = *vli;
*vli = (temp >> 1) | carry;
carry = temp << (uECC_WORD_BITS - 1);
}
}
static void muladd(uECC_word_t a, uECC_word_t b, uECC_word_t *r0,
uECC_word_t *r1, uECC_word_t *r2)
{
uECC_dword_t p = (uECC_dword_t)a * b;
uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
r01 += p;
*r2 += (r01 < p);
*r1 = r01 >> uECC_WORD_BITS;
*r0 = (uECC_word_t)r01;
}
/* Computes result = left * right. Result must be 2 * num_words long. */
static void uECC_vli_mult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, wordcount_t num_words)
{
uECC_word_t r0 = 0;
uECC_word_t r1 = 0;
uECC_word_t r2 = 0;
wordcount_t i, k;
/* Compute each digit of result in sequence, maintaining the carries. */
for (k = 0; k < num_words; ++k) {
for (i = 0; i <= k; ++i) {
muladd(left[i], right[k - i], &r0, &r1, &r2);
}
result[k] = r0;
r0 = r1;
r1 = r2;
r2 = 0;
}
for (k = num_words; k < num_words * 2 - 1; ++k) {
for (i = (k + 1) - num_words; i < num_words; ++i) {
muladd(left[i], right[k - i], &r0, &r1, &r2);
}
result[k] = r0;
r0 = r1;
r1 = r2;
r2 = 0;
}
result[num_words * 2 - 1] = r0;
}
void uECC_vli_modAdd(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
/* result > mod (result = mod + remainder), so subtract mod to get
* remainder. */
uECC_vli_sub(result, result, mod, num_words);
}
}
void uECC_vli_modSub(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
if (l_borrow) {
/* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
* we can get the correct result from result + mod (with overflow). */
uECC_vli_add(result, result, mod, num_words);
}
}
/* Computes result = product % mod, where product is 2N words long. */
/* Currently only designed to work for curve_p or curve_n. */
void uECC_vli_mmod(uECC_word_t *result, uECC_word_t *product,
const uECC_word_t *mod, wordcount_t num_words)
{
uECC_word_t mod_multiple[2 * NUM_ECC_WORDS];
uECC_word_t tmp[2 * NUM_ECC_WORDS];
uECC_word_t *v[2] = {tmp, product};
uECC_word_t index;
/* Shift mod so its highest set bit is at the maximum position. */
bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) -
uECC_vli_numBits(mod, num_words);
wordcount_t word_shift = shift / uECC_WORD_BITS;
wordcount_t bit_shift = shift % uECC_WORD_BITS;
uECC_word_t carry = 0;
uECC_vli_clear(mod_multiple, word_shift);
if (bit_shift > 0) {
for (index = 0; index < (uECC_word_t)num_words; ++index) {
mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
}
} else {
uECC_vli_set(mod_multiple + word_shift, mod, num_words);
}
for (index = 1; shift >= 0; --shift) {
uECC_word_t borrow = 0;
wordcount_t i;
for (i = 0; i < num_words * 2; ++i) {
uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
if (diff != v[index][i]) {
borrow = (diff > v[index][i]);
}
v[1 - index][i] = diff;
}
/* Swap the index if there was no borrow */
index = !(index ^ borrow);
uECC_vli_rshift1(mod_multiple, num_words);
mod_multiple[num_words - 1] |= mod_multiple[num_words] <<
(uECC_WORD_BITS - 1);
uECC_vli_rshift1(mod_multiple + num_words, num_words);
}
uECC_vli_set(result, v[index], num_words);
}
void uECC_vli_modMult(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t product[2 * NUM_ECC_WORDS];
uECC_vli_mult(product, left, right, num_words);
uECC_vli_mmod(result, product, mod, num_words);
}
void uECC_vli_modMult_fast(uECC_word_t *result, const uECC_word_t *left,
const uECC_word_t *right, uECC_Curve curve)
{
uECC_word_t product[2 * NUM_ECC_WORDS];
uECC_vli_mult(product, left, right, curve->num_words);
curve->mmod_fast(result, product);
}
static void uECC_vli_modSquare_fast(uECC_word_t *result,
const uECC_word_t *left,
uECC_Curve curve)
{
uECC_vli_modMult_fast(result, left, left, curve);
}
#define EVEN(vli) (!(vli[0] & 1))
static void vli_modInv_update(uECC_word_t *uv,
const uECC_word_t *mod,
wordcount_t num_words)
{
uECC_word_t carry = 0;
if (!EVEN(uv)) {
carry = uECC_vli_add(uv, uv, mod, num_words);
}
uECC_vli_rshift1(uv, num_words);
if (carry) {
uv[num_words - 1] |= HIGH_BIT_SET;
}
}
void uECC_vli_modInv(uECC_word_t *result, const uECC_word_t *input,
const uECC_word_t *mod, wordcount_t num_words)
{
uECC_word_t a[NUM_ECC_WORDS], b[NUM_ECC_WORDS];
uECC_word_t u[NUM_ECC_WORDS], v[NUM_ECC_WORDS];
cmpresult_t cmpResult;
if (uECC_vli_isZero(input, num_words)) {
uECC_vli_clear(result, num_words);
return;
}
uECC_vli_set(a, input, num_words);
uECC_vli_set(b, mod, num_words);
uECC_vli_clear(u, num_words);
u[0] = 1;
uECC_vli_clear(v, num_words);
while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
if (EVEN(a)) {
uECC_vli_rshift1(a, num_words);
vli_modInv_update(u, mod, num_words);
} else if (EVEN(b)) {
uECC_vli_rshift1(b, num_words);
vli_modInv_update(v, mod, num_words);
} else if (cmpResult > 0) {
uECC_vli_sub(a, a, b, num_words);
uECC_vli_rshift1(a, num_words);
if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
uECC_vli_add(u, u, mod, num_words);
}
uECC_vli_sub(u, u, v, num_words);
vli_modInv_update(u, mod, num_words);
} else {
uECC_vli_sub(b, b, a, num_words);
uECC_vli_rshift1(b, num_words);
if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
uECC_vli_add(v, v, mod, num_words);
}
uECC_vli_sub(v, v, u, num_words);
vli_modInv_update(v, mod, num_words);
}
}
uECC_vli_set(result, u, num_words);
}
/* ------ Point operations ------ */
void double_jacobian_default(uECC_word_t *X1, uECC_word_t *Y1,
uECC_word_t *Z1, uECC_Curve curve)
{
/* t1 = X, t2 = Y, t3 = Z */
uECC_word_t t4[NUM_ECC_WORDS];
uECC_word_t t5[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
if (uECC_vli_isZero(Z1, num_words)) {
return;
}
uECC_vli_modSquare_fast(t4, Y1, curve); /* t4 = y1^2 */
uECC_vli_modMult_fast(t5, X1, t4, curve); /* t5 = x1*y1^2 = A */
uECC_vli_modSquare_fast(t4, t4, curve); /* t4 = y1^4 */
uECC_vli_modMult_fast(Y1, Y1, Z1, curve); /* t2 = y1*z1 = z3 */
uECC_vli_modSquare_fast(Z1, Z1, curve); /* t3 = z1^2 */
uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = x1 + z1^2 */
uECC_vli_modAdd(Z1, Z1, Z1, curve->p, num_words); /* t3 = 2*z1^2 */
