Merge branch 'driver_merge_tmp/merge_struct_header' into 'master'

add peripheral modules struct headers



See merge request !88
This commit is contained in:
Ivan Grokhotkov 2016-09-19 15:34:37 +08:00
commit b1ac144874
15 changed files with 3289 additions and 6 deletions

View file

@ -26,7 +26,7 @@ else
endif
endif
LINKER_SCRIPTS += -T esp32.common.ld -T esp32.rom.ld
LINKER_SCRIPTS += -T esp32.common.ld -T esp32.rom.ld -T esp32.peripherals.ld
COMPONENT_ADD_LDFLAGS := -lesp32 \
$(abspath libhal.a) \

View file

@ -0,0 +1,48 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_GPIO_SD_STRUCT_H_
#define _SOC_GPIO_SD_STRUCT_H_
typedef volatile struct {
union {
struct {
uint32_t duty: 8;
uint32_t prescale: 8;
uint32_t reserved16: 16;
};
uint32_t val;
}channel[8];
union {
struct {
uint32_t reserved0: 31;
uint32_t clk_en: 1;
};
uint32_t val;
}cg;
union {
struct {
uint32_t reserved0: 31;
uint32_t spi_swap: 1;
};
uint32_t val;
}misc;
union {
struct {
uint32_t date: 28;
uint32_t reserved28: 4;
};
uint32_t val;
}version;
} gpio_sd_dev_t;
extern gpio_sd_dev_t SIGMADELTA;
#endif /* _SOC_GPIO_SD_STRUCT_H_ */

View file

@ -0,0 +1,204 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_GPIO_STRUCT_H_
#define _SOC_GPIO_STRUCT_H_
typedef volatile struct {
uint32_t bt_select; /*NA*/
uint32_t out; /*GPIO0~31 output value*/
uint32_t out_w1ts; /*GPIO0~31 output value write 1 to set*/
uint32_t out_w1tc; /*GPIO0~31 output value write 1 to clear*/
union {
struct {
uint32_t data: 8; /*GPIO32~39 output value*/
uint32_t reserved8: 24;
};
uint32_t val;
}out1;
union {
struct {
uint32_t data: 8; /*GPIO32~39 output value write 1 to set*/
uint32_t reserved8: 24;
};
uint32_t val;
}out1_w1ts;
union {
struct {
uint32_t data: 8; /*GPIO32~39 output value write 1 to clear*/
uint32_t reserved8: 24;
};
uint32_t val;
}out1_w1tc;
union {
struct {
uint32_t sel: 8; /*SDIO PADS on/off control from outside*/
uint32_t reserved8: 24;
};
uint32_t val;
}sdio_select;
uint32_t enable; /*GPIO0~31 output enable*/
uint32_t enable_w1ts; /*GPIO0~31 output enable write 1 to set*/
uint32_t enable_w1tc; /*GPIO0~31 output enable write 1 to clear*/
union {
struct {
uint32_t data: 8; /*GPIO32~39 output enable*/
uint32_t reserved8: 24;
};
uint32_t val;
}enable1;
union {
struct {
uint32_t data: 8; /*GPIO32~39 output enable write 1 to set*/
uint32_t reserved8: 24;
};
uint32_t val;
}enable1_w1ts;
union {
struct {
uint32_t data: 8; /*GPIO32~39 output enable write 1 to clear*/
uint32_t reserved8: 24;
};
uint32_t val;
}enable1_w1tc;
union {
struct {
uint32_t strapping: 16; /*GPIO strapping results: {2'd0 boot_sel_dig[7:1] vsdio_boot_sel boot_sel_chip[5:0]}. Boot_sel_dig[7:1]: {U0RXD SD_CLK SD_CMD SD_DATA0 SD_DATA1 SD_DATA2 SD_DATA3}. vsdio_boot_sel: MTDI. boot_sel_chip[5:0]: {GPIO0 U0TXD GPIO2 GPIO4 MTDO GPIO5}*/
uint32_t reserved16:16;
};
uint32_t val;
}strap;
uint32_t in; /*GPIO0~31 input value*/
union {
struct {
uint32_t data: 8; /*GPIO32~39 input value*/
uint32_t reserved8: 24;
};
uint32_t val;
}in1;
uint32_t status; /*GPIO0~31 interrupt status*/
uint32_t status_w1ts; /*GPIO0~31 interrupt status write 1 to set*/
uint32_t status_w1tc; /*GPIO0~31 interrupt status write 1 to clear*/
union {
struct {
uint32_t intr_st: 8; /*GPIO32~39 interrupt status*/
uint32_t reserved8: 24;
};
uint32_t val;
}status1;
union {
struct {
uint32_t intr_st: 8; /*GPIO32~39 interrupt status write 1 to set*/
uint32_t reserved8: 24;
};
uint32_t val;
}status1_w1ts;
union {
struct {
uint32_t intr_st: 8; /*GPIO32~39 interrupt status write 1 to clear*/
uint32_t reserved8: 24;
};
uint32_t val;
}status1_w1tc;
uint32_t reserved_5c;
uint32_t acpu_int; /*GPIO0~31 APP CPU interrupt status*/
uint32_t acpu_nmi_int; /*GPIO0~31 APP CPU non-maskable interrupt status*/
uint32_t pcpu_int; /*GPIO0~31 PRO CPU interrupt status*/
uint32_t pcpu_nmi_int; /*GPIO0~31 PRO CPU non-maskable interrupt status*/
uint32_t cpusdio_int; /*SDIO's extent GPIO0~31 interrupt*/
union {
struct {
uint32_t intr: 8; /*GPIO32~39 APP CPU interrupt status*/
uint32_t reserved8: 24;
};
uint32_t val;
}acpu_int1;
union {
struct {
uint32_t intr: 8; /*GPIO32~39 APP CPU non-maskable interrupt status*/
uint32_t reserved8: 24;
};
uint32_t val;
}acpu_nmi_int1;
union {
struct {
uint32_t intr: 8; /*GPIO32~39 PRO CPU interrupt status*/
uint32_t reserved8: 24;
};
uint32_t val;
}pcpu_int1;
union {
struct {
uint32_t intr: 8; /*GPIO32~39 PRO CPU non-maskable interrupt status*/
uint32_t reserved8: 24;
};
uint32_t val;
}pcpu_nmi_int1;
union {
struct {
uint32_t intr: 8; /*SDIO's extent GPIO32~39 interrupt*/
uint32_t reserved8: 24;
};
uint32_t val;
}cpusdio_int1;
union {
struct {
uint32_t reserved0: 2;
uint32_t pad_driver: 1; /*if set to 0: normal output if set to 1: open drain*/
uint32_t reserved3: 4;
uint32_t int_type: 3; /*if set to 0: GPIO interrupt disable if set to 1: rising edge trigger if set to 2: falling edge trigger if set to 3: any edge trigger if set to 4: low level trigger if set to 5: high level trigger*/
uint32_t wakeup_enable: 1; /*GPIO wake up enable only available in light sleep*/
uint32_t config: 2; /*NA*/
uint32_t int_ena: 5; /*bit0: APP CPU interrupt enable bit1: APP CPU non-maskable interrupt enable bit3: PRO CPU interrupt enable bit4: PRO CPU non-maskable interrupt enable bit5: SDIO's extent interrupt enable*/
uint32_t reserved18: 14;
};
uint32_t val;
}pin[40];
union {
struct {
uint32_t rtc_max: 10;
uint32_t reserved10: 21;
uint32_t start: 1;
};
uint32_t val;
}cali_conf;
union {
struct {
uint32_t value_sync2: 20;
uint32_t reserved20: 10;
uint32_t rdy_real: 1;
uint32_t rdy_sync2: 1;
};
uint32_t val;
}cali_data;
union {
struct {
uint32_t func_sel: 6; /*select one of the 256 inputs*/
uint32_t sig_in_inv: 1; /*revert the value of the input if you want to revert please set the value to 1*/
uint32_t sig_in_sel: 1; /*if the slow signal bypass the io matrix or not if you want setting the value to 1*/
uint32_t reserved8: 24; /*The 256 registers below are selection control for 256 input signals connected to GPIO matrix's 40 GPIO input if GPIO_FUNCx_IN_SEL is set to n(0<=n<40): it means GPIOn input is used for input signal x if GPIO_FUNCx_IN_SEL is set to 0x38: the input signal x is set to 1 if GPIO_FUNCx_IN_SEL is set to 0x30: the input signal x is set to 0*/
};
uint32_t val;
}func_in_sel_cfg[256];
union {
struct {
uint32_t func_sel: 9; /*select one of the 256 output to 40 GPIO*/
uint32_t inv_sel: 1; /*invert the output value if you want to revert the output value setting the value to 1*/
uint32_t oen_sel: 1; /*weather using the logical oen signal or not using the value setting by the register*/
uint32_t oen_inv_sel: 1; /*invert the output enable value if you want to revert the output enable value setting the value to 1*/
uint32_t reserved12: 20; /*The 40 registers below are selection control for 40 GPIO output if GPIO_FUNCx_OUT_SEL is set to n(0<=n<256): it means GPIOn input is used for output signal x if GPIO_FUNCx_OUT_INV_SEL is set to 1 the output signal x is set to ~value. if GPIO_FUNC0_OUT_SEL is 256 or GPIO_FUNC0_OEN_SEL is 1 using GPIO_ENABLE_DATA[x] for the enable value else using the signal enable*/
};
uint32_t val;
}func_out_sel_cfg[40];
} gpio_dev_t;
extern gpio_dev_t GPIO;
#endif /* _SOC_GPIO_STRUCT_H_ */

View file

@ -0,0 +1,289 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_I2C_STRUCT_H_
#define _SOC_I2C_STRUCT_H_
typedef volatile struct {
union {
struct {
uint32_t scl_low_period:14; /*This register is used to configure the low level width of SCL clock.*/
uint32_t reserved14: 18;
};
uint32_t val;
}scl_low_period;
union {
struct {
uint32_t sda_force_out: 1; /*1normally output sda data 0: exchange the function of sda_o and sda_oe (sda_o is the original internal output sda signal sda_oe is the enable bit for the internal output sda signal)*/
uint32_t scl_force_out: 1; /*1normally output scl clock 0: exchange the function of scl_o and scl_oe (scl_o is the original internal output scl signal scl_oe is the enable bit for the internal output scl signal)*/
uint32_t sample_scl_level: 1; /*Set this bit to sample data in SCL low level. clear this bit to sample data in SCL high level.*/
uint32_t reserved3: 1;
uint32_t ms_mode: 1; /*Set this bit to configure the module as i2c master clear this bit to configure the module as i2c slave.*/
uint32_t trans_start: 1; /*Set this bit to start sending data in tx_fifo.*/
uint32_t tx_lsb_first: 1; /*This bit is used to control the sending mode for data need to be send. 1receive data from most significant bit 0receive data from least significant bit*/
uint32_t rx_lsb_first: 1; /*This bit is used to control the storage mode for received data. 1receive data from most significant bit 0receive data from least significant bit*/
uint32_t clk_en: 1; /*This is the clock gating control bit for reading or writing registers.*/
uint32_t reserved9: 23;
};
uint32_t val;
}ctr;
union {
struct {
uint32_t ack_rec: 1; /*This register stores the value of ACK bit.*/
uint32_t slave_rw: 1; /*when in slave mode 1master read slave 0: master write slave.*/
uint32_t time_out: 1; /*when I2C takes more than time_out_reg clocks to receive a data then this register changes to high level.*/
uint32_t arb_lost: 1; /*when I2C lost control of SDA line this register changes to high level.*/
uint32_t bus_busy: 1; /*1:I2C bus is busy transferring data. 0:I2C bus is in idle state.*/
uint32_t slave_addressed: 1; /*when configured as i2c slave and the address send by master is equal to slave's address then this bit will be high level.*/
uint32_t byte_trans: 1; /*This register changes to high level when one byte is transferred.*/
uint32_t reserved7: 1;
uint32_t rx_fifo_cnt: 6; /*This register represent the amount of data need to send.*/
uint32_t reserved14: 4;
uint32_t tx_fifo_cnt: 6; /*This register stores the amount of received data in ram.*/
uint32_t scl_main_state_last: 3; /*This register stores the value of state machine for i2c module. 3'h0: SCL_MAIN_IDLE 3'h1: SCL_ADDRESS_SHIFT 3'h2: SCL_ACK_ADDRESS 3'h3: SCL_RX_DATA 3'h4 SCL_TX_DATA 3'h5:SCL_SEND_ACK 3'h6:SCL_WAIT_ACK*/
uint32_t reserved27: 1;
uint32_t scl_state_last: 3; /*This register stores the value of state machine to produce SCL. 3'h0: SCL_IDLE 3'h1:SCL_START 3'h2:SCL_LOW_EDGE 3'h3: SCL_LOW 3'h4:SCL_HIGH_EDGE 3'h5:SCL_HIGH 3'h6:SCL_STOP*/
uint32_t reserved31: 1;
};
uint32_t val;
}status_reg;
union {
struct {
uint32_t tout: 20; /*This register is used to configure the max clock number of receiving a data.*/
uint32_t reserved20:12;
};
uint32_t val;
}timeout;
union {
struct {
uint32_t addr: 15; /*when configured as i2c slave this register is used to configure slave's address.*/
uint32_t reserved15: 16;
uint32_t en_10bit: 1; /*This register is used to enable slave 10bit address mode.*/
};
uint32_t val;
}slave_addr;
union {
struct {
uint32_t rx_fifo_start_addr: 5; /*This is the offset address of the last receiving data as described in nonfifo_rx_thres_register.*/
uint32_t rx_fifo_end_addr: 5; /*This is the offset address of the first receiving data as described in nonfifo_rx_thres_register.*/
uint32_t tx_fifo_start_addr: 5; /*This is the offset address of the first sending data as described in nonfifo_tx_thres register.*/
uint32_t tx_fifo_end_addr: 5; /*This is the offset address of the last sending data as described in nonfifo_tx_thres register.*/
uint32_t reserved20: 12;
};
uint32_t val;
}fifo_st;
union {
struct {
uint32_t rx_fifo_full_thrhd: 5;
uint32_t tx_fifo_empty_thrhd:5; /*Config tx_fifo empty threhd value when using apb fifo access*/
uint32_t nonfifo_en: 1; /*Set this bit to enble apb nonfifo access.*/
uint32_t fifo_addr_cfg_en: 1; /*When this bit is set to 1 then the byte after address represent the offset address of I2C Slave's ram.*/
uint32_t rx_fifo_rst: 1; /*Set this bit to reset rx fifo when using apb fifo access.*/
uint32_t tx_fifo_rst: 1; /*Set this bit to reset tx fifo when using apb fifo access.*/
uint32_t nonfifo_rx_thres: 6; /*when I2C receives more than nonfifo_rx_thres data it will produce rx_send_full_int_raw interrupt and update the current offset address of the receiving data.*/
uint32_t nonfifo_tx_thres: 6; /*when I2C sends more than nonfifo_tx_thres data it will produce tx_send_empty_int_raw interrupt and update the current offset address of the sending data.*/
uint32_t reserved26: 6;
};
uint32_t val;
}fifo_conf;
union {
struct {
uint32_t data: 8; /*The register represent the byte data read from rx_fifo when use apb fifo access*/
uint32_t reserved8: 24;
};
uint32_t val;
}fifo_data;
union {
struct {
uint32_t rx_fifo_full: 1; /*The raw interrupt status bit for rx_fifo full when use apb fifo access.*/
uint32_t tx_fifo_empty: 1; /*The raw interrupt status bit for tx_fifo empty when use apb fifo access.*/
uint32_t rx_fifo_ovf: 1; /*The raw interrupt status bit for receiving data overflow when use apb fifo access.*/
uint32_t end_detect: 1; /*The raw interrupt status bit for end_detect_int interrupt. when I2C deals with the END command it will produce end_detect_int interrupt.*/
uint32_t slave_tran_comp: 1; /*The raw interrupt status bit for slave_tran_comp_int interrupt. when I2C Slave detects the STOP bit it will produce slave_tran_comp_int interrupt.*/
uint32_t arbitration_lost: 1; /*The raw interrupt status bit for arbitration_lost_int interrupt.when I2C lost the usage right of I2C BUS it will produce arbitration_lost_int interrupt.*/
uint32_t master_tran_comp: 1; /*The raw interrupt status bit for master_tra_comp_int interrupt. when I2C Master sends or receives a byte it will produce master_tran_comp_int interrupt.*/
uint32_t trans_complete: 1; /*The raw interrupt status bit for trans_complete_int interrupt. when I2C Master finished STOP command it will produce trans_complete_int interrupt.*/
uint32_t time_out: 1; /*The raw interrupt status bit for time_out_int interrupt. when I2C takes a lot of time to receive a data it will produce time_out_int interrupt.*/
uint32_t trans_start: 1; /*The raw interrupt status bit for trans_start_int interrupt. when I2C sends the START bit it will produce trans_start_int interrupt.*/
uint32_t ack_err: 1; /*The raw interrupt status bit for ack_err_int interrupt. when I2C receives a wrong ACK bit it will produce ack_err_int interrupt..*/
uint32_t rx_rec_full: 1; /*The raw interrupt status bit for rx_rec_full_int interrupt. when I2C receives more data than nonfifo_rx_thres it will produce rx_rec_full_int interrupt.*/
uint32_t tx_send_empty: 1; /*The raw interrupt status bit for tx_send_empty_int interrupt.when I2C sends more data than nonfifo_tx_thres it will produce tx_send_empty_int interrupt..*/
uint32_t reserved13: 19;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t rx_fifo_full: 1; /*Set this bit to clear the rx_fifo_full_int interrupt.*/
uint32_t tx_fifo_empty: 1; /*Set this bit to clear the tx_fifo_empty_int interrupt.*/
uint32_t rx_fifo_ovf: 1; /*Set this bit to clear the rx_fifo_ovf_int interrupt.*/
uint32_t end_detect: 1; /*Set this bit to clear the end_detect_int interrupt.*/
uint32_t slave_tran_comp: 1; /*Set this bit to clear the slave_tran_comp_int interrupt.*/
uint32_t arbitration_lost: 1; /*Set this bit to clear the arbitration_lost_int interrupt.*/
uint32_t master_tran_comp: 1; /*Set this bit to clear the master_tran_comp interrupt.*/
uint32_t trans_complete: 1; /*Set this bit to clear the trans_complete_int interrupt.*/
uint32_t time_out: 1; /*Set this bit to clear the time_out_int interrupt.*/
uint32_t trans_start: 1; /*Set this bit to clear the trans_start_int interrupt.*/
uint32_t ack_err: 1; /*Set this bit to clear the ack_err_int interrupt.*/
uint32_t rx_rec_full: 1; /*Set this bit to clear the rx_rec_full_int interrupt.*/
uint32_t tx_send_empty: 1; /*Set this bit to clear the tx_send_empty_int interrupt.*/
uint32_t reserved13: 19;
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t rx_fifo_full: 1; /*The enable bit for rx_fifo_full_int interrupt.*/
uint32_t tx_fifo_empty: 1; /*The enable bit for tx_fifo_empty_int interrupt.*/
uint32_t rx_fifo_ovf: 1; /*The enable bit for rx_fifo_ovf_int interrupt.*/
uint32_t end_detect: 1; /*The enable bit for end_detect_int interrupt.*/
uint32_t slave_tran_comp: 1; /*The enable bit for slave_tran_comp_int interrupt.*/
uint32_t arbitration_lost: 1; /*The enable bit for arbitration_lost_int interrupt.*/
uint32_t master_tran_comp: 1; /*The enable bit for master_tran_comp_int interrupt.*/
uint32_t trans_complete: 1; /*The enable bit for trans_complete_int interrupt.*/
uint32_t time_out: 1; /*The enable bit for time_out_int interrupt.*/
uint32_t trans_start: 1; /*The enable bit for trans_start_int interrupt.*/
uint32_t ack_err: 1; /*The enable bit for ack_err_int interrupt.*/
uint32_t rx_rec_full: 1; /*The enable bit for rx_rec_full_int interrupt.*/
uint32_t tx_send_empty: 1; /*The enable bit for tx_send_empty_int interrupt.*/
uint32_t reserved13: 19;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t rx_fifo_full: 1; /*The masked interrupt status for rx_fifo_full_int interrupt.*/
uint32_t tx_fifo_empty: 1; /*The masked interrupt status for tx_fifo_empty_int interrupt.*/
uint32_t rx_fifo_ovf: 1; /*The masked interrupt status for rx_fifo_ovf_int interrupt.*/
uint32_t end_detect: 1; /*The masked interrupt status for end_detect_int interrupt.*/
uint32_t slave_tran_comp: 1; /*The masked interrupt status for slave_tran_comp_int interrupt.*/
uint32_t arbitration_lost: 1; /*The masked interrupt status for arbitration_lost_int interrupt.*/
uint32_t master_tran_comp: 1; /*The masked interrupt status for master_tran_comp_int interrupt.*/
uint32_t trans_complete: 1; /*The masked interrupt status for trans_complete_int interrupt.*/
uint32_t time_out: 1; /*The masked interrupt status for time_out_int interrupt.*/
uint32_t trans_start: 1; /*The masked interrupt status for trans_start_int interrupt.*/
uint32_t ack_err: 1; /*The masked interrupt status for ack_err_int interrupt.*/
uint32_t rx_rec_full: 1; /*The masked interrupt status for rx_rec_full_int interrupt.*/
uint32_t tx_send_empty: 1; /*The masked interrupt status for tx_send_empty_int interrupt.*/
uint32_t reserved13: 19;
};
uint32_t val;
}int_status;
union {
struct {
uint32_t time: 10; /*This register is used to configure the clock num I2C used to hold the data after the negedge of SCL.*/
uint32_t reserved10: 22;
};
uint32_t val;
}sda_hold;
union {
struct {
uint32_t time: 10; /*This register is used to configure the clock num I2C used to sample data on SDA after the posedge of SCL*/
uint32_t reserved10: 22;
};
uint32_t val;
}sda_sample;
union {
struct {
uint32_t period: 14; /*This register is used to configure the clock num during SCL is low level.*/
uint32_t reserved14: 18;
};
uint32_t val;
}scl_high_period;
uint32_t reserved_3c;
union {
struct {
uint32_t time: 10; /*This register is used to configure the clock num between the negedge of SDA and negedge of SCL for start mark.*/
uint32_t reserved10: 22;
};
uint32_t val;
}scl_start_hold;
union {
struct {
uint32_t time: 10; /*This register is used to configure the clock num between the posedge of SCL and the negedge of SDA for restart mark.*/
uint32_t reserved10: 22;
};
uint32_t val;
}scl_rstart_setup;
union {
struct {
uint32_t time: 14; /*This register is used to configure the clock num after the STOP bit's posedge.*/
uint32_t reserved14: 18;
};
uint32_t val;
}scl_stop_hold;
union {
struct {
uint32_t time: 10; /*This register is used to configure the clock num between the posedge of SCL and the posedge of SDA.*/
uint32_t reserved10: 22;
};
uint32_t val;
}scl_stop_setup;
union {
struct {
uint32_t thres: 3; /*When input SCL's pulse width is smaller than this register value I2C ignores this pulse.*/
uint32_t en: 1; /*This is the filter enable bit for SCL.*/
uint32_t reserved4: 28;
};
uint32_t val;
}scl_filter_cfg;
union {
struct {
uint32_t thres: 3; /*When input SCL's pulse width is smaller than this register value I2C ignores this pulse.*/
uint32_t en: 1; /*This is the filter enable bit for SDA.*/
uint32_t reserved4: 28;
};
uint32_t val;
}sda_filter_cfg;
union {
struct {
uint32_t byte_num: 8; /*Byte_num represent the number of data need to be send or data need to be received.*/
uint32_t ack_en: 1; /*ack_check_en ack_exp and ack value are used to control the ack bit.*/
uint32_t ack_exp: 1; /*ack_check_en ack_exp and ack value are used to control the ack bit.*/
uint32_t ack_val: 1; /*ack_check_en ack_exp and ack value are used to control the ack bit.*/
uint32_t op_code: 3; /*op_code is the command 0RSTART 1WRITE 2READ 3STOP . 4:END.*/
uint32_t reserved14: 17;
uint32_t done: 1; /*When command0 is done in I2C Master mode this bit changes to high level.*/
};
uint32_t val;
}command[16];
uint32_t reserved_98;
uint32_t reserved_9c;
uint32_t reserved_a0;
uint32_t reserved_a4;
uint32_t reserved_a8;
uint32_t reserved_ac;
uint32_t reserved_b0;
uint32_t reserved_b4;
uint32_t reserved_b8;
uint32_t reserved_bc;
uint32_t reserved_c0;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
uint32_t date; /**/
uint32_t reserved_fc;
uint32_t fifo_start_addr; /*This the start address for ram when use apb nonfifo access.*/
} i2c_dev_t;
extern i2c_dev_t I2C0;
extern i2c_dev_t I2C1;
#endif /* _SOC_I2C_STRUCT_H_ */

