exclude rom headers in examples

1. avoid including rom headers directly in examples
2. add common API interface for CRC calculation in esp_common component
This commit is contained in:
suda-morris 2019-05-22 20:21:11 +08:00
parent 5e39718c22
commit b1497f2187
19 changed files with 1292 additions and 92 deletions

View file

@ -841,6 +841,14 @@ esp_err_t uart_set_wakeup_threshold(uart_port_t uart_num, int wakeup_threshold);
*/
esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_threshold);
/**
* @brief Wait until UART tx memory empty and the last char send ok (polling mode).
*
* @param uart_num UART number
*
*/
void uart_wait_tx_idle_polling(uart_port_t uart_num);
#ifdef __cplusplus
}
#endif

View file

@ -1601,3 +1601,12 @@ esp_err_t uart_get_wakeup_threshold(uart_port_t uart_num, int* out_wakeup_thresh
*out_wakeup_threshold = UART[uart_num]->sleep_conf.active_threshold + UART_MIN_WAKEUP_THRESH;
return ESP_OK;
}
void uart_wait_tx_idle_polling(uart_port_t uart_num)
{
uint32_t status;
do {
status = READ_PERI_REG(UART_STATUS_REG(uart_num));
/* either tx count or state is non-zero */
} while ((status & (UART_ST_UTX_OUT_M | UART_TXFIFO_CNT_M)) != 0);
}

View file

@ -0,0 +1,113 @@
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include "sdkconfig.h"
#if defined(CONFIG_IDF_TARGET_ESP32)
#include "esp32/rom/crc.h"
#endif
/******************* Polynomials Used in the CRC APIs ****************************
* CRC-8 x8+x2+x1+1 0x07
* CRC16-CCITT x16+x12+x5+1 0x1021
* CRC32 x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x1+1 0x04c11db7
********************************************************************************/
/**
* @brief CRC32 value in little endian.
*
* @param crc: Initial CRC value (result of last calculation or 0 for the first time)
* @param buf: Data buffer that used to calculate the CRC value
* @param len: Length of the data buffer
* @return CRC32 value
*/
static inline uint32_t esp_crc32_le(uint32_t crc, uint8_t const *buf, uint32_t len)
{
return crc32_le(crc, buf, len);
}
/**
* @brief CRC32 value in big endian.
*
* @param crc: Initial CRC value (result of last calculation or 0 for the first time)
* @param buf: Data buffer that used to calculate the CRC value
* @param len: Length of the data buffer
* @return CRC32 value
*/
static inline uint32_t esp_crc32_be(uint32_t crc, uint8_t const *buf, uint32_t len)
{
return crc32_be(crc, buf, len);
}
/**
* @brief CRC16 value in little endian.
*
* @param crc: Initial CRC value (result of last calculation or 0 for the first time)
* @param buf: Data buffer that used to calculate the CRC value
* @param len: Length of the data buffer
* @return CRC16 value
*/
static inline uint16_t esp_crc16_le(uint16_t crc, uint8_t const *buf, uint32_t len)
{
return crc16_le(crc, buf, len);
}
/**
* @brief CRC16 value in big endian.
*
* @param crc: Initial CRC value (result of last calculation or 0 for the first time)
* @param buf: Data buffer that used to calculate the CRC value
* @param len: Length of the data buffer
* @return CRC16 value
*/
static inline uint16_t esp_crc16_be(uint16_t crc, uint8_t const *buf, uint32_t len)
{
return crc16_be(crc, buf, len);
}
/**
* @brief CRC8 value in little endian.
*
* @param crc: Initial CRC value (result of last calculation or 0 for the first time)
* @param buf: Data buffer that used to calculate the CRC value
* @param len: Length of the data buffer
* @return CRC8 value
*/
static inline uint8_t esp_crc8_le(uint8_t crc, uint8_t const *buf, uint32_t len)
{
return crc8_le(crc, buf, len);
}
/**
* @brief CRC8 value in big endian.
*
* @param crc: Initial CRC value (result of last calculation or 0 for the first time)
* @param buf: Data buffer that used to calculate the CRC value
* @param len: Length of the data buffer
* @return CRC8 value
*/
static inline uint8_t esp_crc8_be(uint8_t crc, uint8_t const *buf, uint32_t len)
{
return crc8_be(crc, buf, len);
}
#ifdef __cplusplus
}
#endif

View file

@ -28,7 +28,7 @@
#include "mbedtls/aes.h"
#include "mbedtls/dhm.h"
#include "mbedtls/md5.h"
#include "esp32/rom/crc.h"
#include "esp_crc.h"
/*
The SEC_TYPE_xxx is for self-defined packet data type in the procedure of "BLUFI negotiate key"
@ -178,7 +178,7 @@ int blufi_aes_decrypt(uint8_t iv8, uint8_t *crypt_data, int crypt_len)
uint16_t blufi_crc_checksum(uint8_t iv8, uint8_t *data, int len)
{
/* This iv8 ignore, not used */
return crc16_be(0, data, len);
return esp_crc16_be(0, data, len);
}
esp_err_t blufi_security_init(void)

View file

@ -8,7 +8,6 @@
*/
#include "driver/sdio_slave.h"
#include "esp_log.h"
#include "esp32/rom/lldesc.h"
#include "sys/queue.h"
#include "soc/soc.h"
#include "freertos/task.h"

View file

@ -0,0 +1,4 @@
set(tjpgd_srcs "src/tjpgd.c")
idf_component_register(SRCS "${tjpgd_srcs}"
INCLUDE_DIRS "include")