uECC_vli_modSub(Z1, X1, Z1, curve->p, num_words); /* t3 = x1 - z1^2 */
uECC_vli_modMult_fast(X1, X1, Z1, curve); /* t1 = x1^2 - z1^4 */
uECC_vli_modAdd(Z1, X1, X1, curve->p, num_words); /* t3 = 2*(x1^2 - z1^4) */
uECC_vli_modAdd(X1, X1, Z1, curve->p, num_words); /* t1 = 3*(x1^2 - z1^4) */
if (uECC_vli_testBit(X1, 0)) {
uECC_word_t l_carry = uECC_vli_add(X1, X1, curve->p, num_words);
uECC_vli_rshift1(X1, num_words);
X1[num_words - 1] |= l_carry << (uECC_WORD_BITS - 1);
} else {
uECC_vli_rshift1(X1, num_words);
}
/* t1 = 3/2*(x1^2 - z1^4) = B */
uECC_vli_modSquare_fast(Z1, X1, curve); /* t3 = B^2 */
uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - A */
uECC_vli_modSub(Z1, Z1, t5, curve->p, num_words); /* t3 = B^2 - 2A = x3 */
uECC_vli_modSub(t5, t5, Z1, curve->p, num_words); /* t5 = A - x3 */
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = B * (A - x3) */
/* t4 = B * (A - x3) - y1^4 = y3: */
uECC_vli_modSub(t4, X1, t4, curve->p, num_words);
uECC_vli_set(X1, Z1, num_words);
uECC_vli_set(Z1, Y1, num_words);
uECC_vli_set(Y1, t4, num_words);
}
void x_side_default(uECC_word_t *result,
const uECC_word_t *x,
uECC_Curve curve)
{
uECC_word_t _3[NUM_ECC_WORDS] = {3}; /* -a = 3 */
wordcount_t num_words = curve->num_words;
uECC_vli_modSquare_fast(result, x, curve); /* r = x^2 */
uECC_vli_modSub(result, result, _3, curve->p, num_words); /* r = x^2 - 3 */
uECC_vli_modMult_fast(result, result, x, curve); /* r = x^3 - 3x */
/* r = x^3 - 3x + b: */
uECC_vli_modAdd(result, result, curve->b, curve->p, num_words);
}
uECC_Curve uECC_secp256r1(void)
{
return &curve_secp256r1;
}
void vli_mmod_fast_secp256r1(unsigned int *result, unsigned int *product)
{
unsigned int tmp[NUM_ECC_WORDS];
int carry;
/* t */
uECC_vli_set(result, product, NUM_ECC_WORDS);
/* s1 */
tmp[0] = tmp[1] = tmp[2] = 0;
tmp[3] = product[11];
tmp[4] = product[12];
tmp[5] = product[13];
tmp[6] = product[14];
tmp[7] = product[15];
carry = uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* s2 */
tmp[3] = product[12];
tmp[4] = product[13];
tmp[5] = product[14];
tmp[6] = product[15];
tmp[7] = 0;
carry += uECC_vli_add(tmp, tmp, tmp, NUM_ECC_WORDS);
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* s3 */
tmp[0] = product[8];
tmp[1] = product[9];
tmp[2] = product[10];
tmp[3] = tmp[4] = tmp[5] = 0;
tmp[6] = product[14];
tmp[7] = product[15];
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* s4 */
tmp[0] = product[9];
tmp[1] = product[10];
tmp[2] = product[11];
tmp[3] = product[13];
tmp[4] = product[14];
tmp[5] = product[15];
tmp[6] = product[13];
tmp[7] = product[8];
carry += uECC_vli_add(result, result, tmp, NUM_ECC_WORDS);
/* d1 */
tmp[0] = product[11];
tmp[1] = product[12];
tmp[2] = product[13];
tmp[3] = tmp[4] = tmp[5] = 0;
tmp[6] = product[8];
tmp[7] = product[10];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
/* d2 */
tmp[0] = product[12];
tmp[1] = product[13];
tmp[2] = product[14];
tmp[3] = product[15];
tmp[4] = tmp[5] = 0;
tmp[6] = product[9];
tmp[7] = product[11];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
/* d3 */
tmp[0] = product[13];
tmp[1] = product[14];
tmp[2] = product[15];
tmp[3] = product[8];
tmp[4] = product[9];
tmp[5] = product[10];
tmp[6] = 0;
tmp[7] = product[12];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
/* d4 */
tmp[0] = product[14];
tmp[1] = product[15];
tmp[2] = 0;
tmp[3] = product[9];
tmp[4] = product[10];
tmp[5] = product[11];
tmp[6] = 0;
tmp[7] = product[13];
carry -= uECC_vli_sub(result, result, tmp, NUM_ECC_WORDS);
if (carry < 0) {
do {
carry += uECC_vli_add(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
} while (carry < 0);
} else {
while (carry ||
uECC_vli_cmp_unsafe(curve_secp256r1.p, result, NUM_ECC_WORDS) != 1) {
carry -= uECC_vli_sub(result, result, curve_secp256r1.p, NUM_ECC_WORDS);
}
}
}
uECC_word_t EccPoint_isZero(const uECC_word_t *point, uECC_Curve curve)
{
return uECC_vli_isZero(point, curve->num_words * 2);
}
void apply_z(uECC_word_t *X1, uECC_word_t *Y1, const uECC_word_t *const Z,
uECC_Curve curve)
{
uECC_word_t t1[NUM_ECC_WORDS];
uECC_vli_modSquare_fast(t1, Z, curve); /* z^2 */
uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
uECC_vli_modMult_fast(t1, t1, Z, curve); /* z^3 */
uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
}
/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void XYcZ_initial_double(uECC_word_t *X1, uECC_word_t *Y1,
uECC_word_t *X2, uECC_word_t *Y2,
const uECC_word_t *const initial_Z,
uECC_Curve curve)
{
uECC_word_t z[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
if (initial_Z) {
uECC_vli_set(z, initial_Z, num_words);
} else {
uECC_vli_clear(z, num_words);
z[0] = 1;
}
uECC_vli_set(X2, X1, num_words);
uECC_vli_set(Y2, Y1, num_words);
apply_z(X1, Y1, z, curve);
curve->double_jacobian(X1, Y1, z, curve);
apply_z(X2, Y2, z, curve);
}
void XYcZ_add(uECC_word_t *X1, uECC_word_t *Y1,
uECC_word_t *X2, uECC_word_t *Y2,
uECC_Curve curve)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
uECC_word_t t5[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
uECC_vli_modSquare_fast(t5, Y2, curve); /* t5 = (y2 - y1)^2 = D */
uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
uECC_vli_modMult_fast(Y1, Y1, X2, curve); /* t2 = y1*(C - B) */
uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
uECC_vli_modMult_fast(Y2, Y2, X2, curve); /* t4 = (y2 - y1)*(B - x3) */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
uECC_vli_set(X2, t5, num_words);
}
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
or P => P - Q, Q => P + Q
*/
static void XYcZ_addC(uECC_word_t *X1, uECC_word_t *Y1,
uECC_word_t *X2, uECC_word_t *Y2,
uECC_Curve curve)
{
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
uECC_word_t t5[NUM_ECC_WORDS];
uECC_word_t t6[NUM_ECC_WORDS];
uECC_word_t t7[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
uECC_vli_modSquare_fast(t5, t5, curve); /* t5 = (x2 - x1)^2 = A */
uECC_vli_modMult_fast(X1, X1, t5, curve); /* t1 = x1*A = B */
uECC_vli_modMult_fast(X2, X2, t5, curve); /* t3 = x2*A = C */
uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
uECC_vli_modMult_fast(Y1, Y1, t6, curve); /* t2 = y1 * (C - B) = E */
uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
uECC_vli_modSquare_fast(X2, Y2, curve); /* t3 = (y2 - y1)^2 = D */
uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
uECC_vli_modMult_fast(Y2, Y2, t7, curve); /* t4 = (y2 - y1)*(B - x3) */
/* t4 = (y2 - y1)*(B - x3) - E = y3: */
uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words);
uECC_vli_modSquare_fast(t7, t5, curve); /* t7 = (y2 + y1)^2 = F */
uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
uECC_vli_modMult_fast(t6, t6, t5, curve); /* t6 = (y2+y1)*(x3' - B) */
/* t2 = (y2+y1)*(x3' - B) - E = y3': */
uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words);
uECC_vli_set(X1, t7, num_words);
}
void EccPoint_mult(uECC_word_t *result, const uECC_word_t *point,
const uECC_word_t *scalar,
const uECC_word_t *initial_Z,
bitcount_t num_bits, uECC_Curve curve)
{
/* R0 and R1 */
uECC_word_t Rx[2][NUM_ECC_WORDS];
uECC_word_t Ry[2][NUM_ECC_WORDS];
uECC_word_t z[NUM_ECC_WORDS];
bitcount_t i;
uECC_word_t nb;
wordcount_t num_words = curve->num_words;
uECC_vli_set(Rx[1], point, num_words);
uECC_vli_set(Ry[1], point + num_words, num_words);
XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);
for (i = num_bits - 2; i > 0; --i) {
nb = !uECC_vli_testBit(scalar, i);
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
}
nb = !uECC_vli_testBit(scalar, 0);
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
/* Find final 1/Z value. */
uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve); /* Yb * (X1 - X0) */
uECC_vli_modMult_fast(z, z, point, curve); /* xP * Yb * (X1 - X0) */
uECC_vli_modInv(z, z, curve->p, num_words); /* 1 / (xP * Yb * (X1 - X0))*/
/* yP / (xP * Yb * (X1 - X0)) */
uECC_vli_modMult_fast(z, z, point + num_words, curve);
/* Xb * yP / (xP * Yb * (X1 - X0)) */
uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve);
/* End 1/Z calculation */
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
apply_z(Rx[0], Ry[0], z, curve);
uECC_vli_set(result, Rx[0], num_words);
uECC_vli_set(result + num_words, Ry[0], num_words);
}
uECC_word_t regularize_k(const uECC_word_t *const k, uECC_word_t *k0,
uECC_word_t *k1, uECC_Curve curve)
{
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
bitcount_t num_n_bits = curve->num_n_bits;
uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
(num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
uECC_vli_testBit(k0, num_n_bits));
uECC_vli_add(k1, k0, curve->n, num_n_words);
return carry;
}
uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
uECC_word_t *private_key,
uECC_Curve curve)
{
uECC_word_t tmp1[NUM_ECC_WORDS];
uECC_word_t tmp2[NUM_ECC_WORDS];
uECC_word_t *p2[2] = {tmp1, tmp2};
uECC_word_t carry;
/* Regularize the bitcount for the private key so that attackers cannot
* use a side channel attack to learn the number of leading zeros. */
carry = regularize_k(private_key, tmp1, tmp2, curve);
EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);
if (EccPoint_isZero(result, curve)) {
return 0;
}
return 1;
}
/* Converts an integer in uECC native format to big-endian bytes. */
void uECC_vli_nativeToBytes(uint8_t *bytes, int num_bytes,
const unsigned int *native)
{
wordcount_t i;
for (i = 0; i < num_bytes; ++i) {
unsigned b = num_bytes - 1 - i;
bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
}
}
/* Converts big-endian bytes to an integer in uECC native format. */
void uECC_vli_bytesToNative(unsigned int *native, const uint8_t *bytes,
int num_bytes)
{
wordcount_t i;
uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
for (i = 0; i < num_bytes; ++i) {
unsigned b = num_bytes - 1 - i;
native[b / uECC_WORD_SIZE] |=
(uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
}
}
int uECC_generate_random_int(uECC_word_t *random, const uECC_word_t *top,
wordcount_t num_words)
{
uECC_word_t mask = (uECC_word_t) - 1;
uECC_word_t tries;
bitcount_t num_bits = uECC_vli_numBits(top, num_words);
if (!g_rng_function) {
return 0;
}
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
return 0;
}
random[num_words - 1] &=
mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
if (!uECC_vli_isZero(random, num_words) &&
uECC_vli_cmp(top, random, num_words) == 1) {
return 1;
}
}
return 0;
}
int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve)
{
uECC_word_t tmp1[NUM_ECC_WORDS];
uECC_word_t tmp2[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
/* The point at infinity is invalid. */
if (EccPoint_isZero(point, curve)) {
return -1;
}
/* x and y must be smaller than p. */
if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
return -2;
}
uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
/* Make sure that y^2 == x^3 + ax + b */
if (uECC_vli_equal(tmp1, tmp2, num_words) != 0) {
return -3;
}
return 0;
}
int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve)
{
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
uECC_vli_bytesToNative(
_public + curve->num_words,
public_key + curve->num_bytes,
curve->num_bytes);
if (uECC_vli_cmp_unsafe(_public, curve->G, NUM_ECC_WORDS * 2) == 0) {
return -4;
}
return uECC_valid_point(_public, curve);
}
int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key,
uECC_Curve curve)
{
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_vli_bytesToNative(
_private,
private_key,
BITS_TO_BYTES(curve->num_n_bits));
/* Make sure the private key is in the range [1, n-1]. */
if (uECC_vli_isZero(_private, BITS_TO_WORDS(curve->num_n_bits))) {
return 0;
}
if (uECC_vli_cmp(curve->n, _private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
return 0;
}
/* Compute public key. */
if (!EccPoint_compute_public_key(_public, _private, curve)) {
return 0;
}
uECC_vli_nativeToBytes(public_key, curve->num_bytes, _public);
uECC_vli_nativeToBytes(
public_key +
curve->num_bytes, curve->num_bytes, _public + curve->num_words);
return 1;
}

