Merge branch 'doc/freertos_port_comments' into 'master'

freertos: Update comments in "port" section (portMUX/etc)

See merge request !1431
This commit is contained in:
Ivan Grokhotkov 2017-11-07 19:31:21 +08:00
commit 5f9ac5fadb
2 changed files with 36 additions and 25 deletions

View file

@ -126,8 +126,20 @@ typedef unsigned portBASE_TYPE UBaseType_t;
#include "sdkconfig.h"
#include "esp_attr.h"
/* "mux" data structure (spinlock) */
typedef struct {
/* owner field values:
* 0 - Uninitialized (invalid)
* portMUX_FREE_VAL - Mux is free, can be locked by either CPU
* CORE_ID_PRO / CORE_ID_APP - Mux is locked to the particular core
*
* Any value other than portMUX_FREE_VAL, CORE_ID_PRO, CORE_ID_APP indicates corruption
*/
uint32_t owner;
/* count field:
* If mux is unlocked, count should be zero.
* If mux is locked, count is non-zero & represents the number of recursive locks on the mux.
*/
uint32_t count;
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
const char *lastLockedFn;
@ -135,22 +147,13 @@ typedef struct {
#endif
} portMUX_TYPE;
/*
* Kernel mux values can be:
* 0 - Uninitialized
* (0-portNUM_PROCESSORS)|(recCnt<<8)|0xB33F0000 - taken by core (val), recurse count is (recCnt)
* 0xB33FFFFF - free
*
* The magic number in the top 16 bits is there so we can detect uninitialized and corrupted muxes.
*/
#define portMUX_FREE_VAL 0xB33FFFFF
/* Special constants for vPortCPUAcquireMutexTimeout() */
#define portMUX_NO_TIMEOUT (-1) /* When passed for 'timeout_cycles', spin forever if necessary */
#define portMUX_TRY_LOCK 0 /* Try to acquire the spinlock a single time only */
//Keep this in sync with the portMUX_TYPE struct definition please.
// Keep this in sync with the portMUX_TYPE struct definition please.
#ifndef CONFIG_FREERTOS_PORTMUX_DEBUG
#define portMUX_INITIALIZER_UNLOCKED { \
.owner = portMUX_FREE_VAL, \
@ -165,10 +168,6 @@ typedef struct {
}
#endif
/* Critical section management. NW-TODO: replace XTOS_SET_INTLEVEL with more efficient version, if any? */
// These cannot be nested. They should be used with a lot of care and cannot be called from interrupt level.
#define portDISABLE_INTERRUPTS() do { XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL); portbenchmarkINTERRUPT_DISABLE(); } while (0)
#define portENABLE_INTERRUPTS() do { portbenchmarkINTERRUPT_RESTORE(0); XTOS_SET_INTLEVEL(0); } while (0)
#define portASSERT_IF_IN_ISR() vPortAssertIfInISR()
void vPortAssertIfInISR();
@ -176,9 +175,11 @@ void vPortAssertIfInISR();
#define portCRITICAL_NESTING_IN_TCB 1
/*
Modifications to portENTER_CRITICAL:
Modifications to portENTER_CRITICAL.
The original portENTER_CRITICAL only disabled the ISRs. This is enough for single-CPU operation: by
For an introduction, see "Critical Sections & Disabling Interrupts" in docs/api-guides/freertos-smp.rst
The original portENTER_CRITICAL only disabled the ISRs. This is enough for single-CPU operation: by
disabling the interrupts, there is no task switch so no other tasks can meddle in the data, and because
interrupts are disabled, ISRs can't corrupt data structures either.
@ -192,7 +193,7 @@ CPU from meddling with the data, it does not stop interrupts on the other cores
data. For this, we also use a spinlock in the routines called by the ISR, but these spinlocks
do not disable the interrupts (because they already are).
This all assumes that interrupts are either entirely disabled or enabled. Interrupr priority levels
This all assumes that interrupts are either entirely disabled or enabled. Interrupt priority levels
will break this scheme.
Remark: For the ESP32, portENTER_CRITICAL and portENTER_CRITICAL_ISR both alias vTaskEnterCritical, meaning
@ -234,11 +235,21 @@ void vPortCPUReleaseMutex(portMUX_TYPE *mux);
#define portEXIT_CRITICAL_ISR(mux) vTaskExitCritical(mux)
#endif
// Cleaner and preferred solution allows nested interrupts disabling and restoring via local registers or stack.
// Critical section management. NW-TODO: replace XTOS_SET_INTLEVEL with more efficient version, if any?
// These cannot be nested. They should be used with a lot of care and cannot be called from interrupt level.
//
// Only applies to one CPU. See notes above & below for reasons not to use these.
#define portDISABLE_INTERRUPTS() do { XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL); portbenchmarkINTERRUPT_DISABLE(); } while (0)
#define portENABLE_INTERRUPTS() do { portbenchmarkINTERRUPT_RESTORE(0); XTOS_SET_INTLEVEL(0); } while (0)
// Cleaner solution allows nested interrupts disabling and restoring via local registers or stack.
// They can be called from interrupts too.
// WARNING: This ONLY disables interrupt on the current CPU, meaning they cannot be used as a replacement for the vTaskExitCritical spinlock
// on a multicore system. Only use if disabling interrupts on the current CPU only is indeed what you want.
static inline unsigned portENTER_CRITICAL_NESTED() { unsigned state = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL); portbenchmarkINTERRUPT_DISABLE(); return state; }
// WARNING: Only applies to current CPU. See notes above.
static inline unsigned portENTER_CRITICAL_NESTED() {
unsigned state = XTOS_SET_INTLEVEL(XCHAL_EXCM_LEVEL);
portbenchmarkINTERRUPT_DISABLE();
return state;
}
#define portEXIT_CRITICAL_NESTED(state) do { portbenchmarkINTERRUPT_RESTORE(state); XTOS_RESTORE_JUST_INTLEVEL(state); } while (0)
// These FreeRTOS versions are similar to the nested versions above
@ -260,12 +271,12 @@ static inline unsigned portENTER_CRITICAL_NESTED() { unsigned state = XTOS_SET_I
/*
* Wrapper for the Xtensa compare-and-set instruction. This subroutine will atomically compare
* *mux to compare, and if it's the same, will set *mux to set. It will return the old value
* of *addr in *set.
* *addr to 'compare'. If *addr == compare, *addr is set to *set. *set is updated with the previous
* value of *addr (either 'compare' or some other value.)
*
* Warning: From the ISA docs: in some (unspecified) cases, the s32c1i instruction may return the
* *bitwise inverse* of the old mem if the mem wasn't written. This doesn't seem to happen on the
* ESP32, though. (Would show up directly if it did because the magic wouldn't match.)
* ESP32 (portMUX assertions would fail).
*/
static inline void uxPortCompareSet(volