ble_mesh: Remove the previously added redundant aes files

This commit is contained in:
lly 2020-06-08 17:48:15 +08:00 committed by bot
parent d08425fdd1
commit 763f3ace61
8 changed files with 11 additions and 632 deletions

View file

@ -362,7 +362,6 @@ if(CONFIG_BT_ENABLED)
"esp_ble_mesh/mesh_common/tinycrypt/src/hmac.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/sha256.c"
"esp_ble_mesh/mesh_common/tinycrypt/src/utils.c"
"esp_ble_mesh/mesh_common/mesh_aes_encrypt.c"
"esp_ble_mesh/mesh_common/mesh_atomic.c"
"esp_ble_mesh/mesh_common/mesh_buf.c"
"esp_ble_mesh/mesh_common/mesh_common.c"

View file

@ -1,171 +0,0 @@
/* aes.h - TinyCrypt interface to an AES-128 implementation */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/**
* @file
* @brief -- Interface to an AES-128 implementation.
*
* Overview: AES-128 is a NIST approved block cipher specified in
* FIPS 197. Block ciphers are deterministic algorithms that
* perform a transformation specified by a symmetric key in fixed-
* length data sets, also called blocks.
*
* Security: AES-128 provides approximately 128 bits of security.
*
* Usage: 1) call tc_aes128_set_encrypt/decrypt_key to set the key.
*
* 2) call tc_aes_encrypt/decrypt to process the data.
*/
#ifndef _BLE_MESH_AES_ENCRYPT_H_
#define _BLE_MESH_AES_ENCRYPT_H_
#include <stdint.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
#define Nb (4) /* number of columns (32-bit words) comprising the state */
#define Nk (4) /* number of 32-bit words comprising the key */
#define Nr (10) /* number of rounds */
#define TC_AES_BLOCK_SIZE (Nb*Nk)
#define TC_AES_KEY_SIZE (Nb*Nk)
#define TC_CRYPTO_SUCCESS 1
#define TC_CRYPTO_FAIL 0
#define TC_ZERO_BYTE 0x00
/* padding for last message block */
#define TC_CMAC_PADDING 0x80
typedef struct tc_aes_key_sched_struct {
unsigned int words[Nb * (Nr + 1)];
} *TCAesKeySched_t;
/* struct tc_cmac_struct represents the state of a CMAC computation */
typedef struct tc_cmac_struct {
/* initialization vector */
uint8_t iv[TC_AES_BLOCK_SIZE];
/* used if message length is a multiple of block_size bytes */
uint8_t K1[TC_AES_BLOCK_SIZE];
/* used if message length isn't a multiple block_size bytes */
uint8_t K2[TC_AES_BLOCK_SIZE];
/* where to put bytes that didn't fill a block */
uint8_t leftover[TC_AES_BLOCK_SIZE];
/* identifies the encryption key */
unsigned int keyid;
/* next available leftover location */
unsigned int leftover_offset;
/* AES key schedule */
TCAesKeySched_t sched;
/* calls to tc_cmac_update left before re-key */
uint64_t countdown;
} *TCCmacState_t;
/**
* @brief Set AES-128 encryption key
* Uses key k to initialize s
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: s == NULL or k == NULL
* @note This implementation skips the additional steps required for keys
* larger than 128 bits, and must not be used for AES-192 or
* AES-256 key schedule -- see FIPS 197 for details
* @param s IN/OUT -- initialized struct tc_aes_key_sched_struct
* @param k IN -- points to the AES key
*/
int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k);
/**
* @brief AES-128 Encryption procedure
* Encrypts contents of in buffer into out buffer under key;
* schedule s
* @note Assumes s was initialized by aes_set_encrypt_key;
* out and in point to 16 byte buffers
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: out == NULL or in == NULL or s == NULL
* @param out IN/OUT -- buffer to receive ciphertext block
* @param in IN -- a plaintext block to encrypt
* @param s IN -- initialized AES key schedule
*/
int tc_aes_encrypt(uint8_t *out, const uint8_t *in,
const TCAesKeySched_t s);
/**
* @brief Set the AES-128 decryption key
* Uses key k to initialize s
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: s == NULL or k == NULL
* @note This is the implementation of the straightforward inverse cipher
* using the cipher documented in FIPS-197 figure 12, not the
* equivalent inverse cipher presented in Figure 15
* @warning This routine skips the additional steps required for keys larger
* than 128, and must not be used for AES-192 or AES-256 key
* schedule -- see FIPS 197 for details
* @param s IN/OUT -- initialized struct tc_aes_key_sched_struct
* @param k IN -- points to the AES key
*/
int tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k);
/**
* @brief AES-128 Encryption procedure
* Decrypts in buffer into out buffer under key schedule s
* @return returns TC_CRYPTO_SUCCESS (1)
* returns TC_CRYPTO_FAIL (0) if: out is NULL or in is NULL or s is NULL
* @note Assumes s was initialized by aes_set_encrypt_key
* out and in point to 16 byte buffers
* @param out IN/OUT -- buffer to receive ciphertext block
* @param in IN -- a plaintext block to encrypt
* @param s IN -- initialized AES key schedule
*/
int tc_aes_decrypt(uint8_t *out, const uint8_t *in,
const TCAesKeySched_t s);
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched);
void gf_double(uint8_t *out, uint8_t *in);
int tc_cmac_init(TCCmacState_t s);
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length);
int tc_cmac_final(uint8_t *tag, TCCmacState_t s);
int tc_cmac_erase(TCCmacState_t s);
#ifdef __cplusplus
}
#endif
#endif /* _BLE_MESH_AES_ENCRYPT_H_ */

