Merge branch 'feature/i2s_apll' into 'master'
driver/i2s: add support apll clock See merge request !1115
This commit is contained in:
commit
8e47c355fa
4 changed files with 183 additions and 15 deletions
|
@ -12,6 +12,7 @@
|
|||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <string.h>
|
||||
#include <math.h>
|
||||
#include <esp_types.h>
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
|
@ -22,6 +23,8 @@
|
|||
#include "soc/rtc_cntl_reg.h"
|
||||
#include "soc/rtc_io_reg.h"
|
||||
#include "soc/sens_reg.h"
|
||||
#include "soc/rtc.h"
|
||||
#include "soc/efuse_reg.h"
|
||||
#include "rom/lldesc.h"
|
||||
|
||||
#include "driver/gpio.h"
|
||||
|
@ -45,7 +48,9 @@ static const char* I2S_TAG = "I2S";
|
|||
#define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num])
|
||||
#define I2S_FULL_DUPLEX_SLAVE_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_SLAVE)
|
||||
#define I2S_FULL_DUPLEX_MASTER_MODE_MASK (I2S_MODE_TX | I2S_MODE_RX | I2S_MODE_MASTER)
|
||||
|
||||
#define APLL_MIN_FREQ (350000000)
|
||||
#define APLL_MAX_FREQ (500000000)
|
||||
#define APLL_I2S_MIN_RATE (10675) //in Hz, I2S Clock rate limited by hardware
|
||||
/**
|
||||
* @brief DMA buffer object
|
||||
*
|
||||
|
@ -77,12 +82,28 @@ typedef struct {
|
|||
int bytes_per_sample; /*!< Bytes per sample*/
|
||||
int bits_per_sample; /*!< Bits per sample*/
|
||||
i2s_mode_t mode; /*!< I2S Working mode*/
|
||||
int use_apll; /*!< I2S use APLL clock */
|
||||
} i2s_obj_t;
|
||||
|
||||
static i2s_obj_t *p_i2s_obj[I2S_NUM_MAX] = {0};
|
||||
static i2s_dev_t* I2S[I2S_NUM_MAX] = {&I2S0, &I2S1};
|
||||
static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
|
||||
|
||||
/**
|
||||
* @brief Pre define APLL parameters, save compute time
|
||||
* | bits_per_sample | rate | sdm0 | sdm1 | sdm2 | odir
|
||||
*/
|
||||
static const int apll_predefine[][6] = {
|
||||
{16, 11025, 38, 80, 5, 31},
|
||||
{16, 16000, 147, 107, 5, 21},
|
||||
{16, 22050, 130, 152, 5, 15},
|
||||
{16, 32000, 129, 212, 5, 10},
|
||||
{16, 44100, 15, 8, 5, 6},
|
||||
{16, 48000, 136, 212, 5, 6},
|
||||
{16, 96000, 143, 212, 5, 2},
|
||||
{0, 0, 0, 0, 0, 0}
|
||||
};
|
||||
|
||||
static i2s_dma_t *i2s_create_dma_queue(i2s_port_t i2s_num, int dma_buf_count, int dma_buf_len);
|
||||
static esp_err_t i2s_destroy_dma_queue(i2s_port_t i2s_num, i2s_dma_t *dma);
|
||||
static esp_err_t i2s_reset_fifo(i2s_port_t i2s_num)
|
||||
|
@ -166,6 +187,125 @@ static esp_err_t i2s_isr_register(i2s_port_t i2s_num, uint8_t intr_alloc_flags,
|
|||
return esp_intr_alloc(ETS_I2S0_INTR_SOURCE + i2s_num, intr_alloc_flags, fn, arg, handle);
|
||||
}
|
||||
|
||||
|
||||
static float i2s_get_apll_real_rate(int bits_per_sample, int sdm0, int sdm1, int sdm2, int odir)
|
||||
{
|
||||
int f_xtal = (int)rtc_clk_xtal_freq_get() * 1000000;
|
||||
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
|
||||
if (is_rev0) {
|
||||
sdm0 = 0;
|
||||
sdm1 = 0;
|
||||
}
|
||||
float fout = f_xtal * (sdm2 + sdm1 / 256.0f + sdm0 / 65536.0f + 4);
|
||||
if (fout < APLL_MIN_FREQ || fout > APLL_MAX_FREQ) {
|
||||
return 9999999;
|
||||
}
|
||||
float fpll = fout / (2 * (odir+2)); //== fi2s (N=1, b=0, a=1)
|
||||
return fpll/(8*4*bits_per_sample); //fbck = fi2s/bck_div
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief APLL calculate function, was described by following:
|
||||
* APLL Output frequency is given by the formula:
|
||||
*
|
||||
* apll_freq = xtal_freq * (4 + sdm2 + sdm1/256 + sdm0/65536)/((o_div + 2) * 2)
|
||||
* apll_freq = fout / ((o_div + 2) * 2)
|
||||
*
|
||||
* The dividend in this expression should be in the range of 240 - 600 MHz.