View file

@ -0,0 +1,198 @@
/* ec_dh.c - TinyCrypt implementation of EC-DH */
/*
* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/constants.h>
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dh.h>
#include <tinycrypt/utils.h>
#include <string.h>
#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
#else
static uECC_RNG_Function g_rng_function = 0;
#endif
int uECC_make_key_with_d(uint8_t *public_key, uint8_t *private_key,
unsigned int *d, uECC_Curve curve)
{
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2];
/* This function is designed for test purposes-only (such as validating NIST
* test vectors) as it uses a provided value for d instead of generating
* it uniformly at random. */
memcpy (_private, d, NUM_ECC_BYTES);
/* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) {
/* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key,
BITS_TO_BYTES(curve->num_n_bits),
_private);
uECC_vli_nativeToBytes(public_key,
curve->num_bytes,
_public);
uECC_vli_nativeToBytes(public_key + curve->num_bytes,
curve->num_bytes,
_public + curve->num_words);
/* erasing temporary buffer used to store secret: */
_set_secure(_private, 0, NUM_ECC_BYTES);
return 1;
}
return 0;
}
int uECC_make_key(uint8_t *public_key, uint8_t *private_key, uECC_Curve curve)
{
uECC_word_t _random[NUM_ECC_WORDS * 2];
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _private uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function ||
!rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS * uECC_WORD_SIZE)) {
return 0;
}
/* computing modular reduction of _random (see FIPS 186.4 B.4.1): */
uECC_vli_mmod(_private, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
/* Computing public-key from private: */
if (EccPoint_compute_public_key(_public, _private, curve)) {
/* Converting buffers to correct bit order: */
uECC_vli_nativeToBytes(private_key,
BITS_TO_BYTES(curve->num_n_bits),
_private);
uECC_vli_nativeToBytes(public_key,
curve->num_bytes,
_public);
uECC_vli_nativeToBytes(public_key + curve->num_bytes,
curve->num_bytes,
_public + curve->num_words);
/* erasing temporary buffer that stored secret: */
_set_secure(_private, 0, NUM_ECC_BYTES);
return 1;
}
}
return 0;
}
int uECC_shared_secret(const uint8_t *public_key, const uint8_t *private_key,
uint8_t *secret, uECC_Curve curve)
{
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t _private[NUM_ECC_WORDS];
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t *p2[2] = {_private, tmp};
uECC_word_t *initial_Z = 0;
uECC_word_t carry;
wordcount_t num_words = curve->num_words;
wordcount_t num_bytes = curve->num_bytes;
int r;
/* Converting buffers to correct bit order: */
uECC_vli_bytesToNative(_private,
private_key,
BITS_TO_BYTES(curve->num_n_bits));
uECC_vli_bytesToNative(_public,
public_key,
num_bytes);
uECC_vli_bytesToNative(_public + num_words,
public_key + num_bytes,
num_bytes);
/* Regularize the bitcount for the private key so that attackers cannot use a
* side channel attack to learn the number of leading zeros. */
carry = regularize_k(_private, _private, tmp, curve);
/* If an RNG function was specified, try to get a random initial Z value to
* improve protection against side-channel attacks. */
if (g_rng_function) {
if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) {
r = 0;
goto clear_and_out;
}
initial_Z = p2[carry];
}
EccPoint_mult(_public, _public, p2[!carry], initial_Z, curve->num_n_bits + 1,
curve);
uECC_vli_nativeToBytes(secret, num_bytes, _public);
r = !EccPoint_isZero(_public, curve);
clear_and_out:
/* erasing temporary buffer used to store secret: */
_set_secure(p2, 0, sizeof(p2));
_set_secure(tmp, 0, sizeof(tmp));
_set_secure(_private, 0, sizeof(_private));
return r;
}