View file

@ -0,0 +1,461 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_I2S_STRUCT_H_
#define _SOC_I2S_STRUCT_H_
typedef volatile struct {
uint32_t reserved_0;
uint32_t reserved_4;
union {
struct {
uint32_t tx_reset: 1;
uint32_t rx_reset: 1;
uint32_t tx_fifo_reset: 1;
uint32_t rx_fifo_reset: 1;
uint32_t tx_start: 1;
uint32_t rx_start: 1;
uint32_t tx_slave_mod: 1;
uint32_t rx_slave_mod: 1;
uint32_t tx_right_first: 1;
uint32_t rx_right_first: 1;
uint32_t tx_msb_shift: 1;
uint32_t rx_msb_shift: 1;
uint32_t tx_short_sync: 1;
uint32_t rx_short_sync: 1;
uint32_t tx_mono: 1;
uint32_t rx_mono: 1;
uint32_t tx_msb_right: 1;
uint32_t rx_msb_right: 1;
uint32_t sig_loopback: 1;
uint32_t reserved19: 13;
};
uint32_t val;
}conf;
union {
struct {
uint32_t rx_take_data: 1;
uint32_t tx_put_data: 1;
uint32_t rx_wfull: 1;
uint32_t rx_rempty: 1;
uint32_t tx_wfull: 1;
uint32_t tx_rempty: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t out_total_eof: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t rx_take_data: 1;
uint32_t tx_put_data: 1;
uint32_t rx_wfull: 1;
uint32_t rx_rempty: 1;
uint32_t tx_wfull: 1;
uint32_t tx_rempty: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t out_total_eof: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_st;
union {
struct {
uint32_t rx_take_data: 1;
uint32_t tx_put_data: 1;
uint32_t rx_wfull: 1;
uint32_t rx_rempty: 1;
uint32_t tx_wfull: 1;
uint32_t tx_rempty: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t out_total_eof: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t take_data: 1;
uint32_t put_data: 1;
uint32_t rx_wfull: 1;
uint32_t rx_rempty: 1;
uint32_t tx_wfull: 1;
uint32_t tx_rempty: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t out_total_eof: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t tx_bck_in_delay: 2;
uint32_t tx_ws_in_delay: 2;
uint32_t rx_bck_in_delay: 2;
uint32_t rx_ws_in_delay: 2;
uint32_t rx_sd_in_delay: 2;
uint32_t tx_bck_out_delay: 2;
uint32_t tx_ws_out_delay: 2;
uint32_t tx_sd_out_delay: 2;
uint32_t rx_ws_out_delay: 2;
uint32_t rx_bck_out_delay: 2;
uint32_t tx_dsync_sw: 1;
uint32_t rx_dsync_sw: 1;
uint32_t data_enable_delay: 2;
uint32_t tx_bck_in_inv: 1;
uint32_t reserved25: 7;
};
uint32_t val;
}timing;
union {
struct {
uint32_t rx_data_num: 6;
uint32_t tx_data_num: 6;
uint32_t dscr_en: 1;
uint32_t tx_fifo_mod: 3;
uint32_t rx_fifo_mod: 3;
uint32_t tx_fifo_mod_force_en: 1;
uint32_t rx_fifo_mod_force_en: 1;
uint32_t reserved21: 11;
};
uint32_t val;
}fifo_conf;
uint32_t rx_eof_num;
uint32_t conf_single_data;
union {
struct {
uint32_t tx_chan_mod: 3;
uint32_t rx_chan_mod: 2;
uint32_t reserved5: 27;
};
uint32_t val;
}conf_chan;
union {
struct {
uint32_t addr: 20;
uint32_t reserved20: 8;
uint32_t stop: 1;
uint32_t start: 1;
uint32_t restart: 1;
uint32_t park: 1;
};
uint32_t val;
}out_link;
union {
struct {
uint32_t addr: 20;
uint32_t reserved20: 8;
uint32_t stop: 1;
uint32_t start: 1;
uint32_t restart: 1;
uint32_t park: 1;
};
uint32_t val;
}in_link;
uint32_t out_eof_des_addr;
uint32_t in_eof_des_addr;
uint32_t out_eof_bfr_des_addr;
union {
struct {
uint32_t mode: 3;
uint32_t reserved3: 1;
uint32_t addr: 2;
uint32_t reserved6: 26;
};
uint32_t val;
}ahb_test;
uint32_t in_link_dscr;
uint32_t in_link_dscr_bf0;
uint32_t in_link_dscr_bf1;
uint32_t out_link_dscr;
uint32_t out_link_dscr_bf0;
uint32_t out_link_dscr_bf1;
union {
struct {
uint32_t in_rst: 1;
uint32_t out_rst: 1;
uint32_t ahbm_fifo_rst: 1;
uint32_t ahbm_rst: 1;
uint32_t out_loop_test: 1;
uint32_t in_loop_test: 1;
uint32_t out_auto_wrback: 1;
uint32_t out_no_restart_clr: 1;
uint32_t out_eof_mode: 1;
uint32_t outdscr_burst_en: 1;
uint32_t indscr_burst_en: 1;
uint32_t out_data_burst_en: 1;
uint32_t check_owner: 1;
uint32_t mem_trans_en: 1;
uint32_t reserved14: 18;
};
uint32_t val;
}lc_conf;
union {
struct {
uint32_t wdata: 9;
uint32_t reserved9: 7;
uint32_t push: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}out_fifo_push;
union {
struct {
uint32_t rdata: 12;
uint32_t reserved12: 4;
uint32_t pop: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}in_fifo_pop;
uint32_t lc_state0;
uint32_t lc_state1;
union {
struct {
uint32_t fifo_timeout: 8;
uint32_t fifo_timeout_shift: 3;
uint32_t fifo_timeout_ena: 1;
uint32_t reserved12: 20;
};
uint32_t val;
}lc_hung_conf;
uint32_t reserved_78;
uint32_t reserved_7c;
union {
struct {
uint32_t y_max:16;
uint32_t y_min:16;
};
uint32_t val;
}cvsd_conf0;
union {
struct {
uint32_t sigma_max:16;
uint32_t sigma_min:16;
};
uint32_t val;
}cvsd_conf1;
union {
struct {
uint32_t cvsd_k: 3;
uint32_t cvsd_j: 3;
uint32_t cvsd_beta: 10;
uint32_t cvsd_h: 3;
uint32_t reserved19:13;
};
uint32_t val;
}cvsd_conf2;
union {
struct {
uint32_t good_pack_max: 6;
uint32_t n_err_seg: 3;
uint32_t shift_rate: 3;
uint32_t max_slide_sample: 8;
uint32_t pack_len_8k: 5;
uint32_t n_min_err: 3;
uint32_t reserved28: 4;
};
uint32_t val;
}plc_conf0;
union {
struct {
uint32_t bad_cef_atten_para: 8;
uint32_t bad_cef_atten_para_shift: 4;
uint32_t bad_ola_win2_para_shift: 4;
uint32_t bad_ola_win2_para: 8;
uint32_t slide_win_len: 8;
};
uint32_t val;
}plc_conf1;
union {
struct {
uint32_t cvsd_seg_mod: 2;
uint32_t min_period: 5;
uint32_t reserved7: 25;
};
uint32_t val;
}plc_conf2;
union {
struct {
uint32_t en: 1;
uint32_t chan_mod: 1;
uint32_t cvsd_dec_pack_err: 1;
uint32_t cvsd_pack_len_8k: 5;
uint32_t cvsd_inf_en: 1;
uint32_t cvsd_dec_start: 1;
uint32_t cvsd_dec_reset: 1;
uint32_t plc_en: 1;
uint32_t plc2dma_en: 1;
uint32_t reserved13: 19;
};
uint32_t val;
}esco_conf0;
union {
struct {
uint32_t with_en: 1;
uint32_t no_en: 1;
uint32_t cvsd_enc_start: 1;
uint32_t cvsd_enc_reset: 1;
uint32_t reserved4: 28;
};
uint32_t val;
}sco_conf0;
union {
struct {
uint32_t tx_pcm_conf: 3;
uint32_t tx_pcm_bypass: 1;
uint32_t rx_pcm_conf: 3;
uint32_t rx_pcm_bypass: 1;
uint32_t tx_stop_en: 1;
uint32_t tx_zeros_rm_en: 1;
uint32_t reserved10: 22;
};
uint32_t val;
}conf1;
union {
struct {
uint32_t fifo_force_pd: 1;
uint32_t fifo_force_pu: 1;
uint32_t plc_mem_force_pd: 1;
uint32_t plc_mem_force_pu: 1;
uint32_t reserved4: 28;
};
uint32_t val;
}pd_conf;
union {
struct {
uint32_t camera_en: 1;
uint32_t lcd_tx_wrx2_en: 1;
uint32_t lcd_tx_sdx2_en: 1;
uint32_t data_enable_test_en: 1;
uint32_t data_enable: 1;
uint32_t lcd_en: 1;
uint32_t ext_adc_start_en: 1;
uint32_t inter_valid_en: 1;
uint32_t reserved8: 24;
};
uint32_t val;
}conf2;
union {
struct {
uint32_t clkm_div_num: 8;
uint32_t clkm_div_b: 6;
uint32_t clkm_div_a: 6;
uint32_t clk_en: 1;
uint32_t clka_en: 1;
uint32_t reserved22: 10;
};
uint32_t val;
}clkm_conf;
union {
struct {
uint32_t tx_bck_div_num: 6;
uint32_t rx_bck_div_num: 6;
uint32_t tx_bits_mod: 6;
uint32_t rx_bits_mod: 6;
uint32_t reserved24: 8;
};
uint32_t val;
}sample_rate_conf;
union {
struct {
uint32_t tx_pdm_en: 1;
uint32_t rx_pdm_en: 1;
uint32_t pcm2pdm_conv_en: 1;
uint32_t pdm2pcm_conv_en: 1;
uint32_t tx_sinc_osr2: 4;
uint32_t tx_prescale: 8;
uint32_t tx_hp_in_shift: 2;
uint32_t tx_lp_in_shift: 2;
uint32_t tx_sinc_in_shift: 2;
uint32_t tx_sigmadelta_in_shift: 2;
uint32_t rx_sinc_dsr_16_en: 1;
uint32_t txhp_bypass: 1;
uint32_t reserved26: 6;
};
uint32_t val;
}pdm_conf;
union {
struct {
uint32_t tx_pdm_fs: 10;
uint32_t tx_pdm_fp: 10;
uint32_t reserved20:12;
};
uint32_t val;
}pdm_freq_conf;
union {
struct {
uint32_t tx_idle: 1;
uint32_t tx_fifo_reset_back: 1;
uint32_t rx_fifo_reset_back: 1;
uint32_t reserved3: 29;
};
uint32_t val;
}state;
uint32_t reserved_c0;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
uint32_t reserved_f8;
uint32_t date; /**/
} i2s_dev_t;
extern i2s_dev_t I2S0;
extern i2s_dev_t I2S1;
#endif /* _SOC_I2S_STRUCT_H_ */