View file

@ -185,15 +185,6 @@ const char *bt_hex(const void *buf, size_t len);
void mem_rcopy(u8_t *dst, u8_t const *src, u16_t len);
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len);
void _set(void *to, uint8_t val, unsigned int len);
uint8_t _double_byte(uint8_t a);
int _compare(const uint8_t *a, const uint8_t *b, size_t size);
#ifdef __cplusplus
}
#endif

View file

@ -1,408 +0,0 @@
/* aes_encrypt.c - TinyCrypt implementation of AES encryption procedure */
/*
* Copyright (C) 2017 by Intel Corporation, All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of Intel Corporation nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "mesh_util.h"
#include "mesh_aes_encrypt.h"
/* max number of calls until change the key (2^48).*/
const static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
/*
* gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
* array with byte 0 the most significant and byte 15 the least significant.
* High bit carry reduction is based on the primitive polynomial
*
* X^128 + X^7 + X^2 + X + 1,
*
* which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
* since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
* addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
* add X^128 to both sides to get
*
* X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
*
* and the coefficients of the polynomial on the right hand side form the
* string 1000 0111 = 0x87, which is the value of gf_wrap.
*
* This gets used in the following way. Doubling in GF(2^128) is just a left
* shift by 1 bit, except when the most significant bit is 1. In the latter
* case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
* that overflows beyond 128 bits can be replaced by addition of
* X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
* in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
* into the low order byte after a left shift when the starting high order
* bit is 1.
*/
const unsigned char gf_wrap = 0x87;
static const uint8_t sbox[256] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0,
0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26,
0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2,
0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0,
0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed,
0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f,
0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5,
0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14,
0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c,
0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d,
0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f,
0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e,
0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f,
0xb0, 0x54, 0xbb, 0x16
};
static inline unsigned int rotword(unsigned int a)
{
return (((a) >> 24) | ((a) << 8));
}
#define subbyte(a, o) (sbox[((a) >> (o))&0xff] << (o))
#define subword(a) (subbyte(a, 24)|subbyte(a, 16)|subbyte(a, 8)|subbyte(a, 0))
int tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k)
{
const unsigned int rconst[11] = {
0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000,
0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000
};
unsigned int i;
unsigned int t;
if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
} else if (k == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
for (i = 0; i < Nk; ++i) {
s->words[i] = (k[Nb * i] << 24) | (k[Nb * i + 1] << 16) |
(k[Nb * i + 2] << 8) | (k[Nb * i + 3]);
}
for (; i < (Nb * (Nr + 1)); ++i) {
t = s->words[i - 1];
if ((i % Nk) == 0) {
t = subword(rotword(t)) ^ rconst[i / Nk];
}
s->words[i] = s->words[i - Nk] ^ t;
}
return TC_CRYPTO_SUCCESS;
}
static inline void add_round_key(uint8_t *s, const unsigned int *k)
{
s[0] ^= (uint8_t)(k[0] >> 24); s[1] ^= (uint8_t)(k[0] >> 16);
s[2] ^= (uint8_t)(k[0] >> 8); s[3] ^= (uint8_t)(k[0]);
s[4] ^= (uint8_t)(k[1] >> 24); s[5] ^= (uint8_t)(k[1] >> 16);
s[6] ^= (uint8_t)(k[1] >> 8); s[7] ^= (uint8_t)(k[1]);
s[8] ^= (uint8_t)(k[2] >> 24); s[9] ^= (uint8_t)(k[2] >> 16);
s[10] ^= (uint8_t)(k[2] >> 8); s[11] ^= (uint8_t)(k[2]);
s[12] ^= (uint8_t)(k[3] >> 24); s[13] ^= (uint8_t)(k[3] >> 16);
s[14] ^= (uint8_t)(k[3] >> 8); s[15] ^= (uint8_t)(k[3]);
}
static inline void sub_bytes(uint8_t *s)
{
unsigned int i;
for (i = 0; i < (Nb * Nk); ++i) {
s[i] = sbox[s[i]];
}
}
#define triple(a)(_double_byte(a)^(a))
static inline void mult_row_column(uint8_t *out, const uint8_t *in)
{
out[0] = _double_byte(in[0]) ^ triple(in[1]) ^ in[2] ^ in[3];
out[1] = in[0] ^ _double_byte(in[1]) ^ triple(in[2]) ^ in[3];
out[2] = in[0] ^ in[1] ^ _double_byte(in[2]) ^ triple(in[3]);
out[3] = triple(in[0]) ^ in[1] ^ in[2] ^ _double_byte(in[3]);
}
static inline void mix_columns(uint8_t *s)
{
uint8_t t[Nb * Nk] = {0};
mult_row_column(t, s);
mult_row_column(&t[Nb], s + Nb);
mult_row_column(&t[2 * Nb], s + (2 * Nb));
mult_row_column(&t[3 * Nb], s + (3 * Nb));
(void) _copy(s, sizeof(t), t, sizeof(t));
}
/*
* This shift_rows also implements the matrix flip required for mix_columns, but