View file

@ -0,0 +1,293 @@
/* ec_dsa.c - TinyCrypt implementation of EC-DSA */
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/constants.h>
#include <tinycrypt/ecc.h>
#include <tinycrypt/ecc_dsa.h>
#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_CSPRNG;
#else
static uECC_RNG_Function g_rng_function = 0;
#endif
static void bits2int(uECC_word_t *native, const uint8_t *bits,
unsigned bits_size, uECC_Curve curve)
{
unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
int shift;
uECC_word_t carry;
uECC_word_t *ptr;
if (bits_size > num_n_bytes) {
bits_size = num_n_bytes;
}
uECC_vli_clear(native, num_n_words);
uECC_vli_bytesToNative(native, bits, bits_size);
if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
return;
}
shift = bits_size * 8 - curve->num_n_bits;
carry = 0;
ptr = native + num_n_words;
while (ptr-- > native) {
uECC_word_t temp = *ptr;
*ptr = (temp >> shift) | carry;
carry = temp << (uECC_WORD_BITS - shift);
}
/* Reduce mod curve_n */
if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
uECC_vli_sub(native, native, curve->n, num_n_words);
}
}
int uECC_sign_with_k(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uECC_word_t *k, uint8_t *signature,
uECC_Curve curve)
{
uECC_word_t tmp[NUM_ECC_WORDS];
uECC_word_t s[NUM_ECC_WORDS];
uECC_word_t *k2[2] = {tmp, s};
uECC_word_t p[NUM_ECC_WORDS * 2];
uECC_word_t carry;
wordcount_t num_words = curve->num_words;
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
bitcount_t num_n_bits = curve->num_n_bits;
/* Make sure 0 < k < curve_n */
if (uECC_vli_isZero(k, num_words) ||
uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
return 0;
}
carry = regularize_k(k, tmp, s, curve);
EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
if (uECC_vli_isZero(p, num_words)) {
return 0;
}
/* If an RNG function was specified, get a random number
to prevent side channel analysis of k. */
if (!g_rng_function) {
uECC_vli_clear(tmp, num_n_words);
tmp[0] = 1;
} else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
return 0;
}
/* Prevent side channel analysis of uECC_vli_modInv() to determine
bits of k / the private key by premultiplying by a random number */
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
uECC_vli_modInv(k, k, curve->n, num_n_words); /* k = 1 / k' */
uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
/* tmp = d: */
uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits));
s[num_n_words - 1] = 0;
uECC_vli_set(s, p, num_words);
uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */
bits2int(tmp, message_hash, hash_size, curve);
uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
uECC_vli_modMult(s, s, k, curve->n, num_n_words); /* s = (e + r*d) / k */
if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
return 0;
}
uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
return 1;
}
int uECC_sign(const uint8_t *private_key, const uint8_t *message_hash,
unsigned hash_size, uint8_t *signature, uECC_Curve curve)
{
uECC_word_t _random[2 * NUM_ECC_WORDS];
uECC_word_t k[NUM_ECC_WORDS];
uECC_word_t tries;
for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
/* Generating _random uniformly at random: */
uECC_RNG_Function rng_function = uECC_get_rng();
if (!rng_function ||
!rng_function((uint8_t *)_random, 2 * NUM_ECC_WORDS * uECC_WORD_SIZE)) {
return 0;
}
// computing k as modular reduction of _random (see FIPS 186.4 B.5.1):
uECC_vli_mmod(k, _random, curve->n, BITS_TO_WORDS(curve->num_n_bits));
if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature,
curve)) {
return 1;
}
}
return 0;
}
static bitcount_t smax(bitcount_t a, bitcount_t b)
{
return (a > b ? a : b);
}
int uECC_verify(const uint8_t *public_key, const uint8_t *message_hash,
unsigned hash_size, const uint8_t *signature,
uECC_Curve curve)
{
uECC_word_t u1[NUM_ECC_WORDS], u2[NUM_ECC_WORDS];
uECC_word_t z[NUM_ECC_WORDS];
uECC_word_t sum[NUM_ECC_WORDS * 2];
uECC_word_t rx[NUM_ECC_WORDS];
uECC_word_t ry[NUM_ECC_WORDS];
uECC_word_t tx[NUM_ECC_WORDS];
uECC_word_t ty[NUM_ECC_WORDS];
uECC_word_t tz[NUM_ECC_WORDS];
const uECC_word_t *points[4];
const uECC_word_t *point;
bitcount_t num_bits;
bitcount_t i;
uECC_word_t _public[NUM_ECC_WORDS * 2];
uECC_word_t r[NUM_ECC_WORDS], s[NUM_ECC_WORDS];
wordcount_t num_words = curve->num_words;
wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
rx[num_n_words - 1] = 0;
r[num_n_words - 1] = 0;
s[num_n_words - 1] = 0;
uECC_vli_bytesToNative(_public, public_key, curve->num_bytes);
uECC_vli_bytesToNative(_public + num_words, public_key + curve->num_bytes,
curve->num_bytes);
uECC_vli_bytesToNative(r, signature, curve->num_bytes);
uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
/* r, s must not be 0. */
if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
return 0;
}
/* r, s must be < n. */
if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
return 0;
}
/* Calculate u1 and u2. */
uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
u1[num_n_words - 1] = 0;
bits2int(u1, message_hash, hash_size, curve);
uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
/* Calculate sum = G + Q. */
uECC_vli_set(sum, _public, num_words);
uECC_vli_set(sum + num_words, _public + num_words, num_words);
uECC_vli_set(tx, curve->G, num_words);
uECC_vli_set(ty, curve->G + num_words, num_words);
uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
XYcZ_add(tx, ty, sum, sum + num_words, curve);
uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
apply_z(sum, sum + num_words, z, curve);
/* Use Shamir's trick to calculate u1*G + u2*Q */
points[0] = 0;
points[1] = curve->G;
points[2] = _public;
points[3] = sum;
num_bits = smax(uECC_vli_numBits(u1, num_n_words),
uECC_vli_numBits(u2, num_n_words));
point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
uECC_vli_set(rx, point, num_words);
uECC_vli_set(ry, point + num_words, num_words);
uECC_vli_clear(z, num_words);
z[0] = 1;
for (i = num_bits - 2; i >= 0; --i) {
uECC_word_t index;
curve->double_jacobian(rx, ry, z, curve);
index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
point = points[index];
if (point) {
uECC_vli_set(tx, point, num_words);
uECC_vli_set(ty, point + num_words, num_words);
apply_z(tx, ty, z, curve);
uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
XYcZ_add(tx, ty, rx, ry, curve);
uECC_vli_modMult_fast(z, z, tz, curve);
}
}
uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
apply_z(rx, ry, z, curve);
/* v = x1 (mod n) */
if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
uECC_vli_sub(rx, rx, curve->n, num_n_words);
}
/* Accept only if v == r. */
return (int)(uECC_vli_equal(rx, r, num_words) == 0);
}