View file

@ -0,0 +1,299 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_LEDC_STRUCT_H_
#define _SOC_LEDC_STRUCT_H_
typedef volatile struct {
struct{
union {
struct {
uint32_t timer_sel: 2; /*There are four high speed timers the two bits are used to select one of them for high speed channel. 2'b00: seletc hstimer0. 2'b01: select hstimer1. 2'b10: select hstimer2. 2'b11: select hstimer3.*/
uint32_t sig_out_en: 1; /*This is the output enable control bit for high speed channel*/
uint32_t idle_lv: 1; /*This bit is used to control the output value when high speed channel is off.*/
uint32_t reserved4: 27;
uint32_t clk_en: 1; /*This bit is clock gating control signal. when software configure LED_PWM internal registers it controls the register clock.*/
};
uint32_t val;
}conf0;
union {
struct {
uint32_t hpoint: 20; /*The output value changes to high when htimerx(x=[0 3]) selected by high speed channel has reached reg_hpoint_hsch0[19:0]*/
uint32_t reserved20: 12;
};
uint32_t val;
}hpoint;
union {
struct {
uint32_t duty: 25; /*The register is used to control output duty. When hstimerx(x=[0 3]) chosen by high speed channel has reached reg_lpoint_hsch0 the output signal changes to low. reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4]) (1) reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
uint32_t reserved25: 7;
};
uint32_t val;
}duty;
union {
struct {
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for high speed channel.*/
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_hsch0 cycles for high speed channel.*/
uint32_t duty_num: 10; /*This register is used to control the number of increased or decreased times for high speed channel.*/
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel.*/
uint32_t duty_start: 1; /*When reg_duty_num_hsch0 reg_duty_cycle_hsch0 and reg_duty_scale_hsch0 has been configured. these register won't take effect until set reg_duty_start_hsch0. this bit is automatically cleared by hardware.*/
};
uint32_t val;
}conf1;
union {
struct {
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for high speed channel.*/
uint32_t reserved25: 7;
};
uint32_t val;
}duty_rd;
}high_speed_channel[8];
struct{
union {
struct {
uint32_t timer_sel: 2; /*There are four low speed timers the two bits are used to select one of them for low speed channel. 2'b00: seletc lstimer0. 2'b01: select lstimer1. 2'b10: select lstimer2. 2'b11: select lstimer3.*/
uint32_t sig_out_en: 1; /*This is the output enable control bit for low speed channel.*/
uint32_t idle_lv: 1; /*This bit is used to control the output value when low speed channel is off.*/
uint32_t para_up: 1; /*This bit is used to update register LEDC_LSCH0_HPOINT and LEDC_LSCH0_DUTY for low speed channel.*/
uint32_t reserved5: 27;
};
uint32_t val;
}conf0;
union {
struct {
uint32_t hpoint: 20; /*The output value changes to high when lstimerx(x=[0 3]) selected by low speed channel has reached reg_hpoint_lsch0[19:0]*/
uint32_t reserved20: 12;
};
uint32_t val;
}hpoint;
union {
struct {
uint32_t duty: 25; /*The register is used to control output duty. When lstimerx(x=[0 3]) choosed by low speed channel has reached reg_lpoint_lsch0 the output signal changes to low. reg_lpoint_lsch0=(reg_hpoint_lsch0[19:0]+reg_duty_lsch0[24:4]) (1) reg_lpoint_lsch0=(reg_hpoint_lsch0[19:0]+reg_duty_lsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
uint32_t reserved25: 7;
};
uint32_t val;
}duty;
union {
struct {
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for low speed channel.*/
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_lsch0 cycles for low speed channel.*/
uint32_t duty_num: 10; /*This register is used to control the num of increased or decreased times for low speed channel6.*/
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for low speed channel6.*/
uint32_t duty_start: 1; /*When reg_duty_num_hsch1 reg_duty_cycle_hsch1 and reg_duty_scale_hsch1 has been configured. these register won't take effect until set reg_duty_start_hsch1. this bit is automatically cleared by hardware.*/
};
uint32_t val;
}conf1;
union {
struct {
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for low speed channel.*/
uint32_t reserved25: 7;
};
uint32_t val;
}duty_r;
}low_speed_channel[8];
struct{
union {
struct {
uint32_t timer_lim: 5; /*This register controls the range of the counter in high speed timer. the counter range is [0 2**reg_hstimer0_lim] the max bit width for counter is 20.*/
uint32_t div_num: 18; /*This register is used to configure parameter for divider in high speed timer the least significant eight bits represent the decimal part.*/
uint32_t pause: 1; /*This bit is used to pause the counter in high speed timer*/
uint32_t rst: 1; /*This bit is used to reset high speed timer the counter will be 0 after reset.*/
uint32_t tick_sel: 1; /*This bit is used to choose apb_clk or ref_tick for high speed timer. 1'b1:apb_clk 0:ref_tick*/
uint32_t reserved26: 6;
};
uint32_t val;
}conf;
union {
struct {
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in high speed timer*/
uint32_t reserved20: 12;
};
uint32_t val;
}value;
}high_speed_timer[4];
struct{
union {
struct {
uint32_t timer_lim: 5; /*This register controls the range of the counter in low speed timer. the counter range is [0 2**reg_lstimer0_lim] the max bit width for counter is 20.*/
uint32_t div_num: 18; /*This register is used to configure parameter for divider in low speed timer the least significant eight bits represent the decimal part.*/
uint32_t pause: 1; /*This bit is used to pause the counter in low speed timer.*/
uint32_t rst: 1; /*This bit is used to reset low speed timer the counter will be 0 after reset.*/
uint32_t tick_sel: 1; /*This bit is used to choose slow_clk or ref_tick for low speed timer. 1'b1:slow_clk 0:ref_tick*/
uint32_t param_update: 1; /*Set this bit to update reg_div_num_lstime0 and reg_lstimer0_lim.*/
uint32_t reserved27: 5;
};
uint32_t val;
}conf;
union {
struct {
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in low speed timer.*/
uint32_t reserved20: 12;
};
uint32_t val;
}value;
}low_speed_timer[4];
union {
struct {
uint32_t hstimer0_ovf: 1; /*The interrupt raw bit for high speed channel0 counter overflow.*/
uint32_t hstimer1_ovf: 1; /*The interrupt raw bit for high speed channel1 counter overflow.*/
uint32_t hstimer2_ovf: 1; /*The interrupt raw bit for high speed channel2 counter overflow.*/
uint32_t hstimer3_ovf: 1; /*The interrupt raw bit for high speed channel3 counter overflow.*/
uint32_t lstimer0_ovf: 1; /*The interrupt raw bit for low speed channel0 counter overflow.*/
uint32_t lstimer1_ovf: 1; /*The interrupt raw bit for low speed channel1 counter overflow.*/
uint32_t lstimer2_ovf: 1; /*The interrupt raw bit for low speed channel2 counter overflow.*/
uint32_t lstimer3_ovf: 1; /*The interrupt raw bit for low speed channel3 counter overflow.*/
uint32_t duty_chng_end_hsch0: 1; /*The interrupt raw bit for high speed channel 0 duty change done.*/
uint32_t duty_chng_end_hsch1: 1; /*The interrupt raw bit for high speed channel 1 duty change done.*/
uint32_t duty_chng_end_hsch2: 1; /*The interrupt raw bit for high speed channel 2 duty change done.*/
uint32_t duty_chng_end_hsch3: 1; /*The interrupt raw bit for high speed channel 3 duty change done.*/
uint32_t duty_chng_end_hsch4: 1; /*The interrupt raw bit for high speed channel 4 duty change done.*/
uint32_t duty_chng_end_hsch5: 1; /*The interrupt raw bit for high speed channel 5 duty change done.*/
uint32_t duty_chng_end_hsch6: 1; /*The interrupt raw bit for high speed channel 6 duty change done.*/
uint32_t duty_chng_end_hsch7: 1; /*The interrupt raw bit for high speed channel 7 duty change done.*/
uint32_t duty_chng_end_lsch0: 1; /*The interrupt raw bit for low speed channel 0 duty change done.*/
uint32_t duty_chng_end_lsch1: 1; /*The interrupt raw bit for low speed channel 1 duty change done.*/
uint32_t duty_chng_end_lsch2: 1; /*The interrupt raw bit for low speed channel 2 duty change done.*/
uint32_t duty_chng_end_lsch3: 1; /*The interrupt raw bit for low speed channel 3 duty change done.*/
uint32_t duty_chng_end_lsch4: 1; /*The interrupt raw bit for low speed channel 4 duty change done.*/
uint32_t duty_chng_end_lsch5: 1; /*The interrupt raw bit for low speed channel 5 duty change done.*/
uint32_t duty_chng_end_lsch6: 1; /*The interrupt raw bit for low speed channel 6 duty change done.*/
uint32_t duty_chng_end_lsch7: 1; /*The interrupt raw bit for low speed channel 7 duty change done.*/
uint32_t reserved24: 8;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t hstimer0_ovf: 1; /*The interrupt status bit for high speed channel0 counter overflow event.*/
uint32_t hstimer1_ovf: 1; /*The interrupt status bit for high speed channel1 counter overflow event.*/
uint32_t hstimer2_ovf: 1; /*The interrupt status bit for high speed channel2 counter overflow event.*/
uint32_t hstimer3_ovf: 1; /*The interrupt status bit for high speed channel3 counter overflow event.*/
uint32_t lstimer0_ovf: 1; /*The interrupt status bit for low speed channel0 counter overflow event.*/
uint32_t lstimer1_ovf: 1; /*The interrupt status bit for low speed channel1 counter overflow event.*/
uint32_t lstimer2_ovf: 1; /*The interrupt status bit for low speed channel2 counter overflow event.*/
uint32_t lstimer3_ovf: 1; /*The interrupt status bit for low speed channel3 counter overflow event.*/
uint32_t duty_chng_end_hsch1: 1; /*The interrupt status bit for high speed channel 1 duty change done event.*/
uint32_t duty_chng_end_hsch2: 1; /*The interrupt status bit for high speed channel 2 duty change done event.*/
uint32_t duty_chng_end_hsch3: 1; /*The interrupt status bit for high speed channel 3 duty change done event.*/
uint32_t duty_chng_end_hsch4: 1; /*The interrupt status bit for high speed channel 4 duty change done event.*/
uint32_t duty_chng_end_hsch5: 1; /*The interrupt status bit for high speed channel 5 duty change done event.*/
uint32_t duty_chng_end_hsch6: 1; /*The interrupt status bit for high speed channel 6 duty change done event.*/
uint32_t duty_chng_end_hsch7: 1; /*The interrupt status bit for high speed channel 7 duty change done event.*/
uint32_t duty_chng_end_lsch0: 1; /*The interrupt status bit for low speed channel 0 duty change done event.*/
uint32_t duty_chng_end_lsch1: 1; /*The interrupt status bit for low speed channel 1 duty change done event.*/
uint32_t duty_chng_end_lsch2: 1; /*The interrupt status bit for low speed channel 2 duty change done event.*/
uint32_t duty_chng_end_lsch3: 1; /*The interrupt status bit for low speed channel 3 duty change done event.*/
uint32_t duty_chng_end_lsch4: 1; /*The interrupt status bit for low speed channel 4 duty change done event.*/
uint32_t duty_chng_end_lsch5: 1; /*The interrupt status bit for low speed channel 5 duty change done event.*/
uint32_t duty_chng_end_lsch6: 1; /*The interrupt status bit for low speed channel 6 duty change done event.*/
uint32_t duty_chng_end_lsch7: 1; /*The interrupt status bit for low speed channel 7 duty change done event*/
uint32_t reserved24: 8;
};
uint32_t val;
}int_st;
union {
struct {
uint32_t hstimer0_ovf: 1; /*The interrupt enable bit for high speed channel0 counter overflow interrupt.*/
uint32_t hstimer1_ovf: 1; /*The interrupt enable bit for high speed channel1 counter overflow interrupt.*/
uint32_t hstimer2_ovf: 1; /*The interrupt enable bit for high speed channel2 counter overflow interrupt.*/
uint32_t hstimer3_ovf: 1; /*The interrupt enable bit for high speed channel3 counter overflow interrupt.*/
uint32_t lstimer0_ovf: 1; /*The interrupt enable bit for low speed channel0 counter overflow interrupt.*/
uint32_t lstimer1_ovf: 1; /*The interrupt enable bit for low speed channel1 counter overflow interrupt.*/
uint32_t lstimer2_ovf: 1; /*The interrupt enable bit for low speed channel2 counter overflow interrupt.*/
uint32_t lstimer3_ovf: 1; /*The interrupt enable bit for low speed channel3 counter overflow interrupt.*/
uint32_t duty_chng_end_hsch0: 1; /*The interrupt enable bit for high speed channel 0 duty change done interrupt.*/
uint32_t duty_chng_end_hsch1: 1; /*The interrupt enable bit for high speed channel 1 duty change done interrupt.*/
uint32_t duty_chng_end_hsch2: 1; /*The interrupt enable bit for high speed channel 2 duty change done interrupt.*/
uint32_t duty_chng_end_hsch3: 1; /*The interrupt enable bit for high speed channel 3 duty change done interrupt.*/
uint32_t duty_chng_end_hsch4: 1; /*The interrupt enable bit for high speed channel 4 duty change done interrupt.*/
uint32_t duty_chng_end_hsch5: 1; /*The interrupt enable bit for high speed channel 5 duty change done interrupt.*/
uint32_t duty_chng_end_hsch6: 1; /*The interrupt enable bit for high speed channel 6 duty change done interrupt.*/
uint32_t duty_chng_end_hsch7: 1; /*The interrupt enable bit for high speed channel 7 duty change done interrupt.*/
uint32_t duty_chng_end_lsch0: 1; /*The interrupt enable bit for low speed channel 0 duty change done interrupt.*/
uint32_t duty_chng_end_lsch1: 1; /*The interrupt enable bit for low speed channel 1 duty change done interrupt.*/
uint32_t duty_chng_end_lsch2: 1; /*The interrupt enable bit for low speed channel 2 duty change done interrupt.*/
uint32_t duty_chng_end_lsch3: 1; /*The interrupt enable bit for low speed channel 3 duty change done interrupt.*/
uint32_t duty_chng_end_lsch4: 1; /*The interrupt enable bit for low speed channel 4 duty change done interrupt.*/
uint32_t duty_chng_end_lsch5: 1; /*The interrupt enable bit for low speed channel 5 duty change done interrupt.*/
uint32_t duty_chng_end_lsch6: 1; /*The interrupt enable bit for low speed channel 6 duty change done interrupt.*/
uint32_t duty_chng_end_lsch7: 1; /*The interrupt enable bit for low speed channel 7 duty change done interrupt.*/
uint32_t reserved24: 8;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t hstimer0_ovf: 1; /*Set this bit to clear high speed channel0 counter overflow interrupt.*/
uint32_t hstimer1_ovf: 1; /*Set this bit to clear high speed channel1 counter overflow interrupt.*/
uint32_t hstimer2_ovf: 1; /*Set this bit to clear high speed channel2 counter overflow interrupt.*/
uint32_t hstimer3_ovf: 1; /*Set this bit to clear high speed channel3 counter overflow interrupt.*/
uint32_t lstimer0_ovf: 1; /*Set this bit to clear low speed channel0 counter overflow interrupt.*/
uint32_t lstimer1_ovf: 1; /*Set this bit to clear low speed channel1 counter overflow interrupt.*/
uint32_t lstimer2_ovf: 1; /*Set this bit to clear low speed channel2 counter overflow interrupt.*/
uint32_t lstimer3_ovf: 1; /*Set this bit to clear low speed channel3 counter overflow interrupt.*/
uint32_t duty_chng_end_hsch0: 1; /*Set this bit to clear high speed channel 0 duty change done interrupt.*/
uint32_t duty_chng_end_hsch1: 1; /*Set this bit to clear high speed channel 1 duty change done interrupt.*/
uint32_t duty_chng_end_hsch2: 1; /*Set this bit to clear high speed channel 2 duty change done interrupt.*/
uint32_t duty_chng_end_hsch3: 1; /*Set this bit to clear high speed channel 3 duty change done interrupt.*/
uint32_t duty_chng_end_hsch4: 1; /*Set this bit to clear high speed channel 4 duty change done interrupt.*/
uint32_t duty_chng_end_hsch5: 1; /*Set this bit to clear high speed channel 5 duty change done interrupt.*/
uint32_t duty_chng_end_hsch6: 1; /*Set this bit to clear high speed channel 6 duty change done interrupt.*/
uint32_t duty_chng_end_hsch7: 1; /*Set this bit to clear high speed channel 7 duty change done interrupt.*/
uint32_t duty_chng_end_lsch0: 1; /*Set this bit to clear low speed channel 0 duty change done interrupt.*/
uint32_t duty_chng_end_lsch1: 1; /*Set this bit to clear low speed channel 1 duty change done interrupt.*/
uint32_t duty_chng_end_lsch2: 1; /*Set this bit to clear low speed channel 2 duty change done interrupt.*/
uint32_t duty_chng_end_lsch3: 1; /*Set this bit to clear low speed channel 3 duty change done interrupt.*/
uint32_t duty_chng_end_lsch4: 1; /*Set this bit to clear low speed channel 4 duty change done interrupt.*/
uint32_t duty_chng_end_lsch5: 1; /*Set this bit to clear low speed channel 5 duty change done interrupt.*/
uint32_t duty_chng_end_lsch6: 1; /*Set this bit to clear low speed channel 6 duty change done interrupt.*/
uint32_t duty_chng_end_lsch7: 1; /*Set this bit to clear low speed channel 7 duty change done interrupt.*/
uint32_t reserved24: 8;
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t apb_clk_sel: 1; /*This bit is used to set the frequency of slow_clk. 1'b1:80mhz 1'b0:8mhz*/
uint32_t reserved1: 31;
};
uint32_t val;
}conf;
uint32_t reserved_194;
uint32_t reserved_198;
uint32_t reserved_19c;
uint32_t reserved_1a0;
uint32_t reserved_1a4;
uint32_t reserved_1a8;
uint32_t reserved_1ac;
uint32_t reserved_1b0;
uint32_t reserved_1b4;
uint32_t reserved_1b8;
uint32_t reserved_1bc;
uint32_t reserved_1c0;
uint32_t reserved_1c4;
uint32_t reserved_1c8;
uint32_t reserved_1cc;
uint32_t reserved_1d0;
uint32_t reserved_1d4;
uint32_t reserved_1d8;
uint32_t reserved_1dc;
uint32_t reserved_1e0;
uint32_t reserved_1e4;
uint32_t reserved_1e8;
uint32_t reserved_1ec;
uint32_t reserved_1f0;
uint32_t reserved_1f4;
uint32_t reserved_1f8;
uint32_t date; /*This register represents the version .*/
} ledc_dev_t;
extern ledc_dev_t LEDC;
#endif /* _SOC_LEDC_STRUCT_H_ */

View file

@ -0,0 +1,161 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_PCNT_STRUCT_H_
#define _SOC_PCNT_STRUCT_H_
typedef volatile struct {
struct{
union {
struct {
uint32_t filter_thres: 10; /*This register is used to filter pulse whose width is smaller than this value for unit0.*/
uint32_t filter_en: 1; /*This is the enable bit for filtering input signals for unit0.*/
uint32_t thr_zero_en: 1; /*This is the enable bit for comparing unit0's count with 0 value.*/
uint32_t thr_h_lim_en: 1; /*This is the enable bit for comparing unit0's count with thr_h_lim value.*/
uint32_t thr_l_lim_en: 1; /*This is the enable bit for comparing unit0's count with thr_l_lim value.*/
uint32_t thr_thres0_en: 1; /*This is the enable bit for comparing unit0's count with thres0 value.*/
uint32_t thr_thres1_en: 1; /*This is the enable bit for comparing unit0's count with thres1 value .*/
uint32_t ch0_neg_mode: 2; /*This register is used to control the mode of channel0's input neg-edge signal for unit0. 2'd1increase at the negedge of input signal 2'd2:decrease at the negedge of input signal others:forbidden*/
uint32_t ch0_pos_mode: 2; /*This register is used to control the mode of channel0's input pos-edge signal for unit0. 2'd1increase at the posedge of input signal 2'd2:decrease at the posedge of input signal others:forbidden*/
uint32_t ch0_hctrl_mode: 2; /*This register is used to control the mode of channel0's high control signal for unit0. 2'd0:increase when control signal is low 2'd1decrease when control signal is high others:forbidden*/
uint32_t ch0_lctrl_mode: 2; /*This register is used to control the mode of channel0's low control signal for unit0. 2'd0:increase when control signal is low 2'd1decrease when control signal is high others:forbidden*/
uint32_t ch1_neg_mode: 2; /*This register is used to control the mode of channel1's input neg-edge signal for unit0. 2'd1increase at the negedge of input signal 2'd2:decrease at the negedge of input signal others:forbidden*/
uint32_t ch1_pos_mode: 2; /*This register is used to control the mode of channel1's input pos-edge signal for unit0. 2'd1increase at the posedge of input signal 2'd2:decrease at the posedge of input signal others:forbidden*/
uint32_t ch1_hctrl_mode: 2; /*This register is used to control the mode of channel1's high control signal for unit0. 2'd0:increase when control signal is low 2'd1decrease when control signal is high others:forbidden*/
uint32_t ch1_lctrl_mode: 2; /*This register is used to control the mode of channel1's low control signal for unit0. 2'd0:increase when control signal is low 2'd1decrease when control signal is high others:forbidden*/
};
uint32_t val;
}conf0;
union {
struct {
uint32_t cnt_thres0:16; /*This register is used to configure thres0 value for unit0.*/
uint32_t cnt_thres1:16; /*This register is used to configure thres1 value for unit0.*/
};
uint32_t val;
}conf1;
union {
struct {
uint32_t cnt_h_lim:16; /*This register is used to configure thr_h_lim value for unit0.*/
uint32_t cnt_l_lim:16; /*This register is used to configure thr_l_lim value for unit0.*/
};
uint32_t val;
}conf2;
}conf_unit[8];
union {
struct {
uint32_t cnt_val : 16; /*This register stores the current pulse count value for unit0.*/
uint32_t reserved16: 16;
};
uint32_t val;
}cnt_unit[8];
union {
struct {
uint32_t cnt_thr_event_u0: 1; /*This is the interrupt raw bit for channel0 event.*/
uint32_t cnt_thr_event_u1: 1; /*This is the interrupt raw bit for channel1 event.*/
uint32_t cnt_thr_event_u2: 1; /*This is the interrupt raw bit for channel2 event.*/
uint32_t cnt_thr_event_u3: 1; /*This is the interrupt raw bit for channel3 event.*/
uint32_t cnt_thr_event_u4: 1; /*This is the interrupt raw bit for channel4 event.*/
uint32_t cnt_thr_event_u5: 1; /*This is the interrupt raw bit for channel5 event.*/
uint32_t cnt_thr_event_u6: 1; /*This is the interrupt raw bit for channel6 event.*/
uint32_t cnt_thr_event_u7: 1; /*This is the interrupt raw bit for channel7 event.*/
uint32_t reserved8: 24;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t cnt_thr_event_u0: 1; /*This is the interrupt status bit for channel0 event.*/
uint32_t cnt_thr_event_u1: 1; /*This is the interrupt status bit for channel1 event.*/
uint32_t cnt_thr_event_u2: 1; /*This is the interrupt status bit for channel2 event.*/
uint32_t cnt_thr_event_u3: 1; /*This is the interrupt status bit for channel3 event.*/
uint32_t cnt_thr_event_u4: 1; /*This is the interrupt status bit for channel4 event.*/
uint32_t cnt_thr_event_u5: 1; /*This is the interrupt status bit for channel5 event.*/
uint32_t cnt_thr_event_u6: 1; /*This is the interrupt status bit for channel6 event.*/
uint32_t cnt_thr_event_u7: 1; /*This is the interrupt status bit for channel7 event.*/
uint32_t reserved8: 24;
};
uint32_t val;
}int_st;
union {
struct {
uint32_t cnt_thr_event_u0: 1; /*This is the interrupt enable bit for channel0 event.*/
uint32_t cnt_thr_event_u1: 1; /*This is the interrupt enable bit for channel1 event.*/
uint32_t cnt_thr_event_u2: 1; /*This is the interrupt enable bit for channel2 event.*/
uint32_t cnt_thr_event_u3: 1; /*This is the interrupt enable bit for channel3 event.*/
uint32_t cnt_thr_event_u4: 1; /*This is the interrupt enable bit for channel4 event.*/
uint32_t cnt_thr_event_u5: 1; /*This is the interrupt enable bit for channel5 event.*/
uint32_t cnt_thr_event_u6: 1; /*This is the interrupt enable bit for channel6 event.*/
uint32_t cnt_thr_event_u7: 1; /*This is the interrupt enable bit for channel7 event.*/
uint32_t reserved8: 24;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t cnt_thr_event_u0: 1; /*Set this bit to clear channel0 event interrupt.*/
uint32_t cnt_thr_event_u1: 1; /*Set this bit to clear channel1 event interrupt.*/
uint32_t cnt_thr_event_u2: 1; /*Set this bit to clear channel2 event interrupt.*/
uint32_t cnt_thr_event_u3: 1; /*Set this bit to clear channel3 event interrupt.*/
uint32_t cnt_thr_event_u4: 1; /*Set this bit to clear channel4 event interrupt.*/
uint32_t cnt_thr_event_u5: 1; /*Set this bit to clear channel5 event interrupt.*/
uint32_t cnt_thr_event_u6: 1; /*Set this bit to clear channel6 event interrupt.*/
uint32_t cnt_thr_event_u7: 1; /*Set this bit to clear channel7 event interrupt.*/
uint32_t reserved8: 24;
};
uint32_t val;
}int_clr;
uint32_t status_unit[8];
union {
struct {
uint32_t cnt_rst_u0: 1; /*Set this bit to clear unit0's counter.*/
uint32_t cnt_pause_u0: 1; /*Set this bit to pause unit0's counter.*/
uint32_t cnt_rst_u1: 1; /*Set this bit to clear unit1's counter.*/
uint32_t cnt_pause_u1: 1; /*Set this bit to pause unit1's counter.*/
uint32_t cnt_rst_u2: 1; /*Set this bit to clear unit2's counter.*/
uint32_t cnt_pause_u2: 1; /*Set this bit to pause unit2's counter.*/
uint32_t cnt_rst_u3: 1; /*Set this bit to clear unit3's counter.*/
uint32_t cnt_pause_u3: 1; /*Set this bit to pause unit3's counter.*/
uint32_t cnt_rst_u4: 1; /*Set this bit to clear unit4's counter.*/
uint32_t cnt_pause_u4: 1; /*Set this bit to pause unit4's counter.*/
uint32_t cnt_rst_u5: 1; /*Set this bit to clear unit5's counter.*/
uint32_t cnt_pause_u5: 1; /*Set this bit to pause unit5's counter.*/
uint32_t cnt_rst_u6: 1; /*Set this bit to clear unit6's counter.*/
uint32_t cnt_pause_u6: 1; /*Set this bit to pause unit6's counter.*/
uint32_t cnt_rst_u7: 1; /*Set this bit to clear unit7's counter.*/
uint32_t cnt_pause_u7: 1; /*Set this bit to pause unit7's counter.*/
uint32_t clk_en: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}ctrl;
uint32_t reserved_b4;
uint32_t reserved_b8;
uint32_t reserved_bc;
uint32_t reserved_c0;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
uint32_t reserved_f8;
uint32_t date; /**/
} pcnt_dev_t;
extern pcnt_dev_t PCNT;
#endif /* _SOC_PCNT_STRUCT_H_ */