|
||||
* In rev. 0 of ESP32, sdm0 and sdm1 are unused and always set to 0.
|
||||
* * sdm0 frequency adjustment parameter, 0..255
|
||||
* * sdm1 frequency adjustment parameter, 0..255
|
||||
* * sdm2 frequency adjustment parameter, 0..63
|
||||
* * o_div frequency divider, 0..31
|
||||
*
|
||||
* The most accurate way to find the sdm0..2 and odir parameters is to loop through them all,
|
||||
* then apply the above formula, finding the closest frequency to the desired one.
|
||||
* But 256*256*64*32 = 134.217.728 loops are too slow with ESP32
|
||||
* 1. We will choose the parameters with the highest level of change,
|
||||
* With 350MHz<fout<500MHz, we limit the sdm2 from 4 to 9,
|
||||
* Take average frequency close to the desired frequency, and select sdm2
|
||||
* 2. Next, we look for sequences of less influential and more detailed parameters,
|
||||
* also by taking the average of the largest and smallest frequencies closer to the desired frequency.
|
||||
* 3. And finally, loop through all the most detailed of the parameters, finding the best desired frequency
|
||||
*
|
||||
* @param[in] rate The sample rate
|
||||
* @param[in] bits_per_sample The bits per sample
|
||||
* @param[out] sdm0 The sdm 0
|
||||
* @param[out] sdm1 The sdm 1
|
||||
* @param[out] sdm2 The sdm 2
|
||||
* @param[out] odir The odir
|
||||
*
|
||||
* @return ESP_FAIL or ESP_OK
|
||||
*/
|
||||
static esp_err_t i2s_apll_calculate(int rate, int bits_per_sample, int *sdm0, int *sdm1, int *sdm2, int *odir)
|
||||
{
|
||||
int _odir, _sdm0, _sdm1, _sdm2, i;
|
||||
float avg;
|
||||
float min_rate, max_rate, min_diff;
|
||||
if (rate < APLL_I2S_MIN_RATE) {
|
||||
return ESP_FAIL;
|
||||
}
|
||||
//check pre-define apll parameters
|
||||
i = 0;
|
||||
while (apll_predefine[i][0]) {
|
||||
if (apll_predefine[i][0] == bits_per_sample && apll_predefine[i][0] == rate) {
|
||||
*sdm0 = apll_predefine[i][1];
|
||||
*sdm1 = apll_predefine[i][2];
|
||||
*sdm2 = apll_predefine[i][3];
|
||||
*odir = apll_predefine[i][4];
|
||||
return ESP_OK;
|
||||
}
|
||||
i++;
|
||||
}
|
||||
*sdm0 = 0;
|
||||
*sdm1 = 0;
|
||||
*sdm2 = 0;
|
||||
*odir = 0;
|
||||
min_diff = 99999;
|
||||
|
||||
for (_sdm2 = 4; _sdm2 < 9; _sdm2 ++) {
|
||||
max_rate = i2s_get_apll_real_rate(bits_per_sample, 255, 255, _sdm2, 0);
|
||||
min_rate = i2s_get_apll_real_rate(bits_per_sample, 0, 0, _sdm2, 31);
|
||||
avg = (max_rate + min_rate)/2;
|
||||
if(abs(avg - rate) < min_diff) {
|
||||
min_diff = abs(avg - rate);
|
||||
*sdm2 = _sdm2;
|
||||
}
|
||||
}
|
||||
min_diff = 99999;
|
||||
for (_odir = 0; _odir < 32; _odir ++) {
|
||||
max_rate = i2s_get_apll_real_rate(bits_per_sample, 255, 255, *sdm2, _odir);
|
||||
min_rate = i2s_get_apll_real_rate(bits_per_sample, 0, 0, *sdm2, _odir);
|
||||
avg = (max_rate + min_rate)/2;
|
||||
if(abs(avg - rate) < min_diff) {
|
||||
min_diff = abs(avg - rate);
|
||||
*odir = _odir;
|
||||
}
|
||||
}
|
||||
|
||||
min_diff = 99999;
|
||||
for (_sdm1 = 0; _sdm1 < 256; _sdm1 ++) {
|
||||
max_rate = i2s_get_apll_real_rate(bits_per_sample, 255, _sdm1, *sdm2, *odir);
|
||||
min_rate = i2s_get_apll_real_rate(bits_per_sample, 0, _sdm1, *sdm2, *odir);
|
||||
avg = (max_rate + min_rate)/2;
|
||||