View file

@ -0,0 +1,3 @@
COMPONENT_ADD_INCLUDEDIRS := include
COMPONENT_SRCDIRS := src

View file

@ -0,0 +1,88 @@
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor include file (C)ChaN, 2019
/----------------------------------------------------------------------------*/
#ifndef DEF_TJPGDEC
#define DEF_TJPGDEC
/*---------------------------------------------------------------------------*/
/* System Configurations */
#define JD_SZBUF 512 /* Size of stream input buffer */
#define JD_FORMAT 0 /* Output pixel format 0:RGB888 (3 BYTE/pix), 1:RGB565 (1 WORD/pix) */
#define JD_USE_SCALE 1 /* Use descaling feature for output */
#define JD_TBLCLIP 1 /* Use table for saturation (might be a bit faster but increases 1K bytes of code size) */
/*---------------------------------------------------------------------------*/
#ifdef __cplusplus
extern "C" {
#endif
#if defined(_WIN32) /* Main development platform */
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef short int16_t;
typedef unsigned long uint32_t;
typedef long int32_t;
#else
#include "stdint.h"
#endif
/* Error code */
typedef enum {
JDR_OK = 0, /* 0: Succeeded */
JDR_INTR, /* 1: Interrupted by output function */
JDR_INP, /* 2: Device error or wrong termination of input stream */
JDR_MEM1, /* 3: Insufficient memory pool for the image */
JDR_MEM2, /* 4: Insufficient stream input buffer */
JDR_PAR, /* 5: Parameter error */
JDR_FMT1, /* 6: Data format error (may be damaged data) */
JDR_FMT2, /* 7: Right format but not supported */
JDR_FMT3 /* 8: Not supported JPEG standard */
} JRESULT;
/* Rectangular structure */
typedef struct {
uint16_t left, right, top, bottom;
} JRECT;
/* Decompressor object structure */
typedef struct JDEC JDEC;
struct JDEC {
uint16_t dctr; /* Number of bytes available in the input buffer */
uint8_t* dptr; /* Current data read ptr */
uint8_t* inbuf; /* Bit stream input buffer */
uint8_t dmsk; /* Current bit in the current read byte */
uint8_t scale; /* Output scaling ratio */
uint8_t msx, msy; /* MCU size in unit of block (width, height) */
uint8_t qtid[3]; /* Quantization table ID of each component */
int16_t dcv[3]; /* Previous DC element of each component */
uint16_t nrst; /* Restart inverval */
uint16_t width, height; /* Size of the input image (pixel) */
uint8_t* huffbits[2][2]; /* Huffman bit distribution tables [id][dcac] */
uint16_t* huffcode[2][2]; /* Huffman code word tables [id][dcac] */
uint8_t* huffdata[2][2]; /* Huffman decoded data tables [id][dcac] */
int32_t* qttbl[4]; /* Dequantizer tables [id] */
void* workbuf; /* Working buffer for IDCT and RGB output */
uint8_t* mcubuf; /* Working buffer for the MCU */
void* pool; /* Pointer to available memory pool */
uint16_t sz_pool; /* Size of momory pool (bytes available) */
uint16_t (*infunc)(JDEC*, uint8_t*, uint16_t);/* Pointer to jpeg stream input function */
void* device; /* Pointer to I/O device identifiler for the session */
};
/* TJpgDec API functions */
JRESULT jd_prepare (JDEC*, uint16_t(*)(JDEC*,uint8_t*,uint16_t), void*, uint16_t, void*);
JRESULT jd_decomp (JDEC*, uint16_t(*)(JDEC*,void*,JRECT*), uint8_t);
#ifdef __cplusplus
}
#endif
#endif /* _TJPGDEC */