View file

@ -0,0 +1,228 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_RMT_STRUCT_H_
#define _SOC_RMT_STRUCT_H_
typedef volatile struct {
uint32_t data_ch[8]; /*The R/W ram address for channel0-7 by apb fifo access.*/
struct{
union {
struct {
uint32_t div_cnt: 8; /*This register is used to configure the frequency divider's factor in channel0-7.*/
uint32_t idle_thres: 16; /*In receive mode when no edge is detected on the input signal for longer than reg_idle_thres_ch0 then the receive process is done.*/
uint32_t mem_size: 4; /*This register is used to configure the the amount of memory blocks allocated to channel0-7.*/
uint32_t carrier_en: 1; /*This is the carrier modulation enable control bit for channel0-7.*/
uint32_t carrier_out_lv: 1; /*This bit is used to configure the way carrier wave is modulated for channel0-7.1'b1:transmit on low output level 1'b0:transmit on high output level.*/
uint32_t mem_pd: 1; /*This bit is used to reduce power consumed by memory. 1:memory is in low power state.*/
uint32_t clk_en: 1; /*This bit is used to control clock.when software configure RMT internal registers it controls the register clock.*/
};
uint32_t val;
}conf0;
union {
struct {
uint32_t tx_start: 1; /*Set this bit to start sending data for channel0-7.*/
uint32_t rx_en: 1; /*Set this bit to enable receiving data for channel0-7.*/
uint32_t mem_wr_rst: 1; /*Set this bit to reset write ram address for channel0-7 by receiver access.*/
uint32_t mem_rd_rst: 1; /*Set this bit to reset read ram address for channel0-7 by transmitter access.*/
uint32_t apb_mem_rst: 1; /*Set this bit to reset W/R ram address for channel0-7 by apb fifo access*/
uint32_t mem_owner: 1; /*This is the mark of channel0-7's ram usage right.1'b1receiver uses the ram 0transmitter uses the ram*/
uint32_t tx_conti_mode: 1; /*Set this bit to continue sending from the first data to the last data in channel0-7 again and again.*/
uint32_t rx_filter_en: 1; /*This is the receive filter enable bit for channel0-7.*/
uint32_t rx_filter_thres: 8; /*in receive mode channel0-7 ignore input pulse when the pulse width is smaller then this value.*/
uint32_t ref_cnt_rst: 1; /*This bit is used to reset divider in channel0-7.*/
uint32_t ref_always_on: 1; /*This bit is used to select base clock. 1'b1:clk_apb 1'b0:clk_ref*/
uint32_t idle_out_lv: 1; /*This bit configures the output signal's level for channel0-7 in IDLE state.*/
uint32_t idle_out_en: 1; /*This is the output enable control bit for channel0-7 in IDLE state.*/
uint32_t reserved20: 12;
};
uint32_t val;
}conf1;
}conf_ch[8];
uint32_t status_ch[8]; /*The status for channel0-7*/
uint32_t apb_mem_addr_ch[8]; /*The ram relative address in channel0-7 by apb fifo access*/
union {
struct {
uint32_t ch0_tx_end: 1; /*The interrupt raw bit for channel 0 turns to high level when the transmit process is done.*/
uint32_t ch0_rx_end: 1; /*The interrupt raw bit for channel 0 turns to high level when the receive process is done.*/
uint32_t ch0_err: 1; /*The interrupt raw bit for channel 0 turns to high level when channel 0 detects some errors.*/
uint32_t ch1_tx_end: 1; /*The interrupt raw bit for channel 1 turns to high level when the transmit process is done.*/
uint32_t ch1_rx_end: 1; /*The interrupt raw bit for channel 1 turns to high level when the receive process is done.*/
uint32_t ch1_err: 1; /*The interrupt raw bit for channel 1 turns to high level when channel 1 detects some errors.*/
uint32_t ch2_tx_end: 1; /*The interrupt raw bit for channel 2 turns to high level when the transmit process is done.*/
uint32_t ch2_rx_end: 1; /*The interrupt raw bit for channel 2 turns to high level when the receive process is done.*/
uint32_t ch2_err: 1; /*The interrupt raw bit for channel 2 turns to high level when channel 2 detects some errors.*/
uint32_t ch3_tx_end: 1; /*The interrupt raw bit for channel 3 turns to high level when the transmit process is done.*/
uint32_t ch3_rx_end: 1; /*The interrupt raw bit for channel 3 turns to high level when the receive process is done.*/
uint32_t ch3_err: 1; /*The interrupt raw bit for channel 3 turns to high level when channel 3 detects some errors.*/
uint32_t ch4_tx_end: 1; /*The interrupt raw bit for channel 4 turns to high level when the transmit process is done.*/
uint32_t ch4_rx_end: 1; /*The interrupt raw bit for channel 4 turns to high level when the receive process is done.*/
uint32_t ch4_err: 1; /*The interrupt raw bit for channel 4 turns to high level when channel 4 detects some errors.*/
uint32_t ch5_tx_end: 1; /*The interrupt raw bit for channel 5 turns to high level when the transmit process is done.*/
uint32_t ch5_rx_end: 1; /*The interrupt raw bit for channel 5 turns to high level when the receive process is done.*/
uint32_t ch5_err: 1; /*The interrupt raw bit for channel 5 turns to high level when channel 5 detects some errors.*/
uint32_t ch6_tx_end: 1; /*The interrupt raw bit for channel 6 turns to high level when the transmit process is done.*/
uint32_t ch6_rx_end: 1; /*The interrupt raw bit for channel 6 turns to high level when the receive process is done.*/
uint32_t ch6_err: 1; /*The interrupt raw bit for channel 6 turns to high level when channel 6 detects some errors.*/
uint32_t ch7_tx_end: 1; /*The interrupt raw bit for channel 7 turns to high level when the transmit process is done.*/
uint32_t ch7_rx_end: 1; /*The interrupt raw bit for channel 7 turns to high level when the receive process is done.*/
uint32_t ch7_err: 1; /*The interrupt raw bit for channel 7 turns to high level when channel 7 detects some errors.*/
uint32_t ch0_tx_thr_event: 1; /*The interrupt raw bit for channel 0 turns to high level when transmitter in channel0 have send data more than reg_rmt_tx_lim_ch0 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch1_tx_thr_event: 1; /*The interrupt raw bit for channel 1 turns to high level when transmitter in channel1 have send data more than reg_rmt_tx_lim_ch1 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch2_tx_thr_event: 1; /*The interrupt raw bit for channel 2 turns to high level when transmitter in channel2 have send data more than reg_rmt_tx_lim_ch2 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch3_tx_thr_event: 1; /*The interrupt raw bit for channel 3 turns to high level when transmitter in channel3 have send data more than reg_rmt_tx_lim_ch3 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch4_tx_thr_event: 1; /*The interrupt raw bit for channel 4 turns to high level when transmitter in channel4 have send data more than reg_rmt_tx_lim_ch4 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch5_tx_thr_event: 1; /*The interrupt raw bit for channel 5 turns to high level when transmitter in channel5 have send data more than reg_rmt_tx_lim_ch5 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch6_tx_thr_event: 1; /*The interrupt raw bit for channel 6 turns to high level when transmitter in channel6 have send data more than reg_rmt_tx_lim_ch6 after detecting this interrupt software can updata the old data with new data.*/
uint32_t ch7_tx_thr_event: 1; /*The interrupt raw bit for channel 7 turns to high level when transmitter in channel7 have send data more than reg_rmt_tx_lim_ch7 after detecting this interrupt software can updata the old data with new data.*/
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t ch0_tx_end: 1; /*The interrupt state bit for channel 0's mt_ch0_tx_end_int_raw when mt_ch0_tx_end_int_ena is set to 0.*/
uint32_t ch0_rx_end: 1; /*The interrupt state bit for channel 0's rmt_ch0_rx_end_int_raw when rmt_ch0_rx_end_int_ena is set to 0.*/
uint32_t ch0_err: 1; /*The interrupt state bit for channel 0's rmt_ch0_err_int_raw when rmt_ch0_err_int_ena is set to 0.*/
uint32_t ch1_tx_end: 1; /*The interrupt state bit for channel 1's mt_ch1_tx_end_int_raw when mt_ch1_tx_end_int_ena is set to 1.*/
uint32_t ch1_rx_end: 1; /*The interrupt state bit for channel 1's rmt_ch1_rx_end_int_raw when rmt_ch1_rx_end_int_ena is set to 1.*/
uint32_t ch1_err: 1; /*The interrupt state bit for channel 1's rmt_ch1_err_int_raw when rmt_ch1_err_int_ena is set to 1.*/
uint32_t ch2_tx_end: 1; /*The interrupt state bit for channel 2's mt_ch2_tx_end_int_raw when mt_ch2_tx_end_int_ena is set to 1.*/
uint32_t ch2_rx_end: 1; /*The interrupt state bit for channel 2's rmt_ch2_rx_end_int_raw when rmt_ch2_rx_end_int_ena is set to 1.*/
uint32_t ch2_err: 1; /*The interrupt state bit for channel 2's rmt_ch2_err_int_raw when rmt_ch2_err_int_ena is set to 1.*/
uint32_t ch3_tx_end: 1; /*The interrupt state bit for channel 3's mt_ch3_tx_end_int_raw when mt_ch3_tx_end_int_ena is set to 1.*/
uint32_t ch3_rx_end: 1; /*The interrupt state bit for channel 3's rmt_ch3_rx_end_int_raw when rmt_ch3_rx_end_int_ena is set to 1.*/
uint32_t ch3_err: 1; /*The interrupt state bit for channel 3's rmt_ch3_err_int_raw when rmt_ch3_err_int_ena is set to 1.*/
uint32_t ch4_tx_end: 1; /*The interrupt state bit for channel 4's mt_ch4_tx_end_int_raw when mt_ch4_tx_end_int_ena is set to 1.*/
uint32_t ch4_rx_end: 1; /*The interrupt state bit for channel 4's rmt_ch4_rx_end_int_raw when rmt_ch4_rx_end_int_ena is set to 1.*/
uint32_t ch4_err: 1; /*The interrupt state bit for channel 4's rmt_ch4_err_int_raw when rmt_ch4_err_int_ena is set to 1.*/
uint32_t ch5_tx_end: 1; /*The interrupt state bit for channel 5's mt_ch5_tx_end_int_raw when mt_ch5_tx_end_int_ena is set to 1.*/
uint32_t ch5_rx_end: 1; /*The interrupt state bit for channel 5's rmt_ch5_rx_end_int_raw when rmt_ch5_rx_end_int_ena is set to 1.*/
uint32_t ch5_err: 1; /*The interrupt state bit for channel 5's rmt_ch5_err_int_raw when rmt_ch5_err_int_ena is set to 1.*/
uint32_t ch6_tx_end: 1; /*The interrupt state bit for channel 6's mt_ch6_tx_end_int_raw when mt_ch6_tx_end_int_ena is set to 1.*/
uint32_t ch6_rx_end: 1; /*The interrupt state bit for channel 6's rmt_ch6_rx_end_int_raw when rmt_ch6_rx_end_int_ena is set to 1.*/
uint32_t ch6_err: 1; /*The interrupt state bit for channel 6's rmt_ch6_err_int_raw when rmt_ch6_err_int_ena is set to 1.*/
uint32_t ch7_tx_end: 1; /*The interrupt state bit for channel 7's mt_ch7_tx_end_int_raw when mt_ch7_tx_end_int_ena is set to 1.*/
uint32_t ch7_rx_end: 1; /*The interrupt state bit for channel 7's rmt_ch7_rx_end_int_raw when rmt_ch7_rx_end_int_ena is set to 1.*/
uint32_t ch7_err: 1; /*The interrupt state bit for channel 7's rmt_ch7_err_int_raw when rmt_ch7_err_int_ena is set to 1.*/
uint32_t ch0_tx_thr_event: 1; /*The interrupt state bit for channel 0's rmt_ch0_tx_thr_event_int_raw when mt_ch0_tx_thr_event_int_ena is set to 1.*/
uint32_t ch1_tx_thr_event: 1; /*The interrupt state bit for channel 1's rmt_ch1_tx_thr_event_int_raw when mt_ch1_tx_thr_event_int_ena is set to 1.*/
uint32_t ch2_tx_thr_event: 1; /*The interrupt state bit for channel 2's rmt_ch2_tx_thr_event_int_raw when mt_ch2_tx_thr_event_int_ena is set to 1.*/
uint32_t ch3_tx_thr_event: 1; /*The interrupt state bit for channel 3's rmt_ch3_tx_thr_event_int_raw when mt_ch3_tx_thr_event_int_ena is set to 1.*/
uint32_t ch4_tx_thr_event: 1; /*The interrupt state bit for channel 4's rmt_ch4_tx_thr_event_int_raw when mt_ch4_tx_thr_event_int_ena is set to 1.*/
uint32_t ch5_tx_thr_event: 1; /*The interrupt state bit for channel 5's rmt_ch5_tx_thr_event_int_raw when mt_ch5_tx_thr_event_int_ena is set to 1.*/
uint32_t ch6_tx_thr_event: 1; /*The interrupt state bit for channel 6's rmt_ch6_tx_thr_event_int_raw when mt_ch6_tx_thr_event_int_ena is set to 1.*/
uint32_t ch7_tx_thr_event: 1; /*The interrupt state bit for channel 7's rmt_ch7_tx_thr_event_int_raw when mt_ch7_tx_thr_event_int_ena is set to 1.*/
};
uint32_t val;
}int_st;
union {
struct {
uint32_t ch0_tx_end: 1; /*Set this bit to enable rmt_ch0_tx_end_int_st.*/
uint32_t ch0_rx_end: 1; /*Set this bit to enable rmt_ch0_rx_end_int_st.*/
uint32_t ch0_err: 1; /*Set this bit to enable rmt_ch0_err_int_st.*/
uint32_t ch1_tx_end: 1; /*Set this bit to enable rmt_ch1_tx_end_int_st.*/
uint32_t ch1_rx_end: 1; /*Set this bit to enable rmt_ch1_rx_end_int_st.*/
uint32_t ch1_err: 1; /*Set this bit to enable rmt_ch1_err_int_st.*/
uint32_t ch2_tx_end: 1; /*Set this bit to enable rmt_ch2_tx_end_int_st.*/
uint32_t ch2_rx_end: 1; /*Set this bit to enable rmt_ch2_rx_end_int_st.*/
uint32_t ch2_err: 1; /*Set this bit to enable rmt_ch2_err_int_st.*/
uint32_t ch3_tx_end: 1; /*Set this bit to enable rmt_ch3_tx_end_int_st.*/
uint32_t ch3_rx_end: 1; /*Set this bit to enable rmt_ch3_rx_end_int_st.*/
uint32_t ch3_err: 1; /*Set this bit to enable rmt_ch3_err_int_st.*/
uint32_t ch4_tx_end: 1; /*Set this bit to enable rmt_ch4_tx_end_int_st.*/
uint32_t ch4_rx_end: 1; /*Set this bit to enable rmt_ch4_rx_end_int_st.*/
uint32_t ch4_err: 1; /*Set this bit to enable rmt_ch4_err_int_st.*/
uint32_t ch5_tx_end: 1; /*Set this bit to enable rmt_ch5_tx_end_int_st.*/
uint32_t ch5_rx_end: 1; /*Set this bit to enable rmt_ch5_rx_end_int_st.*/
uint32_t ch5_err: 1; /*Set this bit to enable rmt_ch5_err_int_st.*/
uint32_t ch6_tx_end: 1; /*Set this bit to enable rmt_ch6_tx_end_int_st.*/
uint32_t ch6_rx_end: 1; /*Set this bit to enable rmt_ch6_rx_end_int_st.*/
uint32_t ch6_err: 1; /*Set this bit to enable rmt_ch6_err_int_st.*/
uint32_t ch7_tx_end: 1; /*Set this bit to enable rmt_ch7_tx_end_int_st.*/
uint32_t ch7_rx_end: 1; /*Set this bit to enable rmt_ch7_rx_end_int_st.*/
uint32_t ch7_err: 1; /*Set this bit to enable rmt_ch7_err_int_st.*/
uint32_t ch0_tx_thr_event: 1; /*Set this bit to enable rmt_ch0_tx_thr_event_int_st.*/
uint32_t ch1_tx_thr_event: 1; /*Set this bit to enable rmt_ch1_tx_thr_event_int_st.*/
uint32_t ch2_tx_thr_event: 1; /*Set this bit to enable rmt_ch2_tx_thr_event_int_st.*/
uint32_t ch3_tx_thr_event: 1; /*Set this bit to enable rmt_ch3_tx_thr_event_int_st.*/
uint32_t ch4_tx_thr_event: 1; /*Set this bit to enable rmt_ch4_tx_thr_event_int_st.*/
uint32_t ch5_tx_thr_event: 1; /*Set this bit to enable rmt_ch5_tx_thr_event_int_st.*/
uint32_t ch6_tx_thr_event: 1; /*Set this bit to enable rmt_ch6_tx_thr_event_int_st.*/
uint32_t ch7_tx_thr_event: 1; /*Set this bit to enable rmt_ch7_tx_thr_event_int_st.*/
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t ch0_tx_end: 1; /*Set this bit to clear the rmt_ch0_rx_end_int_raw..*/
uint32_t ch0_rx_end: 1; /*Set this bit to clear the rmt_ch0_tx_end_int_raw.*/
uint32_t ch0_err: 1; /*Set this bit to clear the rmt_ch0_err_int_raw.*/
uint32_t ch1_tx_end: 1; /*Set this bit to clear the rmt_ch1_rx_end_int_raw..*/
uint32_t ch1_rx_end: 1; /*Set this bit to clear the rmt_ch1_tx_end_int_raw.*/
uint32_t ch1_err: 1; /*Set this bit to clear the rmt_ch1_err_int_raw.*/
uint32_t ch2_tx_end: 1; /*Set this bit to clear the rmt_ch2_rx_end_int_raw..*/
uint32_t ch2_rx_end: 1; /*Set this bit to clear the rmt_ch2_tx_end_int_raw.*/
uint32_t ch2_err: 1; /*Set this bit to clear the rmt_ch2_err_int_raw.*/
uint32_t ch3_tx_end: 1; /*Set this bit to clear the rmt_ch3_rx_end_int_raw..*/
uint32_t ch3_rx_end: 1; /*Set this bit to clear the rmt_ch3_tx_end_int_raw.*/
uint32_t ch3_err: 1; /*Set this bit to clear the rmt_ch3_err_int_raw.*/
uint32_t ch4_tx_end: 1; /*Set this bit to clear the rmt_ch4_rx_end_int_raw..*/
uint32_t ch4_rx_end: 1; /*Set this bit to clear the rmt_ch4_tx_end_int_raw.*/
uint32_t ch4_err: 1; /*Set this bit to clear the rmt_ch4_err_int_raw.*/
uint32_t ch5_tx_end: 1; /*Set this bit to clear the rmt_ch5_rx_end_int_raw..*/
uint32_t ch5_rx_end: 1; /*Set this bit to clear the rmt_ch5_tx_end_int_raw.*/
uint32_t ch5_err: 1; /*Set this bit to clear the rmt_ch5_err_int_raw.*/
uint32_t ch6_tx_end: 1; /*Set this bit to clear the rmt_ch6_rx_end_int_raw..*/
uint32_t ch6_rx_end: 1; /*Set this bit to clear the rmt_ch6_tx_end_int_raw.*/
uint32_t ch6_err: 1; /*Set this bit to clear the rmt_ch6_err_int_raw.*/
uint32_t ch7_tx_end: 1; /*Set this bit to clear the rmt_ch7_rx_end_int_raw..*/
uint32_t ch7_rx_end: 1; /*Set this bit to clear the rmt_ch7_tx_end_int_raw.*/
uint32_t ch7_err: 1; /*Set this bit to clear the rmt_ch7_err_int_raw.*/
uint32_t ch0_tx_thr_event: 1; /*Set this bit to clear the rmt_ch0_tx_thr_event_int_raw interrupt.*/
uint32_t ch1_tx_thr_event: 1; /*Set this bit to clear the rmt_ch1_tx_thr_event_int_raw interrupt.*/
uint32_t ch2_tx_thr_event: 1; /*Set this bit to clear the rmt_ch2_tx_thr_event_int_raw interrupt.*/
uint32_t ch3_tx_thr_event: 1; /*Set this bit to clear the rmt_ch3_tx_thr_event_int_raw interrupt.*/
uint32_t ch4_tx_thr_event: 1; /*Set this bit to clear the rmt_ch4_tx_thr_event_int_raw interrupt.*/
uint32_t ch5_tx_thr_event: 1; /*Set this bit to clear the rmt_ch5_tx_thr_event_int_raw interrupt.*/
uint32_t ch6_tx_thr_event: 1; /*Set this bit to clear the rmt_ch6_tx_thr_event_int_raw interrupt.*/
uint32_t ch7_tx_thr_event: 1; /*Set this bit to clear the rmt_ch7_tx_thr_event_int_raw interrupt.*/
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t low: 16; /*This register is used to configure carrier wave's low level value for channel0-7.*/
uint32_t high:16; /*This register is used to configure carrier wave's high level value for channel0-7.*/
};
uint32_t val;
}carrier_duty_ch[8];
union {
struct {
uint32_t limit: 9; /*When channel0-7 sends more than reg_rmt_tx_lim_ch0 data then channel0-7 produce the relative interrupt.*/
uint32_t reserved9: 23;
};
uint32_t val;
}tx_lim_ch[8];
union {
struct {
uint32_t fifo_mask: 1; /*Set this bit to disable apb fifo access*/
uint32_t mem_tx_wrap_en: 1; /*when data need to be send is more than channel's mem can store then set this bit to enable reuse of mem this bit is used together with reg_rmt_tx_lim_chn.*/
uint32_t reserved2: 30;
};
uint32_t val;
}apb_conf;
uint32_t reserved_f4;
uint32_t reserved_f8;
uint32_t date; /*This is the version register.*/
} rmt_dev_t;
extern rmt_dev_t RMT;
#endif /* _SOC_RMT_STRUCT_H_ */