if (abs(avg - rate) < min_diff) {
|
||||
min_diff = abs(avg - rate);
|
||||
*sdm1 = _sdm1;
|
||||
}
|
||||
}
|
||||
|
||||
min_diff = 99999;
|
||||
for (_sdm0 = 0; _sdm0 < 256; _sdm0 ++) {
|
||||
avg = i2s_get_apll_real_rate(bits_per_sample, _sdm0, *sdm1, *sdm2, *odir);
|
||||
if (abs(avg - rate) < min_diff) {
|
||||
min_diff = abs(avg - rate);
|
||||
*sdm0 = _sdm0;
|
||||
}
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, i2s_bits_per_sample_t bits, i2s_channel_t ch)
|
||||
{
|
||||
int factor = (256%bits)? 384 : 256; // According to hardware codec requirement(supported 256fs or 384fs)
|
||||
|
@ -310,18 +450,32 @@ esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, i2s_bits_per_sample_t b
|
|||
mclk = clkmInteger + denom * clkmDecimals;
|
||||
bck = factor/(bits * channel);
|
||||
}
|
||||
int sdm0, sdm1, sdm2, odir;
|
||||
if(p_i2s_obj[i2s_num]->use_apll && i2s_apll_calculate(rate, bits, &sdm0, &sdm1, &sdm2, &odir) == ESP_OK) {
|
||||
rtc_clk_apll_enable(1, sdm0, sdm1, sdm2, odir);
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_num = 1;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_b = 0;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_a = 1;
|
||||
I2S[i2s_num]->sample_rate_conf.tx_bck_div_num = 8;
|
||||
I2S[i2s_num]->sample_rate_conf.rx_bck_div_num = 8;
|
||||
I2S[i2s_num]->clkm_conf.clka_en = 1;
|
||||
double real_rate = i2s_get_apll_real_rate(bits, sdm0, sdm1, sdm2, odir);
|
||||
ESP_LOGI(I2S_TAG, "APLL: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
|
||||
rate, real_rate, bits, 1, 8, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 1, 0);
|
||||
} else {
|
||||
I2S[i2s_num]->clkm_conf.clka_en = 0;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_a = 63;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_b = clkmDecimals;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_num = clkmInteger;
|
||||
I2S[i2s_num]->sample_rate_conf.tx_bck_div_num = bck;
|
||||
I2S[i2s_num]->sample_rate_conf.rx_bck_div_num = bck;
|
||||
double real_rate = (double) (I2S_BASE_CLK / (bck * bits * clkmInteger) / 2);
|
||||
ESP_LOGI(I2S_TAG, "PLL_D2: Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
|
||||
rate, real_rate, bits, clkmInteger, bck, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 64, clkmDecimals);
|
||||
}
|
||||
|
||||
I2S[i2s_num]->clkm_conf.clka_en = 0;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_a = 63;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_b = clkmDecimals;
|
||||
I2S[i2s_num]->clkm_conf.clkm_div_num = clkmInteger;
|
||||
I2S[i2s_num]->sample_rate_conf.tx_bck_div_num = bck;
|
||||
I2S[i2s_num]->sample_rate_conf.rx_bck_div_num = bck;
|
||||
I2S[i2s_num]->sample_rate_conf.tx_bits_mod = bits;
|
||||
I2S[i2s_num]->sample_rate_conf.rx_bits_mod = bits;
|
||||
double real_rate = (double) (I2S_BASE_CLK / (bck * bits * clkmInteger) / 2);
|
||||
ESP_LOGI(I2S_TAG, "Req RATE: %d, real rate: %0.3f, BITS: %u, CLKM: %u, BCK: %u, MCLK: %0.3f, SCLK: %f, diva: %d, divb: %d",
|
||||
rate, real_rate, bits, clkmInteger, bck, (double)I2S_BASE_CLK / mclk, real_rate*bits*channel, 64, clkmDecimals);
|
||||
|
||||
// wait all writing on-going finish
|
||||
if ((p_i2s_obj[i2s_num]->mode & I2S_MODE_TX) && p_i2s_obj[i2s_num]->tx) {