View file

@ -0,0 +1,960 @@
/*----------------------------------------------------------------------------/
/ TJpgDec - Tiny JPEG Decompressor R0.01c (C)ChaN, 2019
/-----------------------------------------------------------------------------/
/ The TJpgDec is a generic JPEG decompressor module for tiny embedded systems.
/ This is a free software that opened for education, research and commercial
/ developments under license policy of following terms.
/
/ Copyright (C) 2019, ChaN, all right reserved.
/
/ * The TJpgDec module is a free software and there is NO WARRANTY.
/ * No restriction on use. You can use, modify and redistribute it for
/ personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.
/ * Redistributions of source code must retain the above copyright notice.
/
/-----------------------------------------------------------------------------/
/ Oct 04, 2011 R0.01 First release.
/ Feb 19, 2012 R0.01a Fixed decompression fails when scan starts with an escape seq.
/ Sep 03, 2012 R0.01b Added JD_TBLCLIP option.
/ Mar 16, 2019 R0.01c Supprted stdint.h.
/----------------------------------------------------------------------------*/
#include "tjpgd.h"
/*-----------------------------------------------*/
/* Zigzag-order to raster-order conversion table */
/*-----------------------------------------------*/
#define ZIG(n) Zig[n]
static const uint8_t Zig[64] = { /* Zigzag-order to raster-order conversion table */
0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63
};
/*-------------------------------------------------*/
/* Input scale factor of Arai algorithm */
/* (scaled up 16 bits for fixed point operations) */
/*-------------------------------------------------*/
#define IPSF(n) Ipsf[n]
static const uint16_t Ipsf[64] = { /* See also aa_idct.png */
(uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
(uint16_t)(1.38704*8192), (uint16_t)(1.92388*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.08979*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.38268*8192),
(uint16_t)(1.30656*8192), (uint16_t)(1.81226*8192), (uint16_t)(1.70711*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.36048*8192),
(uint16_t)(1.17588*8192), (uint16_t)(1.63099*8192), (uint16_t)(1.53636*8192), (uint16_t)(1.38268*8192), (uint16_t)(1.17588*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.32442*8192),
(uint16_t)(1.00000*8192), (uint16_t)(1.38704*8192), (uint16_t)(1.30656*8192), (uint16_t)(1.17588*8192), (uint16_t)(1.00000*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.27590*8192),
(uint16_t)(0.78570*8192), (uint16_t)(1.08979*8192), (uint16_t)(1.02656*8192), (uint16_t)(0.92388*8192), (uint16_t)(0.78570*8192), (uint16_t)(0.61732*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.21677*8192),
(uint16_t)(0.54120*8192), (uint16_t)(0.75066*8192), (uint16_t)(0.70711*8192), (uint16_t)(0.63638*8192), (uint16_t)(0.54120*8192), (uint16_t)(0.42522*8192), (uint16_t)(0.29290*8192), (uint16_t)(0.14932*8192),
(uint16_t)(0.27590*8192), (uint16_t)(0.38268*8192), (uint16_t)(0.36048*8192), (uint16_t)(0.32442*8192), (uint16_t)(0.27590*8192), (uint16_t)(0.21678*8192), (uint16_t)(0.14932*8192), (uint16_t)(0.07612*8192)
};
/*---------------------------------------------*/
/* Conversion table for fast clipping process */
/*---------------------------------------------*/
#if JD_TBLCLIP
#define BYTECLIP(v) Clip8[(uint16_t)(v) & 0x3FF]
static const uint8_t Clip8[1024] = {
/* 0..255 */
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159,
160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223,
224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255,
/* 256..511 */
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
/* -512..-257 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* -256..-1 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
#else /* JD_TBLCLIP */
inline uint8_t BYTECLIP (
int16_t val
)
{
if (val < 0) val = 0;
if (val > 255) val = 255;
return (uint8_t)val;
}
#endif
/*-----------------------------------------------------------------------*/
/* Allocate a memory block from memory pool */
/*-----------------------------------------------------------------------*/
static void* alloc_pool ( /* Pointer to allocated memory block (NULL:no memory available) */
JDEC* jd, /* Pointer to the decompressor object */
uint16_t nd /* Number of bytes to allocate */
)
{
char *rp = 0;
nd = (nd + 3) & ~3; /* Align block size to the word boundary */
if (jd->sz_pool >= nd) {
jd->sz_pool -= nd;
rp = (char*)jd->pool; /* Get start of available memory pool */
jd->pool = (void*)(rp + nd); /* Allocate requierd bytes */
}
return (void*)rp; /* Return allocated memory block (NULL:no memory to allocate) */
}
/*-----------------------------------------------------------------------*/
/* Create de-quantization and prescaling tables with a DQT segment */
/*-----------------------------------------------------------------------*/
static int create_qt_tbl ( /* 0:OK, !0:Failed */
JDEC* jd, /* Pointer to the decompressor object */
const uint8_t* data, /* Pointer to the quantizer tables */
uint16_t ndata /* Size of input data */
)
{
uint16_t i;
uint8_t d, z;
int32_t *pb;
while (ndata) { /* Process all tables in the segment */
if (ndata < 65) return JDR_FMT1; /* Err: table size is unaligned */
ndata -= 65;
d = *data++; /* Get table property */
if (d & 0xF0) return JDR_FMT1; /* Err: not 8-bit resolution */
i = d & 3; /* Get table ID */
pb = alloc_pool(jd, 64 * sizeof (int32_t));/* Allocate a memory block for the table */
if (!pb) return JDR_MEM1; /* Err: not enough memory */
jd->qttbl[i] = pb; /* Register the table */
for (i = 0; i < 64; i++) { /* Load the table */
z = ZIG(i); /* Zigzag-order to raster-order conversion */
pb[z] = (int32_t)((uint32_t)*data++ * IPSF(z)); /* Apply scale factor of Arai algorithm to the de-quantizers */
}
}
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Create huffman code tables with a DHT segment */
/*-----------------------------------------------------------------------*/
static int create_huffman_tbl ( /* 0:OK, !0:Failed */
JDEC* jd, /* Pointer to the decompressor object */
const uint8_t* data, /* Pointer to the packed huffman tables */
uint16_t ndata /* Size of input data */
)
{
uint16_t i, j, b, np, cls, num;
uint8_t d, *pb, *pd;
uint16_t hc, *ph;
while (ndata) { /* Process all tables in the segment */
if (ndata < 17) return JDR_FMT1; /* Err: wrong data size */
ndata -= 17;
d = *data++; /* Get table number and class */
if (d & 0xEE) return JDR_FMT1; /* Err: invalid class/number */
cls = d >> 4; num = d & 0x0F; /* class = dc(0)/ac(1), table number = 0/1 */
pb = alloc_pool(jd, 16); /* Allocate a memory block for the bit distribution table */
if (!pb) return JDR_MEM1; /* Err: not enough memory */
jd->huffbits[num][cls] = pb;
for (np = i = 0; i < 16; i++) { /* Load number of patterns for 1 to 16-bit code */
np += (pb[i] = *data++); /* Get sum of code words for each code */
}
ph = alloc_pool(jd, (uint16_t)(np * sizeof (uint16_t)));/* Allocate a memory block for the code word table */
if (!ph) return JDR_MEM1; /* Err: not enough memory */
jd->huffcode[num][cls] = ph;
hc = 0;
for (j = i = 0; i < 16; i++) { /* Re-build huffman code word table */
b = pb[i];
while (b--) ph[j++] = hc++;
hc <<= 1;
}
if (ndata < np) return JDR_FMT1; /* Err: wrong data size */
ndata -= np;
pd = alloc_pool(jd, np); /* Allocate a memory block for the decoded data */
if (!pd) return JDR_MEM1; /* Err: not enough memory */
jd->huffdata[num][cls] = pd;
for (i = 0; i < np; i++) { /* Load decoded data corresponds to each code ward */
d = *data++;
if (!cls && d > 11) return JDR_FMT1;
*pd++ = d;
}
}
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Extract N bits from input stream */
/*-----------------------------------------------------------------------*/
static int bitext ( /* >=0: extracted data, <0: error code */
JDEC* jd, /* Pointer to the decompressor object */
int nbit /* Number of bits to extract (1 to 11) */
)
{
uint8_t msk, s, *dp;
uint16_t dc, v, f;
msk = jd->dmsk; dc = jd->dctr; dp = jd->dptr; /* Bit mask, number of data available, read ptr */
s = *dp; v = f = 0;
do {
if (!msk) { /* Next byte? */
if (!dc) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
dc = jd->infunc(jd, dp, JD_SZBUF);
if (!dc) return 0 - (int16_t)JDR_INP; /* Err: read error or wrong stream termination */
} else {
dp++; /* Next data ptr */
}
dc--; /* Decrement number of available bytes */
if (f) { /* In flag sequence? */
f = 0; /* Exit flag sequence */
if (*dp != 0) return 0 - (int16_t)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = s = 0xFF; /* The flag is a data 0xFF */
} else {
s = *dp; /* Get next data byte */
if (s == 0xFF) { /* Is start of flag sequence? */
f = 1; continue; /* Enter flag sequence */
}
}
msk = 0x80; /* Read from MSB */
}
v <<= 1; /* Get a bit */
if (s & msk) v++;
msk >>= 1;
nbit--;
} while (nbit);
jd->dmsk = msk; jd->dctr = dc; jd->dptr = dp;
return (int)v;
}
/*-----------------------------------------------------------------------*/
/* Extract a huffman decoded data from input stream */
/*-----------------------------------------------------------------------*/
static int16_t huffext ( /* >=0: decoded data, <0: error code */
JDEC* jd, /* Pointer to the decompressor object */
const uint8_t* hbits, /* Pointer to the bit distribution table */
const uint16_t* hcode, /* Pointer to the code word table */
const uint8_t* hdata /* Pointer to the data table */
)
{
uint8_t msk, s, *dp;
uint16_t dc, v, f, bl, nd;
msk = jd->dmsk; dc = jd->dctr; dp = jd->dptr; /* Bit mask, number of data available, read ptr */
s = *dp; v = f = 0;
bl = 16; /* Max code length */
do {
if (!msk) { /* Next byte? */
if (!dc) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf; /* Top of input buffer */
dc = jd->infunc(jd, dp, JD_SZBUF);
if (!dc) return 0 - (int16_t)JDR_INP; /* Err: read error or wrong stream termination */
} else {
dp++; /* Next data ptr */
}
dc--; /* Decrement number of available bytes */
if (f) { /* In flag sequence? */
f = 0; /* Exit flag sequence */
if (*dp != 0) return 0 - (int16_t)JDR_FMT1; /* Err: unexpected flag is detected (may be collapted data) */
*dp = s = 0xFF; /* The flag is a data 0xFF */
} else {
s = *dp; /* Get next data byte */
if (s == 0xFF) { /* Is start of flag sequence? */
f = 1; continue; /* Enter flag sequence, get trailing byte */
}
}
msk = 0x80; /* Read from MSB */
}
v <<= 1; /* Get a bit */
if (s & msk) v++;
msk >>= 1;
for (nd = *hbits++; nd; nd--) { /* Search the code word in this bit length */
if (v == *hcode++) { /* Matched? */
jd->dmsk = msk; jd->dctr = dc; jd->dptr = dp;
return *hdata; /* Return the decoded data */
}
hdata++;
}
bl--;
} while (bl);
return 0 - (int16_t)JDR_FMT1; /* Err: code not found (may be collapted data) */
}
/*-----------------------------------------------------------------------*/
/* Apply Inverse-DCT in Arai Algorithm (see also aa_idct.png) */
/*-----------------------------------------------------------------------*/
static void block_idct (
int32_t* src, /* Input block data (de-quantized and pre-scaled for Arai Algorithm) */
uint8_t* dst /* Pointer to the destination to store the block as byte array */
)
{
const int32_t M13 = (int32_t)(1.41421*4096), M2 = (int32_t)(1.08239*4096), M4 = (int32_t)(2.61313*4096), M5 = (int32_t)(1.84776*4096);
int32_t v0, v1, v2, v3, v4, v5, v6, v7;
int32_t t10, t11, t12, t13;
uint16_t i;
/* Process columns */
for (i = 0; i < 8; i++) {
v0 = src[8 * 0]; /* Get even elements */
v1 = src[8 * 2];
v2 = src[8 * 4];
v3 = src[8 * 6];
t10 = v0 + v2; /* Process the even elements */
t12 = v0 - v2;
t11 = (v1 - v3) * M13 >> 12;
v3 += v1;
t11 -= v3;
v0 = t10 + v3;
v3 = t10 - v3;
v1 = t11 + t12;
v2 = t12 - t11;
v4 = src[8 * 7]; /* Get odd elements */
v5 = src[8 * 1];
v6 = src[8 * 5];
v7 = src[8 * 3];
t10 = v5 - v4; /* Process the odd elements */
t11 = v5 + v4;
t12 = v6 - v7;
v7 += v6;
v5 = (t11 - v7) * M13 >> 12;
v7 += t11;
t13 = (t10 + t12) * M5 >> 12;
v4 = t13 - (t10 * M2 >> 12);
v6 = t13 - (t12 * M4 >> 12) - v7;
v5 -= v6;
v4 -= v5;
src[8 * 0] = v0 + v7; /* Write-back transformed values */
src[8 * 7] = v0 - v7;
src[8 * 1] = v1 + v6;
src[8 * 6] = v1 - v6;
src[8 * 2] = v2 + v5;
src[8 * 5] = v2 - v5;
src[8 * 3] = v3 + v4;
src[8 * 4] = v3 - v4;
src++; /* Next column */
}
/* Process rows */
src -= 8;
for (i = 0; i < 8; i++) {
v0 = src[0] + (128L << 8); /* Get even elements (remove DC offset (-128) here) */
v1 = src[2];
v2 = src[4];
v3 = src[6];
t10 = v0 + v2; /* Process the even elements */
t12 = v0 - v2;
t11 = (v1 - v3) * M13 >> 12;
v3 += v1;
t11 -= v3;
v0 = t10 + v3;
v3 = t10 - v3;
v1 = t11 + t12;
v2 = t12 - t11;
v4 = src[7]; /* Get odd elements */
v5 = src[1];
v6 = src[5];
v7 = src[3];
t10 = v5 - v4; /* Process the odd elements */
t11 = v5 + v4;
t12 = v6 - v7;
v7 += v6;
v5 = (t11 - v7) * M13 >> 12;
v7 += t11;
t13 = (t10 + t12) * M5 >> 12;
v4 = t13 - (t10 * M2 >> 12);
v6 = t13 - (t12 * M4 >> 12) - v7;
v5 -= v6;
v4 -= v5;
dst[0] = BYTECLIP((v0 + v7) >> 8); /* Descale the transformed values 8 bits and output */
dst[7] = BYTECLIP((v0 - v7) >> 8);
dst[1] = BYTECLIP((v1 + v6) >> 8);
dst[6] = BYTECLIP((v1 - v6) >> 8);
dst[2] = BYTECLIP((v2 + v5) >> 8);
dst[5] = BYTECLIP((v2 - v5) >> 8);
dst[3] = BYTECLIP((v3 + v4) >> 8);
dst[4] = BYTECLIP((v3 - v4) >> 8);
dst += 8;
src += 8; /* Next row */
}
}
/*-----------------------------------------------------------------------*/
/* Load all blocks in the MCU into working buffer */
/*-----------------------------------------------------------------------*/
static JRESULT mcu_load (
JDEC* jd /* Pointer to the decompressor object */
)
{
int32_t *tmp = (int32_t*)jd->workbuf; /* Block working buffer for de-quantize and IDCT */
int b, d, e;
uint16_t blk, nby, nbc, i, z, id, cmp;
uint8_t *bp;
const uint8_t *hb, *hd;
const uint16_t *hc;
const int32_t *dqf;
nby = jd->msx * jd->msy; /* Number of Y blocks (1, 2 or 4) */
nbc = 2; /* Number of C blocks (2) */
bp = jd->mcubuf; /* Pointer to the first block */
for (blk = 0; blk < nby + nbc; blk++) {
cmp = (blk < nby) ? 0 : blk - nby + 1; /* Component number 0:Y, 1:Cb, 2:Cr */
id = cmp ? 1 : 0; /* Huffman table ID of the component */
/* Extract a DC element from input stream */
hb = jd->huffbits[id][0]; /* Huffman table for the DC element */
hc = jd->huffcode[id][0];
hd = jd->huffdata[id][0];
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded data (bit length) */