View file

@ -0,0 +1,677 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_SPI_STRUCT_H_
#define _SOC_SPI_STRUCT_H_
typedef volatile struct {
union {
struct {
uint32_t reserved0: 16; /*reserved*/
uint32_t flash_per: 1; /*program erase resume bit program erase suspend operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_pes: 1; /*program erase suspend bit program erase suspend operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t usr: 1; /*User define command enable. An operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_hpm: 1; /*Drive Flash into high performance mode. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_res: 1; /*This bit combined with reg_resandres bit releases Flash from the power-down state or high performance mode and obtains the devices ID. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_dp: 1; /*Drive Flash into power down. An operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_ce: 1; /*Chip erase enable. Chip erase operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_be: 1; /*Block erase enable(32KB) . Block erase operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_se: 1; /*Sector erase enable(4KB). Sector erase operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_pp: 1; /*Page program enable(1 byte ~256 bytes data to be programmed). Page program operation will be triggered when the bit is set. The bit will be cleared once the operation done .1: enable 0: disable.*/
uint32_t flash_wrsr: 1; /*Write status register enable. Write status operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_rdsr: 1; /*Read status register-1. Read status operation will be triggered when the bit is set. The bit will be cleared once the operation done.1: enable 0: disable.*/
uint32_t flash_rdid: 1; /*Read JEDEC ID . Read ID command will be sent when the bit is set. The bit will be cleared once the operation done. 1: enable 0: disable.*/
uint32_t flash_wrdi: 1; /*Write flash disable. Write disable command will be sent when the bit is set. The bit will be cleared once the operation done. 1: enable 0: disable.*/
uint32_t flash_wren: 1; /*Write flash enable. Write enable command will be sent when the bit is set. The bit will be cleared once the operation done. 1: enable 0: disable.*/
uint32_t flash_read: 1; /*Read flash enable. Read flash operation will be triggered when the bit is set. The bit will be cleared once the operation done. 1: enable 0: disable.*/
};
uint32_t val;
}cmd;
union {
struct {
uint32_t reserved : 8;
uint32_t usr_addr_value:24; /*[31:8]:address to slave [7:0]:Reserved.*/
};
uint32_t val;
}addr;
union {
struct {
uint32_t reserved0: 10; /*reserved*/
uint32_t fcs_crc_en: 1; /*For SPI1 initialize crc32 module before writing encrypted data to flash. Active low.*/
uint32_t tx_crc_en: 1; /*For SPI1 enable crc32 when writing encrypted data to flash. 1: enable 0:disable*/
uint32_t wait_flash_idle_en: 1; /*wait flash idle when program flash or erase flash. 1: enable 0: disable.*/
uint32_t fastrd_mode: 1; /*This bit enable the bits: spi_fread_qio spi_fread_dio spi_fread_qout and spi_fread_dout. 1: enable 0: disable.*/
uint32_t fread_dual: 1; /*In the read operations read-data phase apply 2 signals. 1: enable 0: disable.*/
uint32_t resandres: 1; /*The Device ID is read out to SPI_RD_STATUS register, this bit combine with spi_flash_res bit. 1: enable 0: disable.*/
uint32_t reserved16: 4; /*reserved*/
uint32_t fread_quad: 1; /*In the read operations read-data phase apply 4 signals. 1: enable 0: disable.*/
uint32_t wp: 1; /*Write protect signal output when SPI is idle. 1: output high 0: output low.*/
uint32_t wrsr_2b: 1; /*two bytes data will be written to status register when it is set. 1: enable 0: disable.*/
uint32_t fread_dio: 1; /*In the read operations address phase and read-data phase apply 2 signals. 1: enable 0: disable.*/
uint32_t fread_qio: 1; /*In the read operations address phase and read-data phase apply 4 signals. 1: enable 0: disable.*/
uint32_t rd_bit_order: 1; /*In read-data (MISO) phase 1: LSB first 0: MSB first*/
uint32_t wr_bit_order: 1; /*In command address write-data (MOSI) phases 1: LSB firs 0: MSB first*/
uint32_t reserved27: 5; /*reserved*/
};
uint32_t val;
}ctrl;
union {
struct {
uint32_t reserved0: 16; /*reserved*/
uint32_t cs_hold_delay_res:12; /*Delay cycles of resume Flash when resume Flash is enable by spi clock.*/
uint32_t cs_hold_delay: 4; /*SPI cs signal is delayed by spi clock cycles*/
};
uint32_t val;
}ctrl1;
union {
struct {
uint32_t status: 16; /*In the slave mode, it is the status for master to read out.*/
uint32_t wb_mode: 8; /*Mode bits in the flash fast read mode, it is combined with spi_fastrd_mode bit.*/
uint32_t status_ext: 8; /*In the slave mode,it is the status for master to read out.*/
};
uint32_t val;
}rd_status;
union {
struct {
uint32_t setup_time: 4; /*(cycles-1) of ,prepare, phase by spi clock, this bits combined with spi_cs_setup bit.*/
uint32_t hold_time: 4; /*delay cycles of cs pin by spi clock, this bits combined with spi_cs_hold bit.*/
uint32_t ck_out_low_mode: 4; /*modify spi clock duty ratio when the value is lager than 8, the bits are combined with spi_clkcnt_N bits and spi_clkcnt_L bits.*/
uint32_t ck_out_high_mode: 4; /*modify spi clock duty ratio when the value is lager than 8, the bits are combined with spi_clkcnt_N bits and spi_clkcnt_H bits.*/
uint32_t miso_delay_mode: 2; /*MISO signals are delayed by spi_clk. 0: zero 1: if spi_ck_out_edge or spi_ck_i_edge is set 1 delayed by half cycle else delayed by one cycle 2: if spi_ck_out_edge or spi_ck_i_edge is set 1 delayed by one cycle else delayed by half cycle 3: delayed one cycle*/
uint32_t miso_delay_num: 3; /*MISO signals are delayed by system clock cycles*/
uint32_t mosi_delay_mode: 2; /*MOSI signals are delayed by spi_clk. 0: zero 1: if spi_ck_out_edge or spi_ck_i_edge is set 1 delayed by half cycle else delayed by one cycle 2: if spi_ck_out_edge or spi_ck_i_edge is set 1 delayed by one cycle else delayed by half cycle 3: delayed one cycle*/
uint32_t mosi_delay_num: 3; /*MOSI signals are delayed by system clock cycles*/
uint32_t cs_delay_mode: 2; /*spi_cs signal is delayed by spi_clk . 0: zero 1: if spi_ck_out_edge or spi_ck_i_edge is set 1 delayed by half cycle else delayed by one cycle 2: if spi_ck_out_edge or spi_ck_i_edge is set 1 delayed by one cycle else delayed by half cycle 3: delayed one cycle*/
uint32_t cs_delay_num: 4; /*spi_cs signal is delayed by system clock cycles*/
};
uint32_t val;
}ctrl2;
union {
struct {
uint32_t clkcnt_l: 6; /*In the master mode it must be equal to spi_clkcnt_N. In the slave mode it must be 0.*/
uint32_t clkcnt_h: 6; /*In the master mode it must be floor((spi_clkcnt_N+1)/2-1). In the slave mode it must be 0.*/
uint32_t clkcnt_n: 6; /*In the master mode it is the divider of spi_clk. So spi_clk frequency is system/(spi_clkdiv_pre+1)/(spi_clkcnt_N+1)*/
uint32_t clkdiv_pre: 13; /*In the master mode it is pre-divider of spi_clk.*/
uint32_t clk_equ_sysclk: 1; /*In the master mode 1: spi_clk is eqaul to system 0: spi_clk is divided from system clock.*/
};
uint32_t val;
}clock;
union {
struct {
uint32_t doutdin: 1; /*Set the bit to enable full duplex communication. 1: enable 0: disable.*/
uint32_t reserved1: 3; /*reserved*/
uint32_t cs_hold: 1; /*spi cs keep low when spi is in ,done, phase. 1: enable 0: disable.*/
uint32_t cs_setup: 1; /*spi cs is enable when spi is in ,prepare, phase. 1: enable 0: disable.*/
uint32_t ck_i_edge: 1; /*In the slave mode the bit is same as spi_ck_out_edge in master mode. It is combined with spi_miso_delay_mode bits.*/
uint32_t ck_out_edge: 1; /*the bit combined with spi_mosi_delay_mode bits to set mosi signal delay mode.*/
uint32_t reserved8: 2; /*reserved*/
uint32_t rd_byte_order: 1; /*In read-data (MISO) phase 1: big-endian 0: little_endian*/
uint32_t wr_byte_order: 1; /*In command address write-data (MOSI) phases 1: big-endian 0: litte_endian*/
uint32_t fwrite_dual: 1; /*In the write operations read-data phase apply 2 signals*/
uint32_t fwrite_quad: 1; /*In the write operations read-data phase apply 4 signals*/
uint32_t fwrite_dio: 1; /*In the write operations address phase and read-data phase apply 2 signals.*/
uint32_t fwrite_qio: 1; /*In the write operations address phase and read-data phase apply 4 signals.*/
uint32_t sio: 1; /*Set the bit to enable 3-line half duplex communication mosi and miso signals share the same pin. 1: enable 0: disable.*/
uint32_t usr_hold_pol: 1; /*It is combined with hold bits to set the polarity of spi hold line 1: spi will be held when spi hold line is high 0: spi will be held when spi hold line is low*/
uint32_t usr_dout_hold: 1; /*spi is hold at data out state the bit combined with spi_usr_hold_pol bit.*/
uint32_t usr_din_hold: 1; /*spi is hold at data in state the bit combined with spi_usr_hold_pol bit.*/
uint32_t usr_dummy_hold: 1; /*spi is hold at dummy state the bit combined with spi_usr_hold_pol bit.*/
uint32_t usr_addr_hold: 1; /*spi is hold at address state the bit combined with spi_usr_hold_pol bit.*/
uint32_t usr_cmd_hold: 1; /*spi is hold at command state the bit combined with spi_usr_hold_pol bit.*/
uint32_t usr_prep_hold: 1; /*spi is hold at prepare state the bit combined with spi_usr_hold_pol bit.*/
uint32_t usr_miso_highpart: 1; /*read-data phase only access to high-part of the buffer spi_w8~spi_w15. 1: enable 0: disable.*/
uint32_t usr_mosi_highpart: 1; /*write-data phase only access to high-part of the buffer spi_w8~spi_w15. 1: enable 0: disable.*/
uint32_t usr_dummy_idle: 1; /*spi clock is disable in dummy phase when the bit is enable.*/
uint32_t usr_mosi: 1; /*This bit enable the write-data phase of an operation.*/
uint32_t usr_miso: 1; /*This bit enable the read-data phase of an operation.*/
uint32_t usr_dummy: 1; /*This bit enable the dummy phase of an operation.*/
uint32_t usr_addr: 1; /*This bit enable the address phase of an operation.*/
uint32_t usr_command: 1; /*This bit enable the command phase of an operation.*/
};
uint32_t val;
}user;
union {
struct {
uint32_t usr_dummy_cyclelen: 8; /*The length in spi_clk cycles of dummy phase. The register value shall be (cycle_num-1).*/
uint32_t reserved8: 18; /*reserved*/
uint32_t usr_addr_bitlen: 6; /*The length in bits of address phase. The register value shall be (bit_num-1).*/
};
uint32_t val;
}user1;
union {
struct {
uint32_t usr_command_value: 16; /*The value of command.*/
uint32_t reserved16: 12; /*reserved*/
uint32_t usr_command_bitlen: 4; /*The length in bits of command phase. The register value shall be (bit_num-1)*/
};
uint32_t val;
}user2;
union {
struct {
uint32_t usr_mosi_dbitlen:24; /*The length in bits of write-data. The register value shall be (bit_num-1).*/
uint32_t reserved24: 8; /*reserved*/
};
uint32_t val;
}mosi_dlen;
union {
struct {
uint32_t usr_miso_dbitlen:24; /*The length in bits of read-data. The register value shall be (bit_num-1).*/
uint32_t reserved24: 8; /*reserved*/
};
uint32_t val;
}miso_dlen;
uint32_t slv_wr_status; /*In the slave mode this register are the status register for the master to write into. In the master mode this register are the higher 32bits in the 64 bits address condition.*/
union {
struct {
uint32_t cs0_dis: 1; /*SPI CS0 pin enable, 1: disable CS0, 0: spi_cs0 signal is from/to CS0 pin*/
uint32_t cs1_dis: 1; /*SPI CS1 pin enable, 1: disable CS1, 0: spi_cs1 signal is from/to CS1 pin*/
uint32_t cs2_dis: 1; /*SPI CS2 pin enable, 1: disable CS2, 0: spi_cs2 signal is from/to CS2 pin*/
uint32_t reserved3: 2; /*reserved*/
uint32_t ck_dis: 1; /*1: spi clk out disable 0: spi clk out enable*/
uint32_t master_cs_pol: 5; /*In the master mode the bits are the polarity of spi cs line the value is equivalent to spi_cs ^ spi_master_cs_pol.*/
uint32_t master_ck_sel: 5; /*In the master mode spi cs line is enable as spi clk it is combined with spi_cs0_dis spi_cs1_dis spi_cs2_dis.*/
uint32_t reserved16: 13; /*reserved*/
uint32_t ck_idle_edge: 1; /*1: spi clk line is high when idle 0: spi clk line is low when idle*/
uint32_t cs_keep_active: 1; /*spi cs line keep low when the bit is set.*/
uint32_t reserved31: 1; /*reserved*/
};
uint32_t val;
}pin;
union {
struct {
uint32_t rd_buf_done: 1; /*The interrupt raw bit for the completion of read-buffer operation in the slave mode.*/
uint32_t wr_buf_done: 1; /*The interrupt raw bit for the completion of write-buffer operation in the slave mode.*/
uint32_t rd_sta_done: 1; /*The interrupt raw bit for the completion of read-status operation in the slave mode.*/
uint32_t wr_sta_done: 1; /*The interrupt raw bit for the completion of write-status operation in the slave mode.*/
uint32_t trans_done: 1; /*The interrupt raw bit for the completion of any operation in both the master mode and the slave mode.*/
uint32_t int_en: 5; /*Interrupt enable bits for the below 5 sources*/
uint32_t cs_i_mode: 2; /*In the slave mode this bits used to synchronize the input spi cs signal and eliminate spi cs jitter.*/
uint32_t reserved12: 5; /*reserved*/
uint32_t last_command: 3; /*In the slave mode it is the value of command.*/
uint32_t last_state: 3; /*In the slave mode it is the state of spi state machine.*/
uint32_t trans_cnt: 4; /*The operations counter in both the master mode and the slave mode. 4: read-status*/
uint32_t cmd_define: 1; /*1: slave mode commands are defined in SPI_SLAVE3. 0: slave mode commands are fixed as: 1: write-status 2: write-buffer and 3: read-buffer.*/
uint32_t wr_rd_sta_en: 1; /*write and read status enable in the slave mode*/
uint32_t wr_rd_buf_en: 1; /*write and read buffer enable in the slave mode*/
uint32_t slave_mode: 1; /*1: slave mode 0: master mode.*/
uint32_t sync_reset: 1; /*Software reset enable, reset the spi clock line cs line and data lines.*/
};
uint32_t val;
}slave;
union {
struct {
uint32_t rdbuf_dummy_en: 1; /*In the slave mode it is the enable bit of dummy phase for read-buffer operations.*/
uint32_t wrbuf_dummy_en: 1; /*In the slave mode it is the enable bit of dummy phase for write-buffer operations.*/
uint32_t rdsta_dummy_en: 1; /*In the slave mode it is the enable bit of dummy phase for read-status operations.*/
uint32_t wrsta_dummy_en: 1; /*In the slave mode it is the enable bit of dummy phase for write-status operations.*/
uint32_t wr_addr_bitlen: 6; /*In the slave mode it is the address length in bits for write-buffer operation. The register value shall be (bit_num-1).*/
uint32_t rd_addr_bitlen: 6; /*In the slave mode it is the address length in bits for read-buffer operation. The register value shall be (bit_num-1).*/
uint32_t reserved16: 9; /*reserved*/
uint32_t status_readback: 1; /*In the slave mode 1:read register of SPI_SLV_WR_STATUS 0: read register of SPI_RD_STATUS.*/
uint32_t status_fast_en: 1; /*In the slave mode enable fast read status.*/
uint32_t status_bitlen: 5; /*In the slave mode it is the length of status bit.*/
};
uint32_t val;
}slave1;
union {
struct {
uint32_t rdsta_dummy_cyclelen: 8; /*In the slave mode it is the length in spi_clk cycles of dummy phase for read-status operations. The register value shall be (cycle_num-1).*/
uint32_t wrsta_dummy_cyclelen: 8; /*In the slave mode it is the length in spi_clk cycles of dummy phase for write-status operations. The register value shall be (cycle_num-1).*/
uint32_t rdbuf_dummy_cyclelen: 8; /*In the slave mode it is the length in spi_clk cycles of dummy phase for read-buffer operations. The register value shall be (cycle_num-1).*/
uint32_t wrbuf_dummy_cyclelen: 8; /*In the slave mode it is the length in spi_clk cycles of dummy phase for write-buffer operations. The register value shall be (cycle_num-1).*/
};
uint32_t val;
}slave2;
union {
struct {
uint32_t rdbuf_cmd_value: 8; /*In the slave mode it is the value of read-buffer command.*/
uint32_t wrbuf_cmd_value: 8; /*In the slave mode it is the value of write-buffer command.*/
uint32_t rdsta_cmd_value: 8; /*In the slave mode it is the value of read-status command.*/
uint32_t wrsta_cmd_value: 8; /*In the slave mode it is the value of write-status command.*/
};
uint32_t val;
}slave3;
union {
struct {
uint32_t bit_len: 24; /*In the slave mode it is the length in bits for write-buffer operations. The register value shall be (bit_num-1).*/
uint32_t reserved24: 8; /*reserved*/
};
uint32_t val;
}slv_wrbuf_dlen;
union {
struct {
uint32_t bit_len: 24; /*In the slave mode it is the length in bits for read-buffer operations. The register value shall be (bit_num-1).*/
uint32_t reserved24: 8; /*reserved*/
};
uint32_t val;
}slv_rdbuf_dlen;
union {
struct {
uint32_t req_en: 1; /*For SPI0 Cache access enable 1: enable 0:disable.*/
uint32_t usr_cmd_4byte: 1; /*For SPI0 cache read flash with 4 bytes command 1: enable 0:disable.*/
uint32_t flash_usr_cmd: 1; /*For SPI0 cache read flash for user define command 1: enable 0:disable.*/
uint32_t flash_pes_en: 1; /*For SPI0 spi1 send suspend command before cache read flash 1: enable 0:disable.*/
uint32_t reserved4: 28; /*reserved*/
};
uint32_t val;
}cache_fctrl;
union {
struct {
uint32_t reserved0: 1; /*reserved*/
uint32_t usr_sram_dio: 1; /*For SPI0 In the spi sram mode spi dual I/O mode enable 1: enable 0:disable*/
uint32_t usr_sram_qio: 1; /*For SPI0 In the spi sram mode spi quad I/O mode enable 1: enable 0:disable*/
uint32_t usr_wr_sram_dummy: 1; /*For SPI0 In the spi sram mode it is the enable bit of dummy phase for write operations.*/
uint32_t usr_rd_sram_dummy: 1; /*For SPI0 In the spi sram mode it is the enable bit of dummy phase for read operations.*/
uint32_t cache_sram_usr_rcmd: 1; /*For SPI0 In the spi sram mode cache read sram for user define command.*/
uint32_t sram_bytes_len: 8; /*For SPI0 In the sram mode it is the byte length of spi read sram data.*/
uint32_t sram_dummy_cyclelen: 8; /*For SPI0 In the sram mode it is the length in bits of address phase. The register value shall be (bit_num-1).*/
uint32_t sram_addr_bitlen: 6; /*For SPI0 In the sram mode it is the length in bits of address phase. The register value shall be (bit_num-1).*/
uint32_t cache_sram_usr_wcmd: 1; /*For SPI0 In the spi sram mode cache write sram for user define command*/
uint32_t reserved29: 3; /*reserved*/
};
uint32_t val;
}cache_sctrl;
union {
struct {
uint32_t dio: 1; /*For SPI0 SRAM DIO mode enable . SRAM DIO enable command will be send when the bit is set. The bit will be cleared once the operation done.*/
uint32_t qio: 1; /*For SPI0 SRAM QIO mode enable . SRAM QIO enable command will be send when the bit is set. The bit will be cleared once the operation done.*/
uint32_t reserved2: 2; /*For SPI0 SRAM write enable . SRAM write operation will be triggered when the bit is set. The bit will be cleared once the operation done.*/
uint32_t rst_io: 1; /*For SPI0 SRAM IO mode reset enable. SRAM IO mode reset operation will be triggered when the bit is set. The bit will be cleared once the operation done*/
uint32_t reserved5:27; /*reserved*/
};
uint32_t val;
}sram_cmd;
union {
struct {
uint32_t usr_rd_cmd_value: 16; /*For SPI0 When cache mode is enable it is the read command value of command phase for SRAM.*/
uint32_t reserved16: 12; /*reserved*/
uint32_t usr_rd_cmd_bitlen: 4; /*For SPI0 When cache mode is enable it is the length in bits of command phase for SRAM. The register value shall be (bit_num-1).*/
};
uint32_t val;
}sram_drd_cmd;
union {
struct {
uint32_t usr_wr_cmd_value: 16; /*For SPI0 When cache mode is enable it is the write command value of command phase for SRAM.*/
uint32_t reserved16: 12; /*reserved*/
uint32_t usr_wr_cmd_bitlen: 4; /*For SPI0 When cache mode is enable it is the in bits of command phase for SRAM. The register value shall be (bit_num-1).*/
};
uint32_t val;
}sram_dwr_cmd;
union {
struct {
uint32_t slv_rdata_bit:24; /*In the slave mode it is the bit length of read data. The value is the length - 1.*/
uint32_t reserved24: 8; /*reserved*/
};
uint32_t val;
}slv_rd_bit;
uint32_t reserved_68;
uint32_t reserved_6c;
uint32_t reserved_70;
uint32_t reserved_74;
uint32_t reserved_78;
uint32_t reserved_7c;
uint32_t data_buf[16]; /*data buffer*/
uint32_t tx_crc; /*For SPI1 the value of crc32 for 256 bits data.*/
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
union {
struct {
uint32_t t_pp_time: 12; /*page program delay time by system clock.*/
uint32_t reserved12: 4; /*reserved*/
uint32_t t_pp_shift: 4; /*page program delay time shift .*/
uint32_t reserved20:11; /*reserved*/
uint32_t t_pp_ena: 1; /*page program delay enable.*/
};
uint32_t val;
}ext0;
union {
struct {
uint32_t t_erase_time: 12; /*erase flash delay time by system clock.*/
uint32_t reserved12: 4; /*reserved*/
uint32_t t_erase_shift: 4; /*erase flash delay time shift.*/
uint32_t reserved20: 11; /*reserved*/
uint32_t t_erase_ena: 1; /*erase flash delay enable.*/
};
uint32_t val;
}ext1;
union {
struct {
uint32_t st: 3; /*The status of spi state machine .*/
uint32_t reserved3: 29; /*reserved*/
};
uint32_t val;
}ext2;
union {
struct {
uint32_t int_hold_ena: 2; /*This register is for two SPI masters to share the same cs clock and data signals. The bits of one SPI are set if the other SPI is busy the SPI will be hold. 1(3): hold at ,idle, phase 2: hold at ,prepare, phase.*/
uint32_t reserved2: 30; /*reserved*/
};
uint32_t val;
}ext3;
union {
struct {
uint32_t reserved0: 2; /*reserved*/
uint32_t in_rst: 1; /*The bit is used to reset in dma fsm and in data fifo pointer.*/
uint32_t out_rst: 1; /*The bit is used to reset out dma fsm and out data fifo pointer.*/
uint32_t ahbm_fifo_rst: 1; /*reset spi dma ahb master fifo pointer.*/
uint32_t ahbm_rst: 1; /*reset spi dma ahb master.*/
uint32_t in_loop_test: 1; /*Set bit to test in link.*/
uint32_t out_loop_test: 1; /*Set bit to test out link.*/
uint32_t out_auto_wrback: 1; /*when the link is empty jump to next automatically.*/
uint32_t out_eof_mode: 1; /*out eof flag generation mode . 1: when dma pop all data from fifo 0:when ahb push all data to fifo.*/
uint32_t outdscr_burst_en: 1; /*read descriptor use burst mode when read data for memory.*/
uint32_t indscr_burst_en: 1; /*read descriptor use burst mode when write data to memory.*/
uint32_t out_data_burst_en: 1; /*spi dma read data from memory in burst mode.*/
uint32_t reserved13: 1; /*reserved*/
uint32_t dma_rx_stop: 1; /*spi dma read data stop when in continue tx/rx mode.*/
uint32_t dma_tx_stop: 1; /*spi dma write data stop when in continue tx/rx mode.*/
uint32_t dma_continue: 1; /*spi dma continue tx/rx data.*/
uint32_t reserved17: 15; /*reserved*/
};
uint32_t val;
}dma_conf;
union {
struct {
uint32_t addr: 20; /*The address of the first outlink descriptor.*/
uint32_t reserved20: 8; /*reserved*/
uint32_t stop: 1; /*Set the bit to stop to use outlink descriptor.*/
uint32_t start: 1; /*Set the bit to start to use outlink descriptor.*/
uint32_t restart: 1; /*Set the bit to mount on new outlink descriptors.*/
uint32_t reserved31: 1; /*reserved*/
};
uint32_t val;
}dma_out_link;
union {
struct {
uint32_t addr: 20; /*The address of the first inlink descriptor.*/
uint32_t auto_ret: 1; /*when the bit is set inlink descriptor returns to the next descriptor while a packet is wrong*/
uint32_t reserved21: 7; /*reserved*/
uint32_t stop: 1; /*Set the bit to stop to use inlink descriptor.*/
uint32_t start: 1; /*Set the bit to start to use inlink descriptor.*/
uint32_t restart: 1; /*Set the bit to mount on new inlink descriptors.*/
uint32_t reserved31: 1; /*reserved*/
};
uint32_t val;
}dma_in_link;
union {
struct {
uint32_t rx_en: 1; /*spi dma read data status bit.*/
uint32_t tx_en: 1; /*spi dma write data status bit.*/
uint32_t reserved2: 30; /*spi dma read data from memory count.*/
};
uint32_t val;
}dma_status;
union {
struct {
uint32_t inlink_dscr_empty: 1; /*The enable bit for lack of enough inlink descriptors.*/
uint32_t outlink_dscr_error: 1; /*The enable bit for outlink descriptor error.*/
uint32_t inlink_dscr_error: 1; /*The enable bit for inlink descriptor error.*/
uint32_t in_done: 1; /*The enable bit for completing usage of a inlink descriptor.*/
uint32_t in_err_eof: 1; /*The enable bit for receiving error.*/
uint32_t in_suc_eof: 1; /*The enable bit for completing receiving all the packets from host.*/
uint32_t out_done: 1; /*The enable bit for completing usage of a outlink descriptor .*/
uint32_t out_eof: 1; /*The enable bit for sending a packet to host done.*/
uint32_t out_total_eof: 1; /*The enable bit for sending all the packets to host done.*/
uint32_t reserved9: 23; /*reserved*/
};
uint32_t val;
}dma_int_ena;
union {
struct {
uint32_t inlink_dscr_empty: 1; /*The raw bit for lack of enough inlink descriptors.*/
uint32_t outlink_dscr_error: 1; /*The raw bit for outlink descriptor error.*/
uint32_t inlink_dscr_error: 1; /*The raw bit for inlink descriptor error.*/
uint32_t in_done: 1; /*The raw bit for completing usage of a inlink descriptor.*/
uint32_t in_err_eof: 1; /*The raw bit for receiving error.*/
uint32_t in_suc_eof: 1; /*The raw bit for completing receiving all the packets from host.*/
uint32_t out_done: 1; /*The raw bit for completing usage of a outlink descriptor.*/
uint32_t out_eof: 1; /*The raw bit for sending a packet to host done.*/
uint32_t out_total_eof: 1; /*The raw bit for sending all the packets to host done.*/
uint32_t reserved9: 23; /*reserved*/
};
uint32_t val;
}dma_int_raw;
union {
struct {
uint32_t inlink_dscr_empty: 1; /*The status bit for lack of enough inlink descriptors.*/
uint32_t outlink_dscr_error: 1; /*The status bit for outlink descriptor error.*/
uint32_t inlink_dscr_error: 1; /*The status bit for inlink descriptor error.*/
uint32_t in_done: 1; /*The status bit for completing usage of a inlink descriptor.*/
uint32_t in_err_eof: 1; /*The status bit for receiving error.*/
uint32_t in_suc_eof: 1; /*The status bit for completing receiving all the packets from host.*/
uint32_t out_done: 1; /*The status bit for completing usage of a outlink descriptor.*/
uint32_t out_eof: 1; /*The status bit for sending a packet to host done.*/
uint32_t out_total_eof: 1; /*The status bit for sending all the packets to host done.*/
uint32_t reserved9: 23; /*reserved*/
};
uint32_t val;
}dma_int_st;
union {
struct {
uint32_t inlink_dscr_empty: 1; /*The clear bit for lack of enough inlink descriptors.*/
uint32_t outlink_dscr_error: 1; /*The clear bit for outlink descriptor error.*/
uint32_t inlink_dscr_error: 1; /*The clear bit for inlink descriptor error.*/
uint32_t in_done: 1; /*The clear bit for completing usage of a inlink descriptor.*/
uint32_t in_err_eof: 1; /*The clear bit for receiving error.*/
uint32_t in_suc_eof: 1; /*The clear bit for completing receiving all the packets from host.*/
uint32_t out_done: 1; /*The clear bit for completing usage of a outlink descriptor.*/
uint32_t out_eof: 1; /*The clear bit for sending a packet to host done.*/
uint32_t out_total_eof: 1; /*The clear bit for sending all the packets to host done.*/
uint32_t reserved9: 23; /*reserved*/
};
uint32_t val;
}dma_int_clr;
uint32_t dma_in_err_eof_des_addr; /*The inlink descriptor address when spi dma produce receiving error.*/
uint32_t dma_in_suc_eof_des_addr; /*The last inlink descriptor address when spi dma produce from_suc_eof.*/
uint32_t dma_inlink_dscr; /*The content of current in descriptor pointer.*/
uint32_t dma_inlink_dscr_bf0; /*The content of next in descriptor pointer.*/
uint32_t dma_inlink_dscr_bf1; /*The content of current in descriptor data buffer pointer.*/
uint32_t dma_out_eof_bfr_des_addr; /*The address of buffer relative to the outlink descriptor that produce eof.*/
uint32_t dma_out_eof_des_addr; /*The last outlink descriptor address when spi dma produce to_eof.*/
uint32_t dma_outlink_dscr; /*The content of current out descriptor pointer.*/
uint32_t dma_outlink_dscr_bf0; /*The content of next out descriptor pointer.*/
uint32_t dma_outlink_dscr_bf1; /*The content of current out descriptor data buffer pointer.*/
uint32_t dma_rx_status; /*spi dma read data from memory status.*/
uint32_t dma_tx_status; /*spi dma write data to memory status.*/
uint32_t reserved_150;
uint32_t reserved_154;
uint32_t reserved_158;
uint32_t reserved_15c;
uint32_t reserved_160;
uint32_t reserved_164;
uint32_t reserved_168;
uint32_t reserved_16c;
uint32_t reserved_170;
uint32_t reserved_174;
uint32_t reserved_178;
uint32_t reserved_17c;
uint32_t reserved_180;
uint32_t reserved_184;
uint32_t reserved_188;
uint32_t reserved_18c;
uint32_t reserved_190;
uint32_t reserved_194;
uint32_t reserved_198;
uint32_t reserved_19c;
uint32_t reserved_1a0;
uint32_t reserved_1a4;
uint32_t reserved_1a8;
uint32_t reserved_1ac;
uint32_t reserved_1b0;
uint32_t reserved_1b4;
uint32_t reserved_1b8;
uint32_t reserved_1bc;
uint32_t reserved_1c0;
uint32_t reserved_1c4;
uint32_t reserved_1c8;
uint32_t reserved_1cc;
uint32_t reserved_1d0;
uint32_t reserved_1d4;
uint32_t reserved_1d8;
uint32_t reserved_1dc;
uint32_t reserved_1e0;
uint32_t reserved_1e4;
uint32_t reserved_1e8;
uint32_t reserved_1ec;
uint32_t reserved_1f0;
uint32_t reserved_1f4;
uint32_t reserved_1f8;
uint32_t reserved_1fc;
uint32_t reserved_200;
uint32_t reserved_204;
uint32_t reserved_208;
uint32_t reserved_20c;
uint32_t reserved_210;
uint32_t reserved_214;
uint32_t reserved_218;
uint32_t reserved_21c;
uint32_t reserved_220;
uint32_t reserved_224;
uint32_t reserved_228;
uint32_t reserved_22c;
uint32_t reserved_230;
uint32_t reserved_234;
uint32_t reserved_238;
uint32_t reserved_23c;
uint32_t reserved_240;
uint32_t reserved_244;
uint32_t reserved_248;
uint32_t reserved_24c;
uint32_t reserved_250;
uint32_t reserved_254;
uint32_t reserved_258;
uint32_t reserved_25c;
uint32_t reserved_260;
uint32_t reserved_264;
uint32_t reserved_268;
uint32_t reserved_26c;
uint32_t reserved_270;
uint32_t reserved_274;
uint32_t reserved_278;
uint32_t reserved_27c;
uint32_t reserved_280;
uint32_t reserved_284;
uint32_t reserved_288;
uint32_t reserved_28c;
uint32_t reserved_290;
uint32_t reserved_294;
uint32_t reserved_298;
uint32_t reserved_29c;
uint32_t reserved_2a0;
uint32_t reserved_2a4;
uint32_t reserved_2a8;
uint32_t reserved_2ac;
uint32_t reserved_2b0;
uint32_t reserved_2b4;
uint32_t reserved_2b8;
uint32_t reserved_2bc;
uint32_t reserved_2c0;
uint32_t reserved_2c4;
uint32_t reserved_2c8;
uint32_t reserved_2cc;
uint32_t reserved_2d0;
uint32_t reserved_2d4;
uint32_t reserved_2d8;
uint32_t reserved_2dc;
uint32_t reserved_2e0;
uint32_t reserved_2e4;
uint32_t reserved_2e8;
uint32_t reserved_2ec;
uint32_t reserved_2f0;
uint32_t reserved_2f4;
uint32_t reserved_2f8;
uint32_t reserved_2fc;
uint32_t reserved_300;
uint32_t reserved_304;
uint32_t reserved_308;
uint32_t reserved_30c;
uint32_t reserved_310;
uint32_t reserved_314;
uint32_t reserved_318;
uint32_t reserved_31c;
uint32_t reserved_320;
uint32_t reserved_324;
uint32_t reserved_328;
uint32_t reserved_32c;
uint32_t reserved_330;
uint32_t reserved_334;
uint32_t reserved_338;
uint32_t reserved_33c;
uint32_t reserved_340;
uint32_t reserved_344;
uint32_t reserved_348;
uint32_t reserved_34c;
uint32_t reserved_350;
uint32_t reserved_354;
uint32_t reserved_358;
uint32_t reserved_35c;
uint32_t reserved_360;
uint32_t reserved_364;
uint32_t reserved_368;
uint32_t reserved_36c;
uint32_t reserved_370;
uint32_t reserved_374;
uint32_t reserved_378;
uint32_t reserved_37c;
uint32_t reserved_380;
uint32_t reserved_384;
uint32_t reserved_388;
uint32_t reserved_38c;
uint32_t reserved_390;
uint32_t reserved_394;
uint32_t reserved_398;
uint32_t reserved_39c;
uint32_t reserved_3a0;
uint32_t reserved_3a4;
uint32_t reserved_3a8;
uint32_t reserved_3ac;
uint32_t reserved_3b0;
uint32_t reserved_3b4;
uint32_t reserved_3b8;
uint32_t reserved_3bc;
uint32_t reserved_3c0;
uint32_t reserved_3c4;
uint32_t reserved_3c8;
uint32_t reserved_3cc;
uint32_t reserved_3d0;
uint32_t reserved_3d4;
uint32_t reserved_3d8;
uint32_t reserved_3dc;
uint32_t reserved_3e0;
uint32_t reserved_3e4;
uint32_t reserved_3e8;
uint32_t reserved_3ec;
uint32_t reserved_3f0;
uint32_t reserved_3f4;
uint32_t reserved_3f8;
union {
struct {
uint32_t date: 28; /*SPI register version.*/
uint32_t reserved28: 4; /*reserved*/
};
uint32_t val;
}date;
} spi_dev_t;
extern spi_dev_t SPI0; /* SPI0 IS FOR INTERNAL USE*/
extern spi_dev_t SPI1;
extern spi_dev_t SPI2;
extern spi_dev_t SPI3;
#endif /* _SOC_SPI_STRUCT_H_ */