View file

@ -0,0 +1,106 @@
/* uECC_platform_specific.c - Implementation of platform specific functions*/
/* Copyright (c) 2014, Kenneth MacKay
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.*/
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* uECC_platform_specific.c -- Implementation of platform specific functions
*/
#if defined(unix) || defined(__linux__) || defined(__unix__) || \
defined(__unix) | (defined(__APPLE__) && defined(__MACH__)) || \
defined(uECC_POSIX)
/* Some POSIX-like system with /dev/urandom or /dev/random. */
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdint.h>
#ifndef O_CLOEXEC
#define O_CLOEXEC 0
#endif
int default_CSPRNG(uint8_t *dest, unsigned int size)
{
/* input sanity check: */
if (dest == (uint8_t *) 0 || (size <= 0)) {
return 0;
}
int fd = open("/dev/urandom", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
fd = open("/dev/random", O_RDONLY | O_CLOEXEC);
if (fd == -1) {
return 0;
}
}
char *ptr = (char *)dest;
size_t left = (size_t) size;
while (left > 0) {
ssize_t bytes_read = read(fd, ptr, left);
if (bytes_read <= 0) { // read failed
close(fd);
return 0;
}
left -= bytes_read;
ptr += bytes_read;
}
close(fd);
return 1;
}
#endif /* platform */

View file

@ -0,0 +1,147 @@
/* hmac.c - TinyCrypt implementation of the HMAC algorithm */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/hmac.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
static void rekey(uint8_t *key, const uint8_t *new_key, unsigned int key_size)
{
const uint8_t inner_pad = (uint8_t) 0x36;
const uint8_t outer_pad = (uint8_t) 0x5c;
unsigned int i;
for (i = 0; i < key_size; ++i) {
key[i] = inner_pad ^ new_key[i];
key[i + TC_SHA256_BLOCK_SIZE] = outer_pad ^ new_key[i];
}
for (; i < TC_SHA256_BLOCK_SIZE; ++i) {
key[i] = inner_pad; key[i + TC_SHA256_BLOCK_SIZE] = outer_pad;
}
}
int tc_hmac_set_key(TCHmacState_t ctx, const uint8_t *key,
unsigned int key_size)
{
/* Input sanity check */
if (ctx == (TCHmacState_t) 0 ||
key == (const uint8_t *) 0 ||
key_size == 0) {
return TC_CRYPTO_FAIL;
}
const uint8_t dummy_key[TC_SHA256_BLOCK_SIZE];
struct tc_hmac_state_struct dummy_state;
if (key_size <= TC_SHA256_BLOCK_SIZE) {
/*
* The next three calls are dummy calls just to avoid
* certain timing attacks. Without these dummy calls,
* adversaries would be able to learn whether the key_size is
* greater than TC_SHA256_BLOCK_SIZE by measuring the time
* consumed in this process.
*/
(void)tc_sha256_init(&dummy_state.hash_state);
(void)tc_sha256_update(&dummy_state.hash_state,
dummy_key,
key_size);
(void)tc_sha256_final(&dummy_state.key[TC_SHA256_DIGEST_SIZE],
&dummy_state.hash_state);
/* Actual code for when key_size <= TC_SHA256_BLOCK_SIZE: */
rekey(ctx->key, key, key_size);
} else {
(void)tc_sha256_init(&ctx->hash_state);
(void)tc_sha256_update(&ctx->hash_state, key, key_size);
(void)tc_sha256_final(&ctx->key[TC_SHA256_DIGEST_SIZE],
&ctx->hash_state);
rekey(ctx->key,
&ctx->key[TC_SHA256_DIGEST_SIZE],
TC_SHA256_DIGEST_SIZE);
}
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_init(TCHmacState_t ctx)
{
/* input sanity check: */
if (ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
(void) tc_sha256_init(&ctx->hash_state);
(void) tc_sha256_update(&ctx->hash_state, ctx->key, TC_SHA256_BLOCK_SIZE);
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_update(TCHmacState_t ctx,
const void *data,
unsigned int data_length)
{
/* input sanity check: */
if (ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)tc_sha256_update(&ctx->hash_state, data, data_length);
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_final(uint8_t *tag, unsigned int taglen, TCHmacState_t ctx)
{
/* input sanity check: */
if (tag == (uint8_t *) 0 ||
taglen != TC_SHA256_DIGEST_SIZE ||
ctx == (TCHmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
(void) tc_sha256_final(tag, &ctx->hash_state);
(void)tc_sha256_init(&ctx->hash_state);
(void)tc_sha256_update(&ctx->hash_state,
&ctx->key[TC_SHA256_BLOCK_SIZE],
TC_SHA256_BLOCK_SIZE);
(void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE);
(void)tc_sha256_final(tag, &ctx->hash_state);
/* destroy the current state */
_set(ctx, 0, sizeof(*ctx));
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,234 @@
/* hmac_prng.c - TinyCrypt implementation of HMAC-PRNG */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/hmac_prng.h>
#include <tinycrypt/hmac.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
/*
* min bytes in the seed string.
* MIN_SLEN*8 must be at least the expected security level.
*/
static const unsigned int MIN_SLEN = 32;
/*
* max bytes in the seed string;
* SP800-90A specifies a maximum of 2^35 bits (i.e., 2^32 bytes).
*/
static const unsigned int MAX_SLEN = UINT32_MAX;
/*
* max bytes in the personalization string;
* SP800-90A specifies a maximum of 2^35 bits (i.e., 2^32 bytes).