if (b < 0) return 0 - b; /* Err: invalid code or input */
d = jd->dcv[cmp]; /* DC value of previous block */
if (b) { /* If there is any difference from previous block */
e = bitext(jd, b); /* Extract data bits */
if (e < 0) return 0 - e; /* Err: input */
b = 1 << (b - 1); /* MSB position */
if (!(e & b)) e -= (b << 1) - 1; /* Restore sign if needed */
d += e; /* Get current value */
jd->dcv[cmp] = (int16_t)d; /* Save current DC value for next block */
}
dqf = jd->qttbl[jd->qtid[cmp]]; /* De-quantizer table ID for this component */
tmp[0] = d * dqf[0] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
/* Extract following 63 AC elements from input stream */
for (i = 1; i < 64; tmp[i++] = 0) ; /* Clear rest of elements */
hb = jd->huffbits[id][1]; /* Huffman table for the AC elements */
hc = jd->huffcode[id][1];
hd = jd->huffdata[id][1];
i = 1; /* Top of the AC elements */
do {
b = huffext(jd, hb, hc, hd); /* Extract a huffman coded value (zero runs and bit length) */
if (b == 0) break; /* EOB? */
if (b < 0) return 0 - b; /* Err: invalid code or input error */
z = (uint16_t)b >> 4; /* Number of leading zero elements */
if (z) {
i += z; /* Skip zero elements */
if (i >= 64) return JDR_FMT1; /* Too long zero run */
}
if (b &= 0x0F) { /* Bit length */
d = bitext(jd, b); /* Extract data bits */
if (d < 0) return 0 - d; /* Err: input device */
b = 1 << (b - 1); /* MSB position */
if (!(d & b)) d -= (b << 1) - 1;/* Restore negative value if needed */
z = ZIG(i); /* Zigzag-order to raster-order converted index */
tmp[z] = d * dqf[z] >> 8; /* De-quantize, apply scale factor of Arai algorithm and descale 8 bits */
}
} while (++i < 64); /* Next AC element */
if (JD_USE_SCALE && jd->scale == 3) {
*bp = (uint8_t)((*tmp / 256) + 128); /* If scale ratio is 1/8, IDCT can be ommited and only DC element is used */
} else {
block_idct(tmp, bp); /* Apply IDCT and store the block to the MCU buffer */
}
bp += 64; /* Next block */
}
return JDR_OK; /* All blocks have been loaded successfully */
}
/*-----------------------------------------------------------------------*/
/* Output an MCU: Convert YCrCb to RGB and output it in RGB form */
/*-----------------------------------------------------------------------*/
static JRESULT mcu_output (
JDEC* jd, /* Pointer to the decompressor object */
uint16_t (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */
uint16_t x, /* MCU position in the image (left of the MCU) */
uint16_t y /* MCU position in the image (top of the MCU) */
)
{
const int16_t CVACC = (sizeof (int16_t) > 2) ? 1024 : 128;
uint16_t ix, iy, mx, my, rx, ry;
int16_t yy, cb, cr;
uint8_t *py, *pc, *rgb24;
JRECT rect;
mx = jd->msx * 8; my = jd->msy * 8; /* MCU size (pixel) */
rx = (x + mx <= jd->width) ? mx : jd->width - x; /* Output rectangular size (it may be clipped at right/bottom end) */
ry = (y + my <= jd->height) ? my : jd->height - y;
if (JD_USE_SCALE) {
rx >>= jd->scale; ry >>= jd->scale;
if (!rx || !ry) return JDR_OK; /* Skip this MCU if all pixel is to be rounded off */
x >>= jd->scale; y >>= jd->scale;
}
rect.left = x; rect.right = x + rx - 1; /* Rectangular area in the frame buffer */
rect.top = y; rect.bottom = y + ry - 1;
if (!JD_USE_SCALE || jd->scale != 3) { /* Not for 1/8 scaling */
/* Build an RGB MCU from discrete comopnents */
rgb24 = (uint8_t*)jd->workbuf;
for (iy = 0; iy < my; iy++) {
pc = jd->mcubuf;
py = pc + iy * 8;
if (my == 16) { /* Double block height? */
pc += 64 * 4 + (iy >> 1) * 8;
if (iy >= 8) py += 64;
} else { /* Single block height */
pc += mx * 8 + iy * 8;
}
for (ix = 0; ix < mx; ix++) {
cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */
cr = pc[64] - 128;
if (mx == 16) { /* Double block width? */
if (ix == 8) py += 64 - 8; /* Jump to next block if double block heigt */
pc += ix & 1; /* Increase chroma pointer every two pixels */
} else { /* Single block width */
pc++; /* Increase chroma pointer every pixel */
}
yy = *py++; /* Get Y component */
/* Convert YCbCr to RGB */
*rgb24++ = /* R */ BYTECLIP(yy + ((int16_t)(1.402 * CVACC) * cr) / CVACC);
*rgb24++ = /* G */ BYTECLIP(yy - ((int16_t)(0.344 * CVACC) * cb + (int16_t)(0.714 * CVACC) * cr) / CVACC);
*rgb24++ = /* B */ BYTECLIP(yy + ((int16_t)(1.772 * CVACC) * cb) / CVACC);
}
}
/* Descale the MCU rectangular if needed */
if (JD_USE_SCALE && jd->scale) {
uint16_t x, y, r, g, b, s, w, a;
uint8_t *op;
/* Get averaged RGB value of each square correcponds to a pixel */
s = jd->scale * 2; /* Bumber of shifts for averaging */
w = 1 << jd->scale; /* Width of square */
a = (mx - w) * 3; /* Bytes to skip for next line in the square */
op = (uint8_t*)jd->workbuf;
for (iy = 0; iy < my; iy += w) {
for (ix = 0; ix < mx; ix += w) {
rgb24 = (uint8_t*)jd->workbuf + (iy * mx + ix) * 3;
r = g = b = 0;
for (y = 0; y < w; y++) { /* Accumulate RGB value in the square */
for (x = 0; x < w; x++) {
r += *rgb24++;
g += *rgb24++;
b += *rgb24++;
}
rgb24 += a;
} /* Put the averaged RGB value as a pixel */
*op++ = (uint8_t)(r >> s);
*op++ = (uint8_t)(g >> s);
*op++ = (uint8_t)(b >> s);
}
}
}
} else { /* For only 1/8 scaling (left-top pixel in each block are the DC value of the block) */
/* Build a 1/8 descaled RGB MCU from discrete comopnents */
rgb24 = (uint8_t*)jd->workbuf;
pc = jd->mcubuf + mx * my;
cb = pc[0] - 128; /* Get Cb/Cr component and restore right level */
cr = pc[64] - 128;
for (iy = 0; iy < my; iy += 8) {
py = jd->mcubuf;
if (iy == 8) py += 64 * 2;
for (ix = 0; ix < mx; ix += 8) {
yy = *py; /* Get Y component */
py += 64;
/* Convert YCbCr to RGB */
*rgb24++ = /* R */ BYTECLIP(yy + ((int16_t)(1.402 * CVACC) * cr / CVACC));
*rgb24++ = /* G */ BYTECLIP(yy - ((int16_t)(0.344 * CVACC) * cb + (int16_t)(0.714 * CVACC) * cr) / CVACC);
*rgb24++ = /* B */ BYTECLIP(yy + ((int16_t)(1.772 * CVACC) * cb / CVACC));
}
}
}
/* Squeeze up pixel table if a part of MCU is to be truncated */
mx >>= jd->scale;
if (rx < mx) {
uint8_t *s, *d;
uint16_t x, y;
s = d = (uint8_t*)jd->workbuf;
for (y = 0; y < ry; y++) {
for (x = 0; x < rx; x++) { /* Copy effective pixels */
*d++ = *s++;
*d++ = *s++;
*d++ = *s++;
}
s += (mx - rx) * 3; /* Skip truncated pixels */
}
}
/* Convert RGB888 to RGB565 if needed */
if (JD_FORMAT == 1) {
uint8_t *s = (uint8_t*)jd->workbuf;
uint16_t w, *d = (uint16_t*)s;
uint16_t n = rx * ry;
do {
w = (*s++ & 0xF8) << 8; /* RRRRR----------- */
w |= (*s++ & 0xFC) << 3; /* -----GGGGGG----- */
w |= *s++ >> 3; /* -----------BBBBB */
*d++ = w;
} while (--n);
}
/* Output the RGB rectangular */
return outfunc(jd, jd->workbuf, &rect) ? JDR_OK : JDR_INTR;
}
/*-----------------------------------------------------------------------*/
/* Process restart interval */
/*-----------------------------------------------------------------------*/
static JRESULT restart (
JDEC* jd, /* Pointer to the decompressor object */
uint16_t rstn /* Expected restert sequense number */
)
{
uint16_t i, dc;
uint16_t d;
uint8_t *dp;
/* Discard padding bits and get two bytes from the input stream */
dp = jd->dptr; dc = jd->dctr;
d = 0;
for (i = 0; i < 2; i++) {
if (!dc) { /* No input data is available, re-fill input buffer */
dp = jd->inbuf;
dc = jd->infunc(jd, dp, JD_SZBUF);