|
||||
|
@ -535,7 +689,7 @@ esp_err_t i2s_stop(i2s_port_t i2s_num)
|
|||
esp_err_t i2s_set_dac_mode(i2s_dac_mode_t dac_mode)
|
||||
{
|
||||
I2S_CHECK((dac_mode < I2S_DAC_CHANNEL_MAX), "i2s dac mode error", ESP_ERR_INVALID_ARG);
|
||||
if(dac_mode == I2S_DAC_CHANNEL_DISABLE) {
|
||||
if (dac_mode == I2S_DAC_CHANNEL_DISABLE) {
|
||||
dac_output_disable(DAC_CHANNEL_1);
|
||||
dac_output_disable(DAC_CHANNEL_2);
|
||||
dac_i2s_disable();
|
||||
|
@ -813,6 +967,8 @@ static esp_err_t i2s_param_config(i2s_port_t i2s_num, const i2s_config_t *i2s_co
|
|||
I2S[i2s_num]->conf.rx_slave_mod = 1; //RX Slave
|
||||
}
|
||||
}
|
||||
|
||||
p_i2s_obj[i2s_num]->use_apll = i2s_config->use_apll;
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
|
@ -914,6 +1070,10 @@ esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num)
|
|||
p_i2s_obj[i2s_num]->i2s_queue = NULL;
|
||||
}
|
||||
|
||||
if(p_i2s_obj[i2s_num]->use_apll) {
|
||||
rtc_clk_apll_enable(0, 0, 0, 0, 0);
|
||||
}
|
||||
|
||||
free(p_i2s_obj[i2s_num]);
|
||||
p_i2s_obj[i2s_num] = NULL;
|
||||
|
||||
|
|
|
@ -122,6 +122,8 @@ typedef enum {
|
|||
I2S_MODE_PDM = 64,
|
||||
} i2s_mode_t;
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* @brief I2S configuration parameters for i2s_param_config function
|
||||
*
|
||||
|
@ -135,6 +137,7 @@ typedef struct {
|
|||
int intr_alloc_flags; /*!< Flags used to allocate the interrupt. One or multiple (ORred) ESP_INTR_FLAG_* values. See esp_intr_alloc.h for more info */
|
||||
int dma_buf_count; /*!< I2S DMA Buffer Count */
|
||||
int dma_buf_len; /*!< I2S DMA Buffer Length */
|
||||
int use_apll; /*!< I2S using APLL as main I2S clock, enable it to get accurate clock */
|
||||
} i2s_config_t;
|
||||
|
||||
/**
|
||||
|
|
|
@ -10,6 +10,8 @@ The I2S peripheral supports DMA meaning it can stream sample data without requir
|
|||
|
||||
I2S output can also be routed directly to the Digital/Analog Converter output channels (GPIO 25 & GPIO 26) to produce analog output directly, rather than via an external I2S codec.
|
||||
|
||||
.. note:: For high accuracy clock applications, APLL clock source can be used with `.use_apll = 1` and ESP32 will automatic caculate APLL parameter.
|
||||
|
||||
Application Example
|
||||
-------------------
|
||||
|
||||
|
@ -34,7 +36,9 @@ Short example of I2S configuration:
|
|||
.communication_format = I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB,
|
||||
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, // high interrupt priority
|
||||
.dma_buf_count = 8,
|
||||
.dma_buf_len = 64
|
||||
.dma_buf_len = 64,
|
||||
.use_apll = 0,
|
||||
.apll_param = I2S_APLL_NONE
|
||||
};
|
||||
|
||||
static const i2s_pin_config_t pin_config = {
|
||||
|
|
|
@ -86,7 +86,8 @@ void app_main()
|
|||
.channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT, //2-channels
|
||||
.communication_format = I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB,
|
||||
.dma_buf_count = 6,
|
||||
.dma_buf_len = 60, //
|
||||
.dma_buf_len = 60,
|
||||
.use_apll = 0,
|
||||
.intr_alloc_flags = ESP_INTR_FLAG_LEVEL1 //Interrupt level 1
|
||||
};
|
||||
i2s_pin_config_t pin_config = {
|
||||
|
|
Loading…
Reference in a new issue