*/
static const unsigned int MAX_PLEN = UINT32_MAX;
/*
* max bytes in the additional_info string;
* SP800-90A specifies a maximum of 2^35 bits (i.e., 2^32 bytes).
*/
static const unsigned int MAX_ALEN = UINT32_MAX;
/*
* max number of generates between re-seeds;
* TinyCrypt accepts up to (2^32 - 1) which is the maximal value of
* a 32-bit unsigned int variable, while SP800-90A specifies a maximum of 2^48.
*/
static const unsigned int MAX_GENS = UINT32_MAX;
/*
* maximum bytes per generate call;
* SP800-90A specifies a maximum up to 2^19.
*/
static const unsigned int MAX_OUT = (1 << 19);
/*
* Assumes: prng != NULL
*/
static void update(TCHmacPrng_t prng, const uint8_t *data, unsigned int datalen, const uint8_t *additional_data, unsigned int additional_datalen)
{
const uint8_t separator0 = 0x00;
const uint8_t separator1 = 0x01;
/* configure the new prng key into the prng's instance of hmac */
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use current state, e and separator 0 to compute a new prng key: */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_update(&prng->h, &separator0, sizeof(separator0));
if (data && datalen) {
(void)tc_hmac_update(&prng->h, data, datalen);
}
if (additional_data && additional_datalen) {
(void)tc_hmac_update(&prng->h, additional_data, additional_datalen);
}
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h);
/* configure the new prng key into the prng's instance of hmac */
(void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use the new key to compute a new state variable v */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
if (data == 0 || datalen == 0) {
return;
}
/* configure the new prng key into the prng's instance of hmac */
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use current state, e and separator 1 to compute a new prng key: */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_update(&prng->h, &separator1, sizeof(separator1));
(void)tc_hmac_update(&prng->h, data, datalen);
if (additional_data && additional_datalen) {
(void)tc_hmac_update(&prng->h, additional_data, additional_datalen);
}
(void)tc_hmac_final(prng->key, sizeof(prng->key), &prng->h);
/* configure the new prng key into the prng's instance of hmac */
(void)tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* use the new key to compute a new state variable v */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
}
int tc_hmac_prng_init(TCHmacPrng_t prng,
const uint8_t *personalization,
unsigned int plen)
{
/* input sanity check: */
if (prng == (TCHmacPrng_t) 0 ||
personalization == (uint8_t *) 0 ||
plen > MAX_PLEN) {
return TC_CRYPTO_FAIL;
}
/* put the generator into a known state: */
_set(prng->key, 0x00, sizeof(prng->key));
_set(prng->v, 0x01, sizeof(prng->v));
update(prng, personalization, plen, 0, 0);
/* force a reseed before allowing tc_hmac_prng_generate to succeed: */
prng->countdown = 0;
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_prng_reseed(TCHmacPrng_t prng,
const uint8_t *seed,
unsigned int seedlen,
const uint8_t *additional_input,
unsigned int additionallen)
{
/* input sanity check: */
if (prng == (TCHmacPrng_t) 0 ||
seed == (const uint8_t *) 0 ||
seedlen < MIN_SLEN ||
seedlen > MAX_SLEN) {
return TC_CRYPTO_FAIL;
}
if (additional_input != (const uint8_t *) 0) {
/*
* Abort if additional_input is provided but has inappropriate
* length
*/
if (additionallen == 0 ||
additionallen > MAX_ALEN) {
return TC_CRYPTO_FAIL;
} else {
/* call update for the seed and additional_input */
update(prng, seed, seedlen, additional_input, additionallen);
}
} else {
/* call update only for the seed */
update(prng, seed, seedlen, 0, 0);
}
/* ... and enable hmac_prng_generate */
prng->countdown = MAX_GENS;
return TC_CRYPTO_SUCCESS;
}
int tc_hmac_prng_generate(uint8_t *out, unsigned int outlen, TCHmacPrng_t prng)
{
unsigned int bufferlen;
/* input sanity check: */
if (out == (uint8_t *) 0 ||
prng == (TCHmacPrng_t) 0 ||
outlen == 0 ||
outlen > MAX_OUT) {
return TC_CRYPTO_FAIL;
} else if (prng->countdown == 0) {
return TC_HMAC_PRNG_RESEED_REQ;
}
prng->countdown--;
while (outlen != 0) {
/* configure the new prng key into the prng's instance of hmac */
tc_hmac_set_key(&prng->h, prng->key, sizeof(prng->key));
/* operate HMAC in OFB mode to create "random" outputs */
(void)tc_hmac_init(&prng->h);
(void)tc_hmac_update(&prng->h, prng->v, sizeof(prng->v));
(void)tc_hmac_final(prng->v, sizeof(prng->v), &prng->h);
bufferlen = (TC_SHA256_DIGEST_SIZE > outlen) ?
outlen : TC_SHA256_DIGEST_SIZE;
(void)_copy(out, bufferlen, prng->v, bufferlen);
out += bufferlen;
outlen = (outlen > TC_SHA256_DIGEST_SIZE) ?
(outlen - TC_SHA256_DIGEST_SIZE) : 0;
}
/* block future PRNG compromises from revealing past state */
update(prng, 0, 0, 0, 0);
return TC_CRYPTO_SUCCESS;
}