if (!dc) return JDR_INP;
} else {
dp++;
}
dc--;
d = (d << 8) | *dp; /* Get a byte */
}
jd->dptr = dp; jd->dctr = dc; jd->dmsk = 0;
/* Check the marker */
if ((d & 0xFFD8) != 0xFFD0 || (d & 7) != (rstn & 7)) {
return JDR_FMT1; /* Err: expected RSTn marker is not detected (may be collapted data) */
}
/* Reset DC offset */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0;
return JDR_OK;
}
/*-----------------------------------------------------------------------*/
/* Analyze the JPEG image and Initialize decompressor object */
/*-----------------------------------------------------------------------*/
#define LDB_WORD(ptr) (uint16_t)(((uint16_t)*((uint8_t*)(ptr))<<8)|(uint16_t)*(uint8_t*)((ptr)+1))
JRESULT jd_prepare (
JDEC* jd, /* Blank decompressor object */
uint16_t (*infunc)(JDEC*, uint8_t*, uint16_t), /* JPEG strem input function */
void* pool, /* Working buffer for the decompression session */
uint16_t sz_pool, /* Size of working buffer */
void* dev /* I/O device identifier for the session */
)
{
uint8_t *seg, b;
uint16_t marker;
uint32_t ofs;
uint16_t n, i, j, len;
JRESULT rc;
if (!pool) return JDR_PAR;
jd->pool = pool; /* Work memroy */
jd->sz_pool = sz_pool; /* Size of given work memory */
jd->infunc = infunc; /* Stream input function */
jd->device = dev; /* I/O device identifier */
jd->nrst = 0; /* No restart interval (default) */
for (i = 0; i < 2; i++) { /* Nulls pointers */
for (j = 0; j < 2; j++) {
jd->huffbits[i][j] = 0;
jd->huffcode[i][j] = 0;
jd->huffdata[i][j] = 0;
}
}
for (i = 0; i < 4; jd->qttbl[i++] = 0) ;
jd->inbuf = seg = alloc_pool(jd, JD_SZBUF); /* Allocate stream input buffer */
if (!seg) return JDR_MEM1;
if (jd->infunc(jd, seg, 2) != 2) return JDR_INP;/* Check SOI marker */
if (LDB_WORD(seg) != 0xFFD8) return JDR_FMT1; /* Err: SOI is not detected */
ofs = 2;
for (;;) {
/* Get a JPEG marker */
if (jd->infunc(jd, seg, 4) != 4) return JDR_INP;
marker = LDB_WORD(seg); /* Marker */
len = LDB_WORD(seg + 2); /* Length field */
if (len <= 2 || (marker >> 8) != 0xFF) return JDR_FMT1;
len -= 2; /* Content size excluding length field */
ofs += 4 + len; /* Number of bytes loaded */
switch (marker & 0xFF) {
case 0xC0: /* SOF0 (baseline JPEG) */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
jd->width = LDB_WORD(seg+3); /* Image width in unit of pixel */
jd->height = LDB_WORD(seg+1); /* Image height in unit of pixel */
if (seg[5] != 3) return JDR_FMT3; /* Err: Supports only Y/Cb/Cr format */
/* Check three image components */
for (i = 0; i < 3; i++) {
b = seg[7 + 3 * i]; /* Get sampling factor */
if (!i) { /* Y component */
if (b != 0x11 && b != 0x22 && b != 0x21) { /* Check sampling factor */
return JDR_FMT3; /* Err: Supports only 4:4:4, 4:2:0 or 4:2:2 */
}
jd->msx = b >> 4; jd->msy = b & 15; /* Size of MCU [blocks] */
} else { /* Cb/Cr component */
if (b != 0x11) return JDR_FMT3; /* Err: Sampling factor of Cr/Cb must be 1 */
}
b = seg[8 + 3 * i]; /* Get dequantizer table ID for this component */
if (b > 3) return JDR_FMT3; /* Err: Invalid ID */
jd->qtid[i] = b;
}
break;
case 0xDD: /* DRI */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
/* Get restart interval (MCUs) */
jd->nrst = LDB_WORD(seg);
break;
case 0xC4: /* DHT */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
/* Create huffman tables */
rc = create_huffman_tbl(jd, seg, len);
if (rc) return rc;
break;
case 0xDB: /* DQT */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
/* Create de-quantizer tables */
rc = create_qt_tbl(jd, seg, len);
if (rc) return rc;
break;
case 0xDA: /* SOS */
/* Load segment data */
if (len > JD_SZBUF) return JDR_MEM2;
if (jd->infunc(jd, seg, len) != len) return JDR_INP;
if (!jd->width || !jd->height) return JDR_FMT1; /* Err: Invalid image size */
if (seg[0] != 3) return JDR_FMT3; /* Err: Supports only three color components format */
/* Check if all tables corresponding to each components have been loaded */
for (i = 0; i < 3; i++) {
b = seg[2 + 2 * i]; /* Get huffman table ID */
if (b != 0x00 && b != 0x11) return JDR_FMT3; /* Err: Different table number for DC/AC element */
b = i ? 1 : 0;
if (!jd->huffbits[b][0] || !jd->huffbits[b][1]) { /* Check dc/ac huffman table for this component */
return JDR_FMT1; /* Err: Nnot loaded */
}
if (!jd->qttbl[jd->qtid[i]]) { /* Check dequantizer table for this component */
return JDR_FMT1; /* Err: Not loaded */
}
}
/* Allocate working buffer for MCU and RGB */
n = jd->msy * jd->msx; /* Number of Y blocks in the MCU */
if (!n) return JDR_FMT1; /* Err: SOF0 has not been loaded */
len = n * 64 * 2 + 64; /* Allocate buffer for IDCT and RGB output */
if (len < 256) len = 256; /* but at least 256 byte is required for IDCT */
jd->workbuf = alloc_pool(jd, len); /* and it may occupy a part of following MCU working buffer for RGB output */
if (!jd->workbuf) return JDR_MEM1; /* Err: not enough memory */
jd->mcubuf = (uint8_t*)alloc_pool(jd, (uint16_t)((n + 2) * 64)); /* Allocate MCU working buffer */
if (!jd->mcubuf) return JDR_MEM1; /* Err: not enough memory */
/* Pre-load the JPEG data to extract it from the bit stream */
jd->dptr = seg; jd->dctr = 0; jd->dmsk = 0; /* Prepare to read bit stream */
if (ofs %= JD_SZBUF) { /* Align read offset to JD_SZBUF */
jd->dctr = jd->infunc(jd, seg + ofs, (uint16_t)(JD_SZBUF - ofs));
jd->dptr = seg + ofs - 1;
}
return JDR_OK; /* Initialization succeeded. Ready to decompress the JPEG image. */
case 0xC1: /* SOF1 */
case 0xC2: /* SOF2 */
case 0xC3: /* SOF3 */
case 0xC5: /* SOF5 */
case 0xC6: /* SOF6 */
case 0xC7: /* SOF7 */
case 0xC9: /* SOF9 */
case 0xCA: /* SOF10 */
case 0xCB: /* SOF11 */
case 0xCD: /* SOF13 */
case 0xCE: /* SOF14 */
case 0xCF: /* SOF15 */
case 0xD9: /* EOI */
return JDR_FMT3; /* Unsuppoted JPEG standard (may be progressive JPEG) */
default: /* Unknown segment (comment, exif or etc..) */
/* Skip segment data */
if (jd->infunc(jd, 0, len) != len) { /* Null pointer specifies to skip bytes of stream */
return JDR_INP;
}
}
}
}
/*-----------------------------------------------------------------------*/
/* Start to decompress the JPEG picture */
/*-----------------------------------------------------------------------*/
JRESULT jd_decomp (
JDEC* jd, /* Initialized decompression object */
uint16_t (*outfunc)(JDEC*, void*, JRECT*), /* RGB output function */
uint8_t scale /* Output de-scaling factor (0 to 3) */
)
{
uint16_t x, y, mx, my;
uint16_t rst, rsc;
JRESULT rc;
if (scale > (JD_USE_SCALE ? 3 : 0)) return JDR_PAR;
jd->scale = scale;
mx = jd->msx * 8; my = jd->msy * 8; /* Size of the MCU (pixel) */
jd->dcv[2] = jd->dcv[1] = jd->dcv[0] = 0; /* Initialize DC values */
rst = rsc = 0;
rc = JDR_OK;
for (y = 0; y < jd->height; y += my) { /* Vertical loop of MCUs */
for (x = 0; x < jd->width; x += mx) { /* Horizontal loop of MCUs */
if (jd->nrst && rst++ == jd->nrst) { /* Process restart interval if enabled */
rc = restart(jd, rsc++);
if (rc != JDR_OK) return rc;
rst = 1;
}
rc = mcu_load(jd); /* Load an MCU (decompress huffman coded stream and apply IDCT) */
if (rc != JDR_OK) return rc;
rc = mcu_output(jd, outfunc, x, y); /* Output the MCU (color space conversion, scaling and output) */
if (rc != JDR_OK) return rc;
}
}
return rc;
}