View file

@ -0,0 +1,195 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_TIMG_STRUCT_H_
#define _SOC_TIMG_STRUCT_H_
typedef volatile struct {
struct{
union {
struct {
uint32_t reserved0: 10;
uint32_t alarm_en: 1; /*When set alarm is enabled*/
uint32_t level_int_en: 1; /*When set level type interrupt will be generated during alarm*/
uint32_t edge_int_en: 1; /*When set edge type interrupt will be generated during alarm*/
uint32_t divider: 16; /*Timer clock (T0/1_clk) pre-scale value.*/
uint32_t autoreload: 1; /*When set timer 0/1 auto-reload at alarming is enabled*/
uint32_t increase: 1; /*When set timer 0/1 time-base counter increment. When cleared timer 0 time-base counter decrement.*/
uint32_t enable: 1; /*When set timer 0/1 time-base counter is enabled*/
};
uint32_t val;
}config;
uint32_t cnt_low; /*Register to store timer 0/1 time-base counter current value lower 32 bits.*/
uint32_t cnt_high; /*Register to store timer 0 time-base counter current value higher 32 bits.*/
uint32_t update; /*Write any value will trigger a timer 0 time-base counter value update (timer 0 current value will be stored in registers above)*/
uint32_t alarm_low; /*Timer 0 time-base counter value lower 32 bits that will trigger the alarm*/
uint32_t alarm_high; /*Timer 0 time-base counter value higher 32 bits that will trigger the alarm*/
uint32_t load_low; /*Lower 32 bits of the value that will load into timer 0 time-base counter*/
uint32_t load_high; /*higher 32 bits of the value that will load into timer 0 time-base counter*/
uint32_t reload; /*Write any value will trigger timer 0 time-base counter reload*/
}hw_timer[2];
union {
struct {
uint32_t reserved0: 14;
uint32_t flashboot_mod_en: 1; /*When set flash boot protection is enabled*/
uint32_t sys_reset_length: 3; /*length of system reset selection. 0: 100ns 1: 200ns 2: 300ns 3: 400ns 4: 500ns 5: 800ns 6: 1.6us 7: 3.2us*/
uint32_t cpu_reset_length: 3; /*length of CPU reset selection. 0: 100ns 1: 200ns 2: 300ns 3: 400ns 4: 500ns 5: 800ns 6: 1.6us 7: 3.2us*/
uint32_t level_int_en: 1; /*When set level type interrupt generation is enabled*/
uint32_t edge_int_en: 1; /*When set edge type interrupt generation is enabled*/
uint32_t stg3: 2; /*Stage 3 configuration. 0: off 1: interrupt 2: reset CPU 3: reset system*/
uint32_t stg2: 2; /*Stage 2 configuration. 0: off 1: interrupt 2: reset CPU 3: reset system*/
uint32_t stg1: 2; /*Stage 1 configuration. 0: off 1: interrupt 2: reset CPU 3: reset system*/
uint32_t stg0: 2; /*Stage 0 configuration. 0: off 1: interrupt 2: reset CPU 3: reset system*/
uint32_t en: 1; /*When set SWDT is enabled*/
};
uint32_t val;
}wdt_config0;
union {
struct {
uint32_t reserved0: 16;
uint32_t clk_prescale:16; /*SWDT clock prescale value. Period = 12.5ns * value stored in this register*/
};
uint32_t val;
}wdt_config1;
uint32_t wdt_config2; /*Stage 0 timeout value in SWDT clock cycles*/
uint32_t wdt_config3; /*Stage 1 timeout value in SWDT clock cycles*/
uint32_t wdt_config4; /*Stage 2 timeout value in SWDT clock cycles*/
uint32_t wdt_config5; /*Stage 3 timeout value in SWDT clock cycles*/
uint32_t wdt_feed; /*Write any value will feed SWDT*/
uint32_t wdt_wprotect; /*If change its value from default then write protection is on.*/
union {
struct {
uint32_t reserved0: 12;
uint32_t start_cycling: 1;
uint32_t clk_sel: 2;
uint32_t rdy: 1;
uint32_t max: 15;
uint32_t start: 1;
};
uint32_t val;
}rtc_cali_cfg;
union {
struct {
uint32_t reserved0: 7;
uint32_t value:25;
};
uint32_t val;
}rtc_cali_cfg1;
union {
struct {
uint32_t reserved0: 7;
uint32_t rtc_only: 1;
uint32_t cpst_en: 1;
uint32_t lac_en: 1;
uint32_t alarm_en: 1;
uint32_t level_int_en: 1;
uint32_t edge_int_en: 1;
uint32_t divider: 16;
uint32_t autoreload: 1;
uint32_t increase: 1;
uint32_t en: 1;
};
uint32_t val;
}lactconfig;
union {
struct {
uint32_t reserved0: 6;
uint32_t step_len:26;
};
uint32_t val;
}lactrtc;
uint32_t lactlo; /**/
uint32_t lacthi; /**/
uint32_t lactupdate; /**/
uint32_t lactalarmlo; /**/
uint32_t lactalarmhi; /**/
uint32_t lactloadlo; /**/
uint32_t lactloadhi; /**/
uint32_t lactload; /**/
union {
struct {
uint32_t t0: 1; /*interrupt when timer0 alarm*/
uint32_t t1: 1; /*interrupt when timer1 alarm*/
uint32_t wdt: 1; /*Interrupt when an interrupt stage timeout*/
uint32_t lact: 1;
uint32_t reserved4: 28;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t t0: 1; /*interrupt when timer0 alarm*/
uint32_t t1: 1; /*interrupt when timer1 alarm*/
uint32_t wdt: 1; /*Interrupt when an interrupt stage timeout*/
uint32_t lact: 1;
uint32_t reserved4:28;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t t0: 1; /*interrupt when timer0 alarm*/
uint32_t t1: 1; /*interrupt when timer1 alarm*/
uint32_t wdt: 1; /*Interrupt when an interrupt stage timeout*/
uint32_t lact: 1;
uint32_t reserved4: 28;
};
uint32_t val;
}int_st_timers;
union {
struct {
uint32_t t0: 1; /*interrupt when timer0 alarm*/
uint32_t t1: 1; /*interrupt when timer1 alarm*/
uint32_t wdt: 1; /*Interrupt when an interrupt stage timeout*/
uint32_t lact: 1;
uint32_t reserved4: 28;
};
uint32_t val;
}int_clr_timers;
uint32_t reserved_a8;
uint32_t reserved_ac;
uint32_t reserved_b0;
uint32_t reserved_b4;
uint32_t reserved_b8;
uint32_t reserved_bc;
uint32_t reserved_c0;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
union {
struct {
uint32_t date:28; /*Version of this regfile*/
uint32_t reserved28: 4;
};
uint32_t val;
}timg_date;
union {
struct {
uint32_t reserved0: 31;
uint32_t en: 1; /*Force clock enable for this regfile*/
};
uint32_t val;
}clk;
} timg_dev_t;
extern timg_dev_t TIMERG0;
extern timg_dev_t TIMERG1;
#endif /* _SOC_TIMG_STRUCT_H_ */