View file

@ -0,0 +1,217 @@
/* sha256.c - TinyCrypt SHA-256 crypto hash algorithm implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/sha256.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/utils.h>
static void compress(unsigned int *iv, const uint8_t *data);
int tc_sha256_init(TCSha256State_t s)
{
/* input sanity check: */
if (s == (TCSha256State_t) 0) {
return TC_CRYPTO_FAIL;
}
/*
* Setting the initial state values.
* These values correspond to the first 32 bits of the fractional parts
* of the square roots of the first 8 primes: 2, 3, 5, 7, 11, 13, 17
* and 19.
*/
_set((uint8_t *) s, 0x00, sizeof(*s));
s->iv[0] = 0x6a09e667;
s->iv[1] = 0xbb67ae85;
s->iv[2] = 0x3c6ef372;
s->iv[3] = 0xa54ff53a;
s->iv[4] = 0x510e527f;
s->iv[5] = 0x9b05688c;
s->iv[6] = 0x1f83d9ab;
s->iv[7] = 0x5be0cd19;
return TC_CRYPTO_SUCCESS;
}
int tc_sha256_update(TCSha256State_t s, const uint8_t *data, size_t datalen)
{
/* input sanity check: */
if (s == (TCSha256State_t) 0 ||
data == (void *) 0) {
return TC_CRYPTO_FAIL;
} else if (datalen == 0) {
return TC_CRYPTO_SUCCESS;
}
while (datalen-- > 0) {
s->leftover[s->leftover_offset++] = *(data++);
if (s->leftover_offset >= TC_SHA256_BLOCK_SIZE) {
compress(s->iv, s->leftover);
s->leftover_offset = 0;
s->bits_hashed += (TC_SHA256_BLOCK_SIZE << 3);
}
}
return TC_CRYPTO_SUCCESS;
}
int tc_sha256_final(uint8_t *digest, TCSha256State_t s)
{
unsigned int i;
/* input sanity check: */
if (digest == (uint8_t *) 0 ||
s == (TCSha256State_t) 0) {
return TC_CRYPTO_FAIL;
}
s->bits_hashed += (s->leftover_offset << 3);
s->leftover[s->leftover_offset++] = 0x80; /* always room for one byte */
if (s->leftover_offset > (sizeof(s->leftover) - 8)) {
/* there is not room for all the padding in this block */
_set(s->leftover + s->leftover_offset, 0x00,
sizeof(s->leftover) - s->leftover_offset);
compress(s->iv, s->leftover);
s->leftover_offset = 0;
}
/* add the padding and the length in big-Endian format */
_set(s->leftover + s->leftover_offset, 0x00,
sizeof(s->leftover) - 8 - s->leftover_offset);
s->leftover[sizeof(s->leftover) - 1] = (uint8_t)(s->bits_hashed);
s->leftover[sizeof(s->leftover) - 2] = (uint8_t)(s->bits_hashed >> 8);
s->leftover[sizeof(s->leftover) - 3] = (uint8_t)(s->bits_hashed >> 16);
s->leftover[sizeof(s->leftover) - 4] = (uint8_t)(s->bits_hashed >> 24);
s->leftover[sizeof(s->leftover) - 5] = (uint8_t)(s->bits_hashed >> 32);
s->leftover[sizeof(s->leftover) - 6] = (uint8_t)(s->bits_hashed >> 40);
s->leftover[sizeof(s->leftover) - 7] = (uint8_t)(s->bits_hashed >> 48);
s->leftover[sizeof(s->leftover) - 8] = (uint8_t)(s->bits_hashed >> 56);
/* hash the padding and length */
compress(s->iv, s->leftover);
/* copy the iv out to digest */
for (i = 0; i < TC_SHA256_STATE_BLOCKS; ++i) {
unsigned int t = *((unsigned int *) &s->iv[i]);
*digest++ = (uint8_t)(t >> 24);
*digest++ = (uint8_t)(t >> 16);
*digest++ = (uint8_t)(t >> 8);
*digest++ = (uint8_t)(t);
}
/* destroy the current state */
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}
/*
* Initializing SHA-256 Hash constant words K.
* These values correspond to the first 32 bits of the fractional parts of the
* cube roots of the first 64 primes between 2 and 311.
*/
static const unsigned int k256[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
static inline unsigned int ROTR(unsigned int a, unsigned int n)
{
return (((a) >> n) | ((a) << (32 - n)));
}
#define Sigma0(a)(ROTR((a), 2) ^ ROTR((a), 13) ^ ROTR((a), 22))
#define Sigma1(a)(ROTR((a), 6) ^ ROTR((a), 11) ^ ROTR((a), 25))
#define sigma0(a)(ROTR((a), 7) ^ ROTR((a), 18) ^ ((a) >> 3))
#define sigma1(a)(ROTR((a), 17) ^ ROTR((a), 19) ^ ((a) >> 10))
#define Ch(a, b, c)(((a) & (b)) ^ ((~(a)) & (c)))
#define Maj(a, b, c)(((a) & (b)) ^ ((a) & (c)) ^ ((b) & (c)))
static inline unsigned int BigEndian(const uint8_t **c)
{
unsigned int n = 0;
n = (((unsigned int)(*((*c)++))) << 24);
n |= ((unsigned int)(*((*c)++)) << 16);
n |= ((unsigned int)(*((*c)++)) << 8);
n |= ((unsigned int)(*((*c)++)));
return n;
}
static void compress(unsigned int *iv, const uint8_t *data)
{
unsigned int a, b, c, d, e, f, g, h;
unsigned int s0, s1;
unsigned int t1, t2;
unsigned int work_space[16];
unsigned int n;
unsigned int i;
a = iv[0]; b = iv[1]; c = iv[2]; d = iv[3];
e = iv[4]; f = iv[5]; g = iv[6]; h = iv[7];
for (i = 0; i < 16; ++i) {
n = BigEndian(&data);
t1 = work_space[i] = n;
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
t2 = Sigma0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2;
}
for ( ; i < 64; ++i) {
s0 = work_space[(i + 1) & 0x0f];
s0 = sigma0(s0);
s1 = work_space[(i + 14) & 0x0f];
s1 = sigma1(s1);
t1 = work_space[i & 0xf] += s0 + s1 + work_space[(i + 9) & 0xf];
t1 += h + Sigma1(e) + Ch(e, f, g) + k256[i];
t2 = Sigma0(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + t1;
d = c; c = b; b = a; a = t1 + t2;
}
iv[0] += a; iv[1] += b; iv[2] += c; iv[3] += d;
iv[4] += e; iv[5] += f; iv[6] += g; iv[7] += h;
}

View file

@ -0,0 +1,74 @@
/* utils.c - TinyCrypt platform-dependent run-time operations */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <tinycrypt/utils.h>
#include <tinycrypt/constants.h>
#include <string.h>
#define MASK_TWENTY_SEVEN 0x1b
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len)
{
if (from_len <= to_len) {
(void)memcpy(to, from, from_len);
return from_len;
} else {
return TC_CRYPTO_FAIL;
}
}
void _set(void *to, uint8_t val, unsigned int len)
{
(void)memset(to, val, len);
}
/*
* Doubles the value of a byte for values up to 127.
*/
uint8_t _double_byte(uint8_t a)
{
return ((a << 1) ^ ((a >> 7) * MASK_TWENTY_SEVEN));
}
int _compare(const uint8_t *a, const uint8_t *b, size_t size)
{
const uint8_t *tempa = a;
const uint8_t *tempb = b;
uint8_t result = 0;
for (unsigned int i = 0; i < size; i++) {
result |= tempa[i] ^ tempb[i];
}
return result;
}

View file

@ -21,8 +21,10 @@
#include "mbedtls/aes.h"
#include "bt_common.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include "mesh_hci.h"
#include "mesh_aes_encrypt.h"
#include "mesh_bearer_adapt.h"
#include "mesh_common.h"
#include "provisioner_prov.h"

View file

@ -13,9 +13,12 @@
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BLE_MESH_DEBUG_CRYPTO)
#include "mesh_common.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/cmac_mode.h>
#include "crypto.h"
#include "mesh_aes_encrypt.h"
#include "mesh_common.h"
#include "mesh_bearer_adapt.h"
#define NET_MIC_LEN(pdu) (((pdu)[1] & 0x80) ? 8 : 4)

View file

@ -21,9 +21,11 @@
#include "services/gap/ble_svc_gap.h"
#include "services/gatt/ble_svc_gatt.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include "mesh_hci.h"
#include "mesh_common.h"
#include "mesh_aes_encrypt.h"
#include "provisioner_prov.h"
/** @def BT_UUID_MESH_PROV