View file

@ -7,72 +7,69 @@
CONDITIONS OF ANY KIND, either express or implied.
*/
/*
The image used for the effect on the LCD in the SPI master example is stored in flash
as a jpeg file. This file contains the decode_image routine, which uses the tiny JPEG
decoder library in ROM to decode this JPEG into a format that can be sent to the display.
decoder library to decode this JPEG into a format that can be sent to the display.
Keep in mind that the decoder library cannot handle progressive files (will give
``Image decoder: jd_prepare failed (8)`` as an error) so make sure to save in the correct
format if you want to use a different image file.
*/
#include "decode_image.h"
#include "esp32/rom/tjpgd.h"
#include "tjpgd.h"
#include "esp_log.h"
#include <string.h>
//Reference the binary-included jpeg file
extern const uint8_t image_jpg_start[] asm("_binary_image_jpg_start");
extern const uint8_t image_jpg_end[] asm("_binary_image_jpg_end");
extern const uint8_t image_jpg_start[] asm("_binary_image_jpg_start");
extern const uint8_t image_jpg_end[] asm("_binary_image_jpg_end");
//Define the height and width of the jpeg file. Make sure this matches the actual jpeg
//dimensions.
#define IMAGE_W 336
#define IMAGE_H 256
const char *TAG="ImageDec";
const char *TAG = "ImageDec";
//Data that is passed from the decoder function to the infunc/outfunc functions.
typedef struct {
const unsigned char *inData; //Pointer to jpeg data
int inPos; //Current position in jpeg data
uint16_t **outData; //Array of IMAGE_H pointers to arrays of IMAGE_W 16-bit pixel values
int outW; //Width of the resulting file
int outH; //Height of the resulting file
const unsigned char *inData; //Pointer to jpeg data
uint16_t inPos; //Current position in jpeg data
uint16_t **outData; //Array of IMAGE_H pointers to arrays of IMAGE_W 16-bit pixel values
int outW; //Width of the resulting file
int outH; //Height of the resulting file
} JpegDev;
//Input function for jpeg decoder. Just returns bytes from the inData field of the JpegDev structure.
static UINT infunc(JDEC *decoder, BYTE *buf, UINT len)
static uint16_t infunc(JDEC *decoder, uint8_t *buf, uint16_t len)
{
//Read bytes from input file
JpegDev *jd=(JpegDev*)decoder->device;
if (buf!=NULL) memcpy(buf, jd->inData+jd->inPos, len);
jd->inPos+=len;
JpegDev *jd = (JpegDev *)decoder->device;
if (buf != NULL) {
memcpy(buf, jd->inData + jd->inPos, len);
}
jd->inPos += len;
return len;
}
//Output function. Re-encodes the RGB888 data from the decoder as big-endian RGB565 and
//stores it in the outData array of the JpegDev structure.
static UINT outfunc(JDEC *decoder, void *bitmap, JRECT *rect)
static uint16_t outfunc(JDEC *decoder, void *bitmap, JRECT *rect)
{
JpegDev *jd=(JpegDev*)decoder->device;
uint8_t *in=(uint8_t*)bitmap;
for (int y=rect->top; y<=rect->bottom; y++) {
for (int x=rect->left; x<=rect->right; x++) {
JpegDev *jd = (JpegDev *)decoder->device;
uint8_t *in = (uint8_t *)bitmap;
for (int y = rect->top; y <= rect->bottom; y++) {
for (int x = rect->left; x <= rect->right; x++) {
//We need to convert the 3 bytes in `in` to a rgb565 value.
uint16_t v=0;
v|=((in[0]>>3)<<11);
v|=((in[1]>>2)<<5);
v|=((in[2]>>3)<<0);
uint16_t v = 0;
v |= ((in[0] >> 3) << 11);
v |= ((in[1] >> 2) << 5);
v |= ((in[2] >> 3) << 0);
//The LCD wants the 16-bit value in big-endian, so swap bytes
v=(v>>8)|(v<<8);
jd->outData[y][x]=v;
in+=3;
v = (v >> 8) | (v << 8);
jd->outData[y][x] = v;
in += 3;
}
}
return 1;
@ -84,56 +81,55 @@ static UINT outfunc(JDEC *decoder, void *bitmap, JRECT *rect)
//Decode the embedded image into pixel lines that can be used with the rest of the logic.
esp_err_t decode_image(uint16_t ***pixels)
{
char *work=NULL;
char *work = NULL;
int r;
JDEC decoder;
JpegDev jd;
*pixels=NULL;
esp_err_t ret=ESP_OK;
*pixels = NULL;
esp_err_t ret = ESP_OK;
//Alocate pixel memory. Each line is an array of IMAGE_W 16-bit pixels; the `*pixels` array itself contains pointers to these lines.
*pixels=calloc(IMAGE_H, sizeof(uint16_t*));
if (*pixels==NULL) {
*pixels = calloc(IMAGE_H, sizeof(uint16_t *));
if (*pixels == NULL) {
ESP_LOGE(TAG, "Error allocating memory for lines");
ret=ESP_ERR_NO_MEM;
ret = ESP_ERR_NO_MEM;
goto err;
}
for (int i=0; i<IMAGE_H; i++) {
(*pixels)[i]=malloc(IMAGE_W*sizeof(uint16_t));
if ((*pixels)[i]==NULL) {
for (int i = 0; i < IMAGE_H; i++) {
(*pixels)[i] = malloc(IMAGE_W * sizeof(uint16_t));
if ((*pixels)[i] == NULL) {
ESP_LOGE(TAG, "Error allocating memory for line %d", i);
ret=ESP_ERR_NO_MEM;
ret = ESP_ERR_NO_MEM;
goto err;
}
}
//Allocate the work space for the jpeg decoder.
work=calloc(WORKSZ, 1);
if (work==NULL) {
work = calloc(WORKSZ, 1);
if (work == NULL) {
ESP_LOGE(TAG, "Cannot allocate workspace");
ret=ESP_ERR_NO_MEM;
ret = ESP_ERR_NO_MEM;
goto err;
}
//Populate fields of the JpegDev struct.
jd.inData=image_jpg_start;
jd.inPos=0;
jd.outData=*pixels;
jd.outW=IMAGE_W;
jd.outH=IMAGE_H;
jd.inData = image_jpg_start;
jd.inPos = 0;
jd.outData = *pixels;
jd.outW = IMAGE_W;
jd.outH = IMAGE_H;
//Prepare and decode the jpeg.
r=jd_prepare(&decoder, infunc, work, WORKSZ, (void*)&jd);
if (r!=JDR_OK) {
r = jd_prepare(&decoder, infunc, work, WORKSZ, (void *)&jd);
if (r != JDR_OK) {
ESP_LOGE(TAG, "Image decoder: jd_prepare failed (%d)", r);
ret=ESP_ERR_NOT_SUPPORTED;
ret = ESP_ERR_NOT_SUPPORTED;
goto err;
}
r=jd_decomp(&decoder, outfunc, 0);
if (r!=JDR_OK) {
r = jd_decomp(&decoder, outfunc, 0);
if (r != JDR_OK && r != JDR_FMT1) {
ESP_LOGE(TAG, "Image decoder: jd_decode failed (%d)", r);
ret=ESP_ERR_NOT_SUPPORTED;
ret = ESP_ERR_NOT_SUPPORTED;
goto err;
}
@ -142,8 +138,8 @@ esp_err_t decode_image(uint16_t ***pixels)
return ret;
err:
//Something went wrong! Exit cleanly, de-allocating everything we allocated.
if (*pixels!=NULL) {
for (int i=0; i<IMAGE_H; i++) {
if (*pixels != NULL) {
for (int i = 0; i < IMAGE_H; i++) {
free((*pixels)[i]);
}
free(*pixels);