View file

@ -0,0 +1,365 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_UART_STRUCT_H_
#define _SOC_UART_STRUCT_H_
typedef volatile struct {
union {
struct {
uint32_t rw_byte: 8; /*This register stores one byte data read by rx fifo.*/
uint32_t reserved8: 24;
};
uint32_t val;
}fifo;
union {
struct {
uint32_t rxfifo_full: 1; /*This interrupt raw bit turns to high level when receiver receives more data than (rx_flow_thrhd_h3 rx_flow_thrhd).*/
uint32_t txfifo_empty: 1; /*This interrupt raw bit turns to high level when the amount of data in transmitter's fifo is less than ((tx_mem_cnttxfifo_cnt) .*/
uint32_t parity_err: 1; /*This interrupt raw bit turns to high level when receiver detects the parity error of data.*/
uint32_t frm_err: 1; /*This interrupt raw bit turns to high level when receiver detects data's frame error .*/
uint32_t rxfifo_ovf: 1; /*This interrupt raw bit turns to high level when receiver receives more data than the fifo can store.*/
uint32_t dsr_chg: 1; /*This interrupt raw bit turns to high level when receiver detects the edge change of dsrn signal.*/
uint32_t cts_chg: 1; /*This interrupt raw bit turns to high level when receiver detects the edge change of ctsn signal.*/
uint32_t brk_det: 1; /*This interrupt raw bit turns to high level when receiver detects the 0 after the stop bit.*/
uint32_t rxfifo_tout: 1; /*This interrupt raw bit turns to high level when receiver takes more time than rx_tout_thrhd to receive a byte.*/
uint32_t sw_xon: 1; /*This interrupt raw bit turns to high level when receiver receives xoff char with uart_sw_flow_con_en is set to 1.*/
uint32_t sw_xoff: 1; /*This interrupt raw bit turns to high level when receiver receives xon char with uart_sw_flow_con_en is set to 1.*/
uint32_t glitch_det: 1; /*This interrupt raw bit turns to high level when receiver detects the start bit.*/
uint32_t tx_brk_done: 1; /*This interrupt raw bit turns to high level when transmitter completes sending 0 after all the data in transmitter's fifo are send.*/
uint32_t tx_brk_idle_done: 1; /*This interrupt raw bit turns to high level when transmitter has kept the shortest duration after the last data has been send.*/
uint32_t tx_done: 1; /*This interrupt raw bit turns to high level when transmitter has send all the data in fifo.*/
uint32_t rs485_parity_err: 1; /*This interrupt raw bit turns to high level when rs485 detects the parity error.*/
uint32_t rs485_frm_err: 1; /*This interrupt raw bit turns to high level when rs485 detects the data frame error.*/
uint32_t rs485_clash: 1; /*This interrupt raw bit turns to high level when rs485 detects the clash between transmitter and receiver.*/
uint32_t at_cmd_char_det: 1; /*This interrupt raw bit turns to high level when receiver detects the configured at_cmd chars.*/
uint32_t reserved19: 13;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t rxfifo_full: 1; /*This is the status bit for rxfifo_full_int_raw when rxfifo_full_int_ena is set to 1.*/
uint32_t txfifo_empty: 1; /*This is the status bit for txfifo_empty_int_raw when txfifo_empty_int_ena is set to 1.*/
uint32_t parity_err: 1; /*This is the status bit for parity_err_int_raw when parity_err_int_ena is set to 1.*/
uint32_t frm_err: 1; /*This is the status bit for frm_err_int_raw when fm_err_int_ena is set to 1.*/
uint32_t rxfifo_ovf: 1; /*This is the status bit for rxfifo_ovf_int_raw when rxfifo_ovf_int_ena is set to 1.*/
uint32_t dsr_chg: 1; /*This is the status bit for dsr_chg_int_raw when dsr_chg_int_ena is set to 1.*/
uint32_t cts_chg: 1; /*This is the status bit for cts_chg_int_raw when cts_chg_int_ena is set to 1.*/
uint32_t brk_det: 1; /*This is the status bit for brk_det_int_raw when brk_det_int_ena is set to 1.*/
uint32_t rxfifo_tout: 1; /*This is the status bit for rxfifo_tout_int_raw when rxfifo_tout_int_ena is set to 1.*/
uint32_t sw_xon: 1; /*This is the status bit for sw_xon_int_raw when sw_xon_int_ena is set to 1.*/
uint32_t sw_xoff: 1; /*This is the status bit for sw_xoff_int_raw when sw_xoff_int_ena is set to 1.*/
uint32_t glitch_det: 1; /*This is the status bit for glitch_det_int_raw when glitch_det_int_ena is set to 1.*/
uint32_t tx_brk_done: 1; /*This is the status bit for tx_brk_done_int_raw when tx_brk_done_int_ena is set to 1.*/
uint32_t tx_brk_idle_done: 1; /*This is the status bit for tx_brk_idle_done_int_raw when tx_brk_idle_done_int_ena is set to 1.*/
uint32_t tx_done: 1; /*This is the status bit for tx_done_int_raw when tx_done_int_ena is set to 1.*/
uint32_t rs485_parity_err: 1; /*This is the status bit for rs485_parity_err_int_raw when rs485_parity_int_ena is set to 1.*/
uint32_t rs485_frm_err: 1; /*This is the status bit for rs485_fm_err_int_raw when rs485_fm_err_int_ena is set to 1.*/
uint32_t rs485_clash: 1; /*This is the status bit for rs485_clash_int_raw when rs485_clash_int_ena is set to 1.*/
uint32_t at_cmd_char_det: 1; /*This is the status bit for at_cmd_det_int_raw when at_cmd_char_det_int_ena is set to 1.*/
uint32_t reserved19: 13;
};
uint32_t val;
}int_st;
union {
struct {
uint32_t rxfifo_full: 1; /*This is the enable bit for rxfifo_full_int_st register.*/
uint32_t txfifo_empty: 1; /*This is the enable bit for rxfifo_full_int_st register.*/
uint32_t parity_err: 1; /*This is the enable bit for parity_err_int_st register.*/
uint32_t frm_err: 1; /*This is the enable bit for frm_err_int_st register.*/
uint32_t rxfifo_ovf: 1; /*This is the enable bit for rxfifo_ovf_int_st register.*/
uint32_t dsr_chg: 1; /*This is the enable bit for dsr_chg_int_st register.*/
uint32_t cts_chg: 1; /*This is the enable bit for cts_chg_int_st register.*/
uint32_t brk_det: 1; /*This is the enable bit for brk_det_int_st register.*/
uint32_t rxfifo_tout: 1; /*This is the enable bit for rxfifo_tout_int_st register.*/
uint32_t sw_xon: 1; /*This is the enable bit for sw_xon_int_st register.*/
uint32_t sw_xoff: 1; /*This is the enable bit for sw_xoff_int_st register.*/
uint32_t glitch_det: 1; /*This is the enable bit for glitch_det_int_st register.*/
uint32_t tx_brk_done: 1; /*This is the enable bit for tx_brk_done_int_st register.*/
uint32_t tx_brk_idle_done: 1; /*This is the enable bit for tx_brk_idle_done_int_st register.*/
uint32_t tx_done: 1; /*This is the enable bit for tx_done_int_st register.*/
uint32_t rs485_parity_err: 1; /*This is the enable bit for rs485_parity_err_int_st register.*/
uint32_t rs485_frm_err: 1; /*This is the enable bit for rs485_parity_err_int_st register.*/
uint32_t rs485_clash: 1; /*This is the enable bit for rs485_clash_int_st register.*/
uint32_t at_cmd_char_det: 1; /*This is the enable bit for at_cmd_char_det_int_st register.*/
uint32_t reserved19: 13;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t rxfifo_full: 1; /*Set this bit to clear the rxfifo_full_int_raw interrupt.*/
uint32_t txfifo_empty: 1; /*Set this bit to clear txfifo_empty_int_raw interrupt.*/
uint32_t parity_err: 1; /*Set this bit to clear parity_err_int_raw interrupt.*/
uint32_t frm_err: 1; /*Set this bit to clear frm_err_int_raw interrupt.*/
uint32_t rxfifo_ovf: 1; /*Set this bit to clear rxfifo_ovf_int_raw interrupt.*/
uint32_t dsr_chg: 1; /*Set this bit to clear the dsr_chg_int_raw interrupt.*/
uint32_t cts_chg: 1; /*Set this bit to clear the cts_chg_int_raw interrupt.*/
uint32_t brk_det: 1; /*Set this bit to clear the brk_det_int_raw interrupt.*/
uint32_t rxfifo_tout: 1; /*Set this bit to clear the rxfifo_tout_int_raw interrupt.*/
uint32_t sw_xon: 1; /*Set this bit to clear the sw_xon_int_raw interrupt.*/
uint32_t sw_xoff: 1; /*Set this bit to clear the sw_xon_int_raw interrupt.*/
uint32_t glitch_det: 1; /*Set this bit to clear the glitch_det_int_raw interrupt.*/
uint32_t tx_brk_done: 1; /*Set this bit to clear the tx_brk_done_int_raw interrupt..*/
uint32_t tx_brk_idle_done: 1; /*Set this bit to clear the tx_brk_idle_done_int_raw interrupt.*/
uint32_t tx_done: 1; /*Set this bit to clear the tx_done_int_raw interrupt.*/
uint32_t rs485_parity_err: 1; /*Set this bit to clear the rs485_parity_err_int_raw interrupt.*/
uint32_t rs485_frm_err: 1; /*Set this bit to clear the rs485_frm_err_int_raw interrupt.*/
uint32_t rs485_clash: 1; /*Set this bit to clear the rs485_clash_int_raw interrupt.*/
uint32_t at_cmd_char_det: 1; /*Set this bit to clear the at_cmd_char_det_int_raw interrupt.*/
uint32_t reserved19: 13;
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t div_int: 20; /*The register value is the integer part of the frequency divider's factor.*/
uint32_t div_frag: 4; /*The register value is the decimal part of the frequency divider's factor.*/
uint32_t reserved24: 8;
};
uint32_t val;
}clk_div;
union {
struct {
uint32_t en: 1; /*This is the enable bit for detecting baudrate.*/
uint32_t reserved1: 7;
uint32_t glitch_filt: 8; /*when input pulse width is lower then this value ignore this pulse.this register is used in auto-baud detect process.*/
uint32_t reserved16: 16;
};
uint32_t val;
}auto_baud;
union {
struct {
uint32_t rxfifo_cnt: 8; /*(rx_mem_cnt rxfifo_cnt) stores the byte number of valid data in receiver's fifo. rx_mem_cnt register stores the 3 most significant bits rxfifo_cnt stores the 8 least significant bits.*/
uint32_t st_urx_out: 4; /*This register stores the value of receiver's finite state machine. 0:RX_IDLE 1:RX_STRT 2:RX_DAT0 3:RX_DAT1 4:RX_DAT2 5:RX_DAT3 6:RX_DAT4 7:RX_DAT5 8:RX_DAT6 9:RX_DAT7 10:RX_PRTY 11:RX_STP1 12:RX_STP2 13:RX_DL1*/
uint32_t reserved12: 1;
uint32_t dsrn: 1; /*This register stores the level value of the internal uart dsr signal.*/
uint32_t ctsn: 1; /*This register stores the level value of the internal uart cts signal.*/
uint32_t rxd: 1; /*This register stores the level value of the internal uart rxd signal.*/
uint32_t txfifo_cnt: 8; /*(tx_mem_cnt txfifo_cnt) stores the byte number of valid data in transmitter's fifo.tx_mem_cnt stores the 3 most significant bits txfifo_cnt stores the 8 least significant bits.*/
uint32_t st_utx_out: 4; /*This register stores the value of transmitter's finite state machine. 0:TX_IDLE 1:TX_STRT 2:TX_DAT0 3:TX_DAT1 4:TX_DAT2 5:TX_DAT3 6:TX_DAT4 7:TX_DAT5 8:TX_DAT6 9:TX_DAT7 10:TX_PRTY 11:TX_STP1 12:TX_STP2 13:TX_DL0 14:TX_DL1*/
uint32_t reserved28: 1;
uint32_t dtrn: 1; /*The register represent the level value of the internal uart dsr signal.*/
uint32_t rtsn: 1; /*This register represent the level value of the internal uart cts signal.*/
uint32_t txd: 1; /*This register represent the level value of the internal uart rxd signal.*/
};
uint32_t val;
}status;
union {
struct {
uint32_t parity: 1; /*This register is used to configure the parity check mode. 0:even 1:odd*/
uint32_t parity_en: 1; /*Set this bit to enable uart parity check.*/
uint32_t bit_num: 2; /*This register is used to set the length of data: 0:5bits 1:6bits 2:7bits 3:8bits*/
uint32_t stop_bit_num: 2; /*This register is used to set the length of stop bit. 1:1bit 2:1.5bits 3:2bits*/
uint32_t sw_rts: 1; /*This register is used to configure the software rts signal which is used in software flow control.*/
uint32_t sw_dtr: 1; /*This register is used to configure the software dtr signal which is used in software flow control..*/
uint32_t txd_brk: 1; /*Set this bit to enable transmitter to send 0 when the process of sending data is done.*/
uint32_t irda_dplx: 1; /*Set this bit to enable irda loop-back mode.*/
uint32_t irda_tx_en: 1; /*This is the start enable bit for irda transmitter.*/
uint32_t irda_wctl: 1; /*1the irda transmitter's 11th bit is the same to the 10th bit. 0set irda transmitter's 11th bit to 0.*/
uint32_t irda_tx_inv: 1; /*Set this bit to inverse the level value of irda transmitter's level.*/
uint32_t irda_rx_inv: 1; /*Set this bit to inverse the level value of irda receiver's level.*/
uint32_t loopback: 1; /*Set this bit to enable uart loop-back test mode.*/
uint32_t tx_flow_en: 1; /*Set this bit to enable transmitter's flow control function.*/
uint32_t irda_en: 1; /*Set this bit to enable irda protocol.*/
uint32_t rxfifo_rst: 1; /*Set this bit to reset uart receiver's fifo.*/
uint32_t txfifo_rst: 1; /*Set this bit to reset uart transmitter's fifo.*/
uint32_t rxd_inv: 1; /*Set this bit to inverse the level value of uart rxd signal.*/
uint32_t cts_inv: 1; /*Set this bit to inverse the level value of uart cts signal.*/
uint32_t dsr_inv: 1; /*Set this bit to inverse the level value of uart dsr signal.*/
uint32_t txd_inv: 1; /*Set this bit to inverse the level value of uart txd signal.*/
uint32_t rts_inv: 1; /*Set this bit to inverse the level value of uart rts signal.*/
uint32_t dtr_inv: 1; /*Set this bit to inverse the level value of uart dtr signal.*/
uint32_t clk_en: 1; /*1force clock on for registerssupport clock only when write registers*/
uint32_t err_wr_mask: 1; /*1receiver stops storing data int fifo when data is wrong. 0receiver stores the data even if the received data is wrong.*/
uint32_t tick_ref_always_on: 1; /*This register is used to select the clock.1apb clockref_tick*/
uint32_t reserved28: 4;
};
uint32_t val;
}conf0;
union {
struct {
uint32_t rxfifo_full_thrhd: 7; /*When receiver receives more data than its threshold valuereceiver will produce rxfifo_full_int_raw interrupt.the threshold value is (rx_flow_thrhd_h3 rxfifo_full_thrhd).*/
uint32_t reserved7: 1;
uint32_t txfifo_empty_thrhd: 7; /*when the data amount in transmitter fifo is less than its threshold value it will produce txfifo_empty_int_raw interrupt. the threshold value is (tx_mem_empty_thrhd txfifo_empty_thrhd)*/
uint32_t reserved15: 1;
uint32_t rx_flow_thrhd: 7; /*when receiver receives more data than its threshold value receiver produce signal to tell the transmitter stop transferring data. the threshold value is (rx_flow_thrhd_h3 rx_flow_thrhd).*/
uint32_t rx_flow_en: 1; /*This is the flow enable bit for uart receiver. 1:choose software flow control with configuring sw_rts signal*/
uint32_t rx_tout_thrhd: 7; /*This register is used to configure the timeout value for uart receiver receiving a byte.*/
uint32_t rx_tout_en: 1; /*This is the enable bit for uart receiver's timeout function.*/
};
uint32_t val;
}conf1;
union {
struct {
uint32_t min_cnt: 20; /*This register stores the value of the minimum duration time for the low level pulse it is used in baudrate-detect process.*/
uint32_t reserved20: 12;
};
uint32_t val;
}lowpulse;
union {
struct {
uint32_t min_cnt: 20; /*This register stores the value of the maximum duration time for the high level pulse it is used in baudrate-detect process.*/
uint32_t reserved20: 12;
};
uint32_t val;
}highpulse;
union {
struct {
uint32_t edge_cnt: 10; /*This register stores the count of rxd edge change it is used in baudrate-detect process.*/
uint32_t reserved10: 22;
};
uint32_t val;
}rxd_cnt;
union {
struct {
uint32_t sw_flow_con_en: 1; /*Set this bit to enable software flow control. it is used with register sw_xon or sw_xoff .*/
uint32_t xonoff_del: 1; /*Set this bit to remove flow control char from the received data.*/
uint32_t force_xon: 1; /*Set this bit to clear ctsn to stop the transmitter from sending data.*/
uint32_t force_xoff: 1; /*Set this bit to set ctsn to enable the transmitter to go on sending data.*/
uint32_t send_xon: 1; /*Set this bit to send xon char it is cleared by hardware automatically.*/
uint32_t send_xoff: 1; /*Set this bit to send xoff char it is cleared by hardware automatically.*/
uint32_t reserved6: 26;
};
uint32_t val;
}flow_conf;
union {
struct {
uint32_t active_threshold:10; /*When the input rxd edge changes more than this register value the uart is active from light sleeping mode.*/
uint32_t reserved10: 22;
};
uint32_t val;
}sleep_conf;
union {
struct {
uint32_t xon_threshold: 8; /*when the data amount in receiver's fifo is more than this register value it will send a xoff char with uart_sw_flow_con_en set to 1.*/
uint32_t xoff_threshold: 8; /*When the data amount in receiver's fifo is less than this register value it will send a xon char with uart_sw_flow_con_en set to 1.*/
uint32_t xon_char: 8; /*This register stores the xon flow control char.*/
uint32_t xoff_char: 8; /*This register stores the xoff flow control char.*/
};
uint32_t val;
}swfc_conf;
union {
struct {
uint32_t rx_idle_thrhd:10; /*when receiver takes more time than this register value to receive a byte data it will produce frame end signal for uhci to stop receiving data.*/
uint32_t tx_idle_num: 10; /*This register is used to configure the duration time between transfers.*/
uint32_t tx_brk_num: 8; /*This register is used to configure the number of 0 send after the process of sending data is done. it is active when txd_brk is set to 1.*/
uint32_t reserved28: 4;
};
uint32_t val;
}idle_conf;
union {
struct {
uint32_t en: 1; /*Set this bit to choose rs485 mode.*/
uint32_t dl0_en: 1; /*Set this bit to delay the stop bit by 1 bit.*/
uint32_t dl1_en: 1; /*Set this bit to delay the stop bit by 1 bit.*/
uint32_t tx_rx_en: 1; /*Set this bit to enable loop-back transmitter's output data signal to receiver's input data signal.*/
uint32_t rx_busy_tx_en: 1; /*1: enable rs485's transmitter to send data when rs485's receiver is busy. 0:rs485's transmitter should not send data when its receiver is busy.*/
uint32_t rx_dly_num: 1; /*This register is used to delay the receiver's internal data signal.*/
uint32_t tx_dly_num: 4; /*This register is used to delay the transmitter's internal data signal.*/
uint32_t reserved10: 22;
};
uint32_t val;
}rs485_conf;
union {
struct {
uint32_t pre_idle_num:24; /*This register is used to configure the idle duration time before the first at_cmd is received by receiver when the the duration is less than this register value it will not take the next data received as at_cmd char.*/
uint32_t reserved24: 8;
};
uint32_t val;
}at_cmd_precnt;
union {
struct {
uint32_t post_idle_num:24; /*This register is used to configure the duration time between the last at_cmd and the next data when the duration is less than this register value it will not take the previous data as at_cmd char.*/
uint32_t reserved24: 8;
};
uint32_t val;
}at_cmd_postcnt;
union {
struct {
uint32_t rx_gap_tout:24; /*This register is used to configure the duration time between the at_cmd chars when the duration time is less than this register value it will not take the data as continous at_cmd chars.*/
uint32_t reserved24: 8;
};
uint32_t val;
}at_cmd_gaptout;
union {
struct {
uint32_t data: 8; /*This register is used to configure the content of at_cmd char.*/
uint32_t char_num: 8; /*This register is used to configure the number of continuous at_cmd chars received by receiver.*/
uint32_t reserved16: 16;
};
uint32_t val;
}at_cmd_char;
union {
struct {
uint32_t mem_pd: 1; /*Set this bit to power down memorywhen reg_mem_pd registers in the 3 uarts are all set to 1 memory will enter low power mode.*/
uint32_t reserved1: 1;
uint32_t reserved2: 1;
uint32_t rx_size: 4; /*This register is used to configure the amount of mem allocated to receiver's fifo. the default byte num is 128.*/
uint32_t tx_size: 4; /*This register is used to configure the amount of mem allocated to transmitter's fifo.the default byte num is 128.*/
uint32_t reserved11: 4;
uint32_t rx_flow_thrhd_h3: 3; /*refer to the rx_flow_thrhd's description.*/
uint32_t rx_tout_thrhd_h3: 3; /*refer to the rx_tout_thrhd's description.*/
uint32_t xon_threshold_h2: 2; /*refer to the uart_xon_threshold's description.*/
uint32_t xoff_threshold_h2: 2; /*refer to the uart_xoff_threshold's description.*/
uint32_t rx_mem_full_thrhd: 3; /*refer to the rxfifo_full_thrhd's description.*/
uint32_t tx_mem_empty_thrhd: 3; /*refer to txfifo_empty_thrhd 's description.*/
uint32_t reserved31: 1;
};
uint32_t val;
}mem_conf;
union {
struct {
uint32_t status:24;
uint32_t reserved24: 8;
};
uint32_t val;
}mem_tx_status;
union {
struct {
uint32_t status:24;
uint32_t reserved24: 8;
};
uint32_t val;
}mem_rx_status;
union {
struct {
uint32_t rx_cnt: 3; /*refer to the rxfifo_cnt's description.*/
uint32_t tx_cnt: 3; /*refer to the txfifo_cnt's description.*/
uint32_t reserved6: 26;
};
uint32_t val;
}mem_cnt_status;
union {
struct {
uint32_t min_cnt: 20; /*This register stores the count of rxd pos-edge edge it is used in baudrate-detect process.*/
uint32_t reserved20: 12;
};
uint32_t val;
}pospulse;
union {
struct {
uint32_t min_cnt: 20; /*This register stores the count of rxd neg-edge edge it is used in baudrate-detect process.*/
uint32_t reserved20: 12;
};
uint32_t val;
}negpulse;
uint32_t reserved_70;
uint32_t reserved_74;
uint32_t date; /**/
uint32_t id; /**/
} uart_dev_t;
extern uart_dev_t UART0;
extern uart_dev_t UART1;
extern uart_dev_t UART2;
#endif /* _SOC_UART_STRUCT_H_ */