* performs it here to reduce the number of memory operations.
*/
static inline void shift_rows(uint8_t *s)
{
uint8_t t[Nb * Nk] = {0};
t[0] = s[0]; t[1] = s[5]; t[2] = s[10]; t[3] = s[15];
t[4] = s[4]; t[5] = s[9]; t[6] = s[14]; t[7] = s[3];
t[8] = s[8]; t[9] = s[13]; t[10] = s[2]; t[11] = s[7];
t[12] = s[12]; t[13] = s[1]; t[14] = s[6]; t[15] = s[11];
(void) _copy(s, sizeof(t), t, sizeof(t));
}
int tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
{
uint8_t state[Nk * Nb] = {0};
unsigned int i;
if (out == (uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (in == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
} else if (s == (TCAesKeySched_t) 0) {
return TC_CRYPTO_FAIL;
}
(void)_copy(state, sizeof(state), in, sizeof(state));
add_round_key(state, s->words);
for (i = 0; i < (Nr - 1); ++i) {
sub_bytes(state);
shift_rows(state);
mix_columns(state);
add_round_key(state, s->words + Nb * (i + 1));
}
sub_bytes(state);
shift_rows(state);
add_round_key(state, s->words + Nb * (i + 1));
(void)_copy(out, sizeof(state), state, sizeof(state));
/* zeroing out the state buffer */
_set(state, TC_ZERO_BYTE, sizeof(state));
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
{
/* input sanity check: */
if (s == (TCCmacState_t) 0 ||
key == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
/* put s into a known state */
_set(s, 0, sizeof(*s));
s->sched = sched;
/* configure the encryption key used by the underlying block cipher */
tc_aes128_set_encrypt_key(s->sched, key);
/* compute s->K1 and s->K2 from s->iv using s->keyid */
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
tc_aes_encrypt(s->iv, s->iv, s->sched);
gf_double (s->K1, s->iv);
gf_double (s->K2, s->K1);
/* reset s->iv to 0 in case someone wants to compute now */
tc_cmac_init(s);
return TC_CRYPTO_SUCCESS;
}
/*
* assumes: out != NULL and points to a GF(2^n) value to receive the
* doubled value;
* in != NULL and points to a 16 byte GF(2^n) value
* to double;
* the in and out buffers do not overlap.
* effects: doubles the GF(2^n) value pointed to by "in" and places
* the result in the GF(2^n) value pointed to by "out."
*/
void gf_double(uint8_t *out, uint8_t *in)
{
/* start with low order byte */
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
out += (TC_AES_BLOCK_SIZE - 1);
for (;;) {
*out-- = (*x << 1) ^ carry;
if (x == in) {
break;
}
carry = *x-- >> 7;
}
}
int tc_cmac_init(TCCmacState_t s)
{
/* input sanity check: */
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
/* CMAC starts with an all zero initialization vector */
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
/* and the leftover buffer is empty */
_set(s->leftover, 0, TC_AES_BLOCK_SIZE);
s->leftover_offset = 0;
/* Set countdown to max number of calls allowed before re-keying: */
s->countdown = MAX_CALLS;
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
{
unsigned int i;
/* input sanity check: */
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
if (data_length == 0) {
return TC_CRYPTO_SUCCESS;
}
if (data == (const uint8_t *) 0) {
return TC_CRYPTO_FAIL;
}
if (s->countdown == 0) {
return TC_CRYPTO_FAIL;
}
s->countdown--;
if (s->leftover_offset > 0) {
/* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
if (data_length < remaining_space) {
/* still not enough data to encrypt this time either */
_copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
s->leftover_offset += data_length;
return TC_CRYPTO_SUCCESS;
}
/* leftover block is now full; encrypt it first */
_copy(&s->leftover[s->leftover_offset],
remaining_space,
data,
remaining_space);
data_length -= remaining_space;
data += remaining_space;
s->leftover_offset = 0;
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i];
}
tc_aes_encrypt(s->iv, s->iv, s->sched);
}
/* CBC encrypt each (except the last) of the data blocks */
while (data_length > TC_AES_BLOCK_SIZE) {
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= data[i];
}
tc_aes_encrypt(s->iv, s->iv, s->sched);
data += TC_AES_BLOCK_SIZE;
data_length -= TC_AES_BLOCK_SIZE;
}
if (data_length > 0) {
/* save leftover data for next time */
_copy(s->leftover, data_length, data, data_length);
s->leftover_offset = data_length;
}
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_final(uint8_t *tag, TCCmacState_t s)
{
uint8_t *k = NULL;
unsigned int i;
/* input sanity check: */
if (tag == (uint8_t *) 0 ||
s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
/* the last message block is a full-sized block */
k = (uint8_t *) s->K1;
} else {
/* the final message block is not a full-sized block */
size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
_set(&s->leftover[s->leftover_offset], 0, remaining);
s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
k = (uint8_t *) s->K2;
}
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
s->iv[i] ^= s->leftover[i] ^ k[i];
}
tc_aes_encrypt(tag, s->iv, s->sched);
/* erasing state: */
tc_cmac_erase(s);
return TC_CRYPTO_SUCCESS;
}
int tc_cmac_erase(TCCmacState_t s)
{
if (s == (TCCmacState_t) 0) {
return TC_CRYPTO_FAIL;
}
/* destroy the current state */
_set(s, 0, sizeof(*s));
return TC_CRYPTO_SUCCESS;
}