View file

@ -27,7 +27,6 @@
#include "esp_event_loop.h"
#include "nvs_flash.h"
#include "soc/rtc_periph.h"
#include "esp32/rom/cache.h"
#include "driver/spi_slave.h"
#include "esp_log.h"
#include "esp_spi_flash.h"

View file

@ -27,7 +27,6 @@
#include "esp_event_loop.h"
#include "nvs_flash.h"
#include "soc/rtc_periph.h"
#include "esp32/rom/cache.h"
#include "driver/spi_master.h"
#include "esp_log.h"
#include "esp_spi_flash.h"

View file

@ -20,7 +20,6 @@
#include "argtable3/argtable3.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp32/rom/uart.h"
#include "cmd_system.h"
#include "sdkconfig.h"
@ -292,7 +291,7 @@ static int light_sleep(int argc, char **argv)
ESP_ERROR_CHECK( esp_sleep_enable_uart_wakeup(CONFIG_ESP_CONSOLE_UART_NUM) );
}
fflush(stdout);
uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
uart_wait_tx_idle_polling(CONFIG_ESP_CONSOLE_UART_NUM);
esp_light_sleep_start();
esp_sleep_wakeup_cause_t cause = esp_sleep_get_wakeup_cause();
const char *cause_str;

View file

@ -16,7 +16,6 @@
#include "nvs_flash.h"
#include "esp_heap_caps.h"
#include "esp32/spiram.h"
#include "esp32/rom/cache.h"
#include "sdkconfig.h"
#include "esp32/himem.h"

View file

@ -16,7 +16,7 @@
#include "freertos/task.h"
#include "esp_sleep.h"
#include "esp_log.h"
#include "esp32/rom/uart.h"
#include "driver/uart.h"
#include "driver/rtc_io.h"
/* Most development boards have "boot" button attached to GPIO0.
@ -57,7 +57,7 @@ void app_main(void)
/* To make sure the complete line is printed before entering sleep mode,
* need to wait until UART TX FIFO is empty:
*/
uart_tx_wait_idle(CONFIG_ESP_CONSOLE_UART_NUM);
uart_wait_tx_idle_polling(CONFIG_ESP_CONSOLE_UART_NUM);
/* Get timestamp before entering sleep */
int64_t t_before_us = esp_timer_get_time();

View file

@ -26,8 +26,7 @@
#include "esp_log.h"
#include "esp_system.h"
#include "esp_now.h"
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/crc.h"
#include "esp_crc.h"
#include "espnow_example.h"
static const char *TAG = "espnow_example";
@ -123,7 +122,7 @@ int example_espnow_data_parse(uint8_t *data, uint16_t data_len, uint8_t *state,
*magic = buf->magic;
crc = buf->crc;
buf->crc = 0;
crc_cal = crc16_le(UINT16_MAX, (uint8_t const *)buf, data_len);
crc_cal = esp_crc16_le(UINT16_MAX, (uint8_t const *)buf, data_len);
if (crc_cal == crc) {
return buf->type;
@ -146,7 +145,7 @@ void example_espnow_data_prepare(example_espnow_send_param_t *send_param)
buf->magic = send_param->magic;
/* Fill all remaining bytes after the data with random values */
esp_fill_random(buf->payload, send_param->len - sizeof(example_espnow_data_t));
buf->crc = crc16_le(UINT16_MAX, (uint8_t const *)buf, send_param->len);
buf->crc = esp_crc16_le(UINT16_MAX, (uint8_t const *)buf, send_param->len);
}
static void example_espnow_task(void *pvParameter)

View file

@ -0,0 +1,19 @@
#!/bin/bash
# Examples shouldn't include rom headers directly
output=$(find ${IDF_PATH}/examples -name "*.[chS]" -o -name "*.cpp" -not -path "**/build/**")
files=$(grep ".*include.*rom.*h" ${output} | cut -d ":" -f 1)
found_rom=0
for file in ${files}
do
echo "${file} contains rom headers!"
found_rom=`expr $found_rom + 1`;
done
if [ $found_rom -eq 0 ]; then
echo "No rom headers found in examples"
exit 0
fi
exit 1

View file

@ -42,6 +42,11 @@ check_examples_cmake_make:
script:
- tools/ci/check_examples_cmake_make.sh
check_examples_rom_header:
extends: .check_job_template_with_filter
script:
- tools/ci/check_examples_rom_header.sh
check_python_style:
extends: .check_job_template_with_filter
artifacts:

View file

@ -35,6 +35,7 @@ tools/ci/build_examples_cmake.sh
tools/ci/check-executable.sh
tools/ci/check-line-endings.sh
tools/ci/check_examples_cmake_make.sh
tools/ci/check_examples_rom_header.sh
tools/ci/check_idf_version.sh
tools/ci/check_ut_cmake_make.sh
tools/ci/checkout_project_ref.py