View file

@ -0,0 +1,337 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_UHCI_STRUCT_H_
#define _SOC_UHCI_STRUCT_H_
typedef volatile struct {
union {
struct {
uint32_t in_rst: 1; /*Set this bit to reset in link operations.*/
uint32_t out_rst: 1; /*Set this bit to reset out link operations.*/
uint32_t ahbm_fifo_rst: 1; /*Set this bit to reset dma ahb fifo.*/
uint32_t ahbm_rst: 1; /*Set this bit to reset dma ahb interface.*/
uint32_t in_loop_test: 1; /*Set this bit to enable loop test for in links.*/
uint32_t out_loop_test: 1; /*Set this bit to enable loop test for out links.*/
uint32_t out_auto_wrback: 1; /*when in link's length is 0 go on to use the next in link automatically.*/
uint32_t out_no_restart_clr: 1; /*don't use*/
uint32_t out_eof_mode: 1; /*Set this bit to produce eof after DMA pops all data clear this bit to produce eof after DMA pushes all data*/
uint32_t uart0_ce: 1; /*Set this bit to use UART to transmit or receive data.*/
uint32_t uart1_ce: 1; /*Set this bit to use UART1 to transmit or receive data.*/
uint32_t uart2_ce: 1; /*Set this bit to use UART2 to transmit or receive data.*/
uint32_t outdscr_burst_en: 1; /*Set this bit to enable DMA in links to use burst mode.*/
uint32_t indscr_burst_en: 1; /*Set this bit to enable DMA out links to use burst mode.*/
uint32_t out_data_burst_en: 1; /*Set this bit to enable DMA burst MODE*/
uint32_t mem_trans_en: 1;
uint32_t seper_en: 1; /*Set this bit to use special char to separate the data frame.*/
uint32_t head_en: 1; /*Set this bit to enable to use head packet before the data frame.*/
uint32_t crc_rec_en: 1; /*Set this bit to enable receiver''s ability of crc calculation when crc_en bit in head packet is 1 then there will be crc bytes after data_frame*/
uint32_t uart_idle_eof_en: 1; /*Set this bit to enable to use idle time when the idle time after data frame is satisfied this means the end of a data frame.*/
uint32_t len_eof_en: 1; /*Set this bit to enable to use packet_len in packet head when the received data is equal to packet_len this means the end of a data frame.*/
uint32_t encode_crc_en: 1; /*Set this bit to enable crc calculation for data frame when bit6 in the head packet is 1.*/
uint32_t clk_en: 1; /*Set this bit to enable clock-gating for read or write registers.*/
uint32_t uart_rx_brk_eof_en: 1; /*Set this bit to enable to use brk char as the end of a data frame.*/
uint32_t reserved24: 8;
};
uint32_t val;
}conf0;
union {
struct {
uint32_t rx_start: 1; /*when a separator char has been send it will produce uhci_rx_start_int interrupt.*/
uint32_t tx_start: 1; /*when DMA detects a separator char it will produce uhci_tx_start_int interrupt.*/
uint32_t rx_hung: 1; /*when DMA takes a lot of time to receive a data it will produce uhci_rx_hung_int interrupt.*/
uint32_t tx_hung: 1; /*when DMA takes a lot of time to read a data from RAM it will produce uhci_tx_hung_int interrupt.*/
uint32_t in_done: 1; /*when a in link descriptor has been completed it will produce uhci_in_done_int interrupt.*/
uint32_t in_suc_eof: 1; /*when a data packet has been received it will produce uhci_in_suc_eof_int interrupt.*/
uint32_t in_err_eof: 1; /*when there are some errors about eof in in link descriptor it will produce uhci_in_err_eof_int interrupt.*/
uint32_t out_done: 1; /*when a out link descriptor is completed it will produce uhci_out_done_int interrupt.*/
uint32_t out_eof: 1; /*when the current descriptor's eof bit is 1 it will produce uhci_out_eof_int interrupt.*/
uint32_t in_dscr_err: 1; /*when there are some errors about the out link descriptor it will produce uhci_in_dscr_err_int interrupt.*/
uint32_t out_dscr_err: 1; /*when there are some errors about the in link descriptor it will produce uhci_out_dscr_err_int interrupt.*/
uint32_t in_dscr_empty: 1; /*when there are not enough in links for DMA it will produce uhci_in_dscr_err_int interrupt.*/
uint32_t outlink_eof_err: 1; /*when there are some errors about eof in outlink descriptor it will produce uhci_outlink_eof_err_int interrupt.*/
uint32_t out_total_eof: 1; /*When all data have been send it will produce uhci_out_total_eof_int interrupt.*/
uint32_t send_s_q: 1; /*When use single send registers to send a short packets it will produce this interrupt when dma has send the short packet.*/
uint32_t send_a_q: 1; /*When use always_send registers to send a series of short packets it will produce this interrupt when dma has send the short packet.*/
uint32_t dma_in_fifo_full_wm: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_raw;
union {
struct {
uint32_t rx_start: 1;
uint32_t tx_start: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t outlink_eof_err: 1;
uint32_t out_total_eof: 1;
uint32_t send_s_q: 1;
uint32_t send_a_q: 1;
uint32_t dma_in_fifo_full_wm: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_st;
union {
struct {
uint32_t rx_start: 1;
uint32_t tx_start: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t outlink_eof_err: 1;
uint32_t out_total_eof: 1;
uint32_t send_s_q: 1;
uint32_t send_a_q: 1;
uint32_t dma_in_fifo_full_wm: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_ena;
union {
struct {
uint32_t rx_start: 1;
uint32_t tx_start: 1;
uint32_t rx_hung: 1;
uint32_t tx_hung: 1;
uint32_t in_done: 1;
uint32_t in_suc_eof: 1;
uint32_t in_err_eof: 1;
uint32_t out_done: 1;
uint32_t out_eof: 1;
uint32_t in_dscr_err: 1;
uint32_t out_dscr_err: 1;
uint32_t in_dscr_empty: 1;
uint32_t outlink_eof_err: 1;
uint32_t out_total_eof: 1;
uint32_t send_s_q: 1;
uint32_t send_a_q: 1;
uint32_t dma_in_fifo_full_wm: 1;
uint32_t reserved17: 15;
};
uint32_t val;
}int_clr;
union {
struct {
uint32_t full: 1; /*1:DMA out link descriptor's fifo is full.*/
uint32_t empty: 1; /*1:DMA in link descriptor's fifo is empty.*/
uint32_t reserved2: 30;
};
uint32_t val;
}dma_out_status;
union {
struct {
uint32_t fifo_wdata: 9; /*This is the data need to be pushed into out link descriptor's fifo.*/
uint32_t reserved9: 7;
uint32_t fifo_push: 1; /*Set this bit to push data in out link descriptor's fifo.*/
uint32_t reserved17:15;
};
uint32_t val;
}dma_out_push;
union {
struct {
uint32_t full: 1;
uint32_t empty: 1;
uint32_t reserved2: 2;
uint32_t rx_err_cause: 3; /*This register stores the errors caused in out link descriptor's data packet.*/
uint32_t reserved7: 25;
};
uint32_t val;
}dma_in_status;
union {
struct {
uint32_t fifo_rdata: 12; /*This register stores the data pop from in link descriptor's fifo.*/
uint32_t reserved12: 4;
uint32_t fifo_pop: 1; /*Set this bit to pop data in in link descriptor's fifo.*/
uint32_t reserved17: 15;
};
uint32_t val;
}dma_in_pop;
union {
struct {
uint32_t addr: 20; /*This register stores the least 20 bits of the first out link descriptor's address.*/
uint32_t reserved20: 8;
uint32_t stop: 1; /*Set this bit to stop dealing with the out link descriptors.*/
uint32_t start: 1; /*Set this bit to start dealing with the out link descriptors.*/
uint32_t restart: 1; /*Set this bit to mount on new out link descriptors*/
uint32_t park: 1; /*1 the out link descriptor's fsm is in idle state. 0:the out link descriptor's fsm is working.*/
};
uint32_t val;
}dma_out_link;
union {
struct {
uint32_t addr: 20; /*This register stores the least 20 bits of the first in link descriptor's address.*/
uint32_t auto_ret: 1; /*1:when a packet is wrong in link descriptor returns to the descriptor which is lately used.*/
uint32_t reserved21: 7;
uint32_t stop: 1; /*Set this bit to stop dealing with the in link descriptors.*/
uint32_t start: 1; /*Set this bit to start dealing with the in link descriptors.*/
uint32_t restart: 1; /*Set this bit to mount on new in link descriptors*/
uint32_t park: 1; /*1:the in link descriptor's fsm is in idle state. 0:the in link descriptor's fsm is working*/
};
uint32_t val;
}dma_in_link;
union {
struct {
uint32_t check_sum_en: 1; /*Set this bit to enable decoder to check check_sum in packet header.*/
uint32_t check_seq_en: 1; /*Set this bit to enable decoder to check seq num in packet header.*/
uint32_t crc_disable: 1; /*Set this bit to disable crc calculation.*/
uint32_t save_head: 1; /*Set this bit to save packet header .*/
uint32_t tx_check_sum_re: 1; /*Set this bit to enable hardware replace check_sum in packet header automatically.*/
uint32_t tx_ack_num_re: 1; /*Set this bit to enable hardware replace ack num in packet header automatically.*/
uint32_t check_owner: 1; /*Set this bit to check the owner bit in link descriptor.*/
uint32_t wait_sw_start: 1; /*Set this bit to enable software way to add packet header.*/
uint32_t sw_start: 1; /*Set this bit to start inserting the packet header.*/
uint32_t dma_in_fifo_full_thrs:12; /*when data amount in link descriptor's fifo is more than this register value it will produce uhci_dma_in_fifo_full_wm_int interrupt.*/
uint32_t reserved21: 11;
};
uint32_t val;
}conf1;
uint32_t state0; /**/
uint32_t state1; /**/
uint32_t dma_out_eof_des_addr; /*This register stores the address of out link description when eof bit in this descriptor is 1.*/
uint32_t dma_in_suc_eof_des_addr; /*This register stores the address of in link descriptor when eof bit in this descriptor is 1.*/
uint32_t dma_in_err_eof_des_addr; /*This register stores the address of in link descriptor when there are some errors in this descriptor.*/
uint32_t dma_out_eof_bfr_des_addr; /*This register stores the address of out link descriptor when there are some errors in this descriptor.*/
union {
struct {
uint32_t test_mode: 3; /*bit2 is ahb bus test enable bit1 is used to choose write(1) or read(0) mode. bit0 is used to choose test only once(1) or continue(0)*/
uint32_t reserved3: 1;
uint32_t test_addr: 2; /*The two bits represent ahb bus address bit[20:19]*/
uint32_t reserved6: 26;
};
uint32_t val;
}ahb_test;
uint32_t dma_in_dscr; /*The content of current in link descriptor's third dword*/
uint32_t dma_in_dscr_bf0; /*The content of current in link descriptor's first dword*/
uint32_t dma_in_dscr_bf1; /*The content of current in link descriptor's second dword*/
uint32_t dma_out_dscr; /*The content of current out link descriptor's third dword*/
uint32_t dma_out_dscr_bf0; /*The content of current out link descriptor's first dword*/
uint32_t dma_out_dscr_bf1; /*The content of current out link descriptor's second dword*/
union {
struct {
uint32_t tx_c0_esc_en: 1; /*Set this bit to enable 0xc0 char decode when DMA receives data.*/
uint32_t tx_db_esc_en: 1; /*Set this bit to enable 0xdb char decode when DMA receives data.*/
uint32_t tx_11_esc_en: 1; /*Set this bit to enable flow control char 0x11 decode when DMA receives data.*/
uint32_t tx_13_esc_en: 1; /*Set this bit to enable flow control char 0x13 decode when DMA receives data.*/
uint32_t rx_c0_esc_en: 1; /*Set this bit to enable 0xc0 char replace when DMA sends data.*/
uint32_t rx_db_esc_en: 1; /*Set this bit to enable 0xdb char replace when DMA sends data.*/
uint32_t rx_11_esc_en: 1; /*Set this bit to enable flow control char 0x11 replace when DMA sends data.*/
uint32_t rx_13_esc_en: 1; /*Set this bit to enable flow control char 0x13 replace when DMA sends data.*/
uint32_t reserved8: 24;
};
uint32_t val;
}escape_conf;
union {
struct {
uint32_t txfifo_timeout: 8; /*This register stores the timeout value.when DMA takes more time than this register value to receive a data it will produce uhci_tx_hung_int interrupt.*/
uint32_t txfifo_timeout_shift: 3; /*The tick count is cleared when its value >=(17'd8000>>reg_txfifo_timeout_shift)*/
uint32_t txfifo_timeout_ena: 1; /*The enable bit for tx fifo receive data timeout*/
uint32_t rxfifo_timeout: 8; /*This register stores the timeout value.when DMA takes more time than this register value to read a data from RAM it will produce uhci_rx_hung_int interrupt.*/
uint32_t rxfifo_timeout_shift: 3; /*The tick count is cleared when its value >=(17'd8000>>reg_rxfifo_timeout_shift)*/
uint32_t rxfifo_timeout_ena: 1; /*This is the enable bit for DMA send data timeout*/
uint32_t reserved24: 8;
};
uint32_t val;
}hung_conf;
uint32_t ack_num; /**/
uint32_t rx_head; /*This register stores the packet header received by DMA*/
union {
struct {
uint32_t single_send_num: 3; /*The bits are used to choose which short packet*/
uint32_t single_send_en: 1; /*Set this bit to enable send a short packet*/
uint32_t always_send_num: 3; /*The bits are used to choose which short packet*/
uint32_t always_send_en: 1; /*Set this bit to enable continuously send the same short packet*/
uint32_t reserved8: 24;
};
uint32_t val;
}quick_sent;
struct{
uint32_t w_data[2]; /*This register stores the content of short packet's dword*/
}q_data[7];
union {
struct {
uint32_t seper_char: 8; /*This register stores the separator char separator char is used to separate the data frame.*/
uint32_t seper_esc_char0: 8; /*This register stores the first char used to replace separator char in data.*/
uint32_t seper_esc_char1: 8; /*This register stores the second char used to replace separator char in data . 0xdc 0xdb replace 0xc0 by default.*/
uint32_t reserved24: 8;
};
uint32_t val;
}esc_conf0;
union {
struct {
uint32_t seq0: 8; /*This register stores the first substitute char used to replace the separate char.*/
uint32_t seq0_char0: 8; /*This register stores the first char used to replace reg_esc_seq0 in data.*/
uint32_t seq0_char1: 8; /*This register stores the second char used to replace the reg_esc_seq0 in data*/
uint32_t reserved24: 8;
};
uint32_t val;
}esc_conf1;
union {
struct {
uint32_t seq1: 8; /*This register stores the flow control char to turn on the flow_control*/
uint32_t seq1_char0: 8; /*This register stores the first char used to replace the reg_esc_seq1 in data.*/
uint32_t seq1_char1: 8; /*This register stores the second char used to replace the reg_esc_seq1 in data.*/
uint32_t reserved24: 8;
};
uint32_t val;
}esc_conf2;
union {
struct {
uint32_t seq2: 8; /*This register stores the flow_control char to turn off the flow_control*/
uint32_t seq2_char0: 8; /*This register stores the first char used to replace the reg_esc_seq2 in data.*/
uint32_t seq2_char1: 8; /*This register stores the second char used to replace the reg_esc_seq2 in data.*/
uint32_t reserved24: 8;
};
uint32_t val;
}esc_conf3;
union {
struct {
uint32_t thrs: 13; /*when the amount of packet payload is larger than this value the process of receiving data is done.*/
uint32_t reserved13:19;
};
uint32_t val;
}pkt_thres;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
uint32_t reserved_f8;
uint32_t date; /*version information*/
} uhci_dev_t;
extern uhci_dev_t UHCI0;
extern uhci_dev_t UHCI1;
#endif /* _SOC_UHCI_STRUCT_H_ */

View file

@ -0,0 +1,20 @@
PROVIDE ( UART0 = 0x3ff40000 );
PROVIDE ( SPI1 = 0x3ff42000 );
PROVIDE ( SPI0 = 0x3ff43000 );
PROVIDE ( GPIO = 0x3ff44000 );
PROVIDE ( SIGMADELTA = 0x3ff44f00 );
PROVIDE ( UHCI1 = 0x3ff4C000 );
PROVIDE ( I2S0 = 0x3ff4F000 );
PROVIDE ( UART1 = 0x3ff50000 );
PROVIDE ( I2C0 = 0x3ff53000 );
PROVIDE ( UHCI0 = 0x3ff54000 );
PROVIDE ( RMT = 0x3ff56000 );
PROVIDE ( PCNT = 0x3ff57000 );
PROVIDE ( LEDC = 0x3ff59000 );
PROVIDE ( TIMERG0 = 0x3ff5F000 );
PROVIDE ( TIMERG1 = 0x3ff60000 );
PROVIDE ( SPI2 = 0x3ff64000 );
PROVIDE ( SPI3 = 0x3ff65000 );
PROVIDE ( I2C1 = 0x3ff67000 );
PROVIDE ( I2S1 = 0x3ff6D000 );
PROVIDE ( UART2 = 0x3ff6E000 );

View file

@ -1835,5 +1835,3 @@ PROVIDE ( _xtos_syscall_handler = 0x40000790 );
PROVIDE ( _xtos_unhandled_exception = 0x4000c024 );
PROVIDE ( _xtos_unhandled_interrupt = 0x4000c01c );
PROVIDE ( _xtos_vpri_enabled = 0x3ffe0654 );
PROVIDE ( I2S0 = 0x6000F000 );

View file

@ -158,13 +158,14 @@ LDFLAGS ?= -nostdlib \
# files, set CFLAGS += in your component's Makefile.projbuild
# CPPFLAGS used by an compile pass that uses the C preprocessor
CPPFLAGS = -DESP_PLATFORM -Og -g3 -Wpointer-arith -Werror -Wno-error=unused-function -Wno-error=unused-but-set-variable -Wno-error=unused-variable -Wall -ffunction-sections -fdata-sections -mlongcalls -nostdlib -MMD -MP
CPPFLAGS = -DESP_PLATFORM -Og -g3 -Wpointer-arith -Werror -Wno-error=unused-function -Wno-error=unused-but-set-variable \
-Wno-error=unused-variable -Wall -ffunction-sections -fdata-sections -mlongcalls -nostdlib -MMD -MP
# C flags use by C only
CFLAGS = $(CPPFLAGS) -std=gnu99 -g3 -fno-inline-functions
CFLAGS = $(CPPFLAGS) -std=gnu99 -g3 -fstrict-volatile-bitfields
# CXXFLAGS uses by C++ only
CXXFLAGS = $(CPPFLAGS) -Og -std=gnu++11 -g3 -fno-exceptions
CXXFLAGS = $(CPPFLAGS) -Og -std=gnu++11 -g3 -fno-exceptions -fstrict-volatile-bitfields
export CFLAGS CPPFLAGS CXXFLAGS