View file

@ -10,9 +10,6 @@
#include "mesh_types.h"
#include "mesh_util.h"
#include "mesh_aes_encrypt.h"
#define MASK_TWENTY_SEVEN 0x1b
const char *bt_hex(const void *buf, size_t len)
{
@ -40,39 +37,3 @@ void mem_rcopy(u8_t *dst, u8_t const *src, u16_t len)
*dst++ = *--src;
}
}
unsigned int _copy(uint8_t *to, unsigned int to_len,
const uint8_t *from, unsigned int from_len)
{
if (from_len <= to_len) {
(void)memcpy(to, from, from_len);
return from_len;
} else {
return TC_CRYPTO_FAIL;
}
}
void _set(void *to, uint8_t val, unsigned int len)
{
(void)memset(to, val, len);
}
/*
* Doubles the value of a byte for values up to 127.
*/
uint8_t _double_byte(uint8_t a)
{
return ((a << 1) ^ ((a >> 7) * MASK_TWENTY_SEVEN));
}
int _compare(const uint8_t *a, const uint8_t *b, size_t size)
{
const uint8_t *tempa = a;
const uint8_t *tempb = b;
uint8_t result = 0;
for (unsigned int i = 0; i < size; i++) {
result |= tempa[i] ^ tempb[i];
}
return result;
}

View file

@ -20,8 +20,10 @@
#include "mbedtls/aes.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include "mesh_hci.h"
#include "mesh_aes_encrypt.h"
#include "mesh_bearer_adapt.h"
#include "mesh_common.h"
#include "provisioner_prov.h"

View file

@ -13,9 +13,12 @@
#define BT_DBG_ENABLED IS_ENABLED(CONFIG_BLE_MESH_DEBUG_CRYPTO)
#include "mesh_common.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include <tinycrypt/cmac_mode.h>
#include "crypto.h"
#include "mesh_aes_encrypt.h"
#include "mesh_common.h"
#include "mesh_bearer_adapt.h"
#define NET_MIC_LEN(pdu) (((pdu)[1] & 0x80) ? 8 : 4)

View file

@ -21,9 +21,11 @@
#include "services/gap/ble_svc_gap.h"
#include "services/gatt/ble_svc_gatt.h"
#include <tinycrypt/aes.h>
#include <tinycrypt/constants.h>
#include "mesh_hci.h"
#include "mesh_common.h"
#include "mesh_aes_encrypt.h"
#include "provisioner_prov.h"
/** @def BT_UUID_MESH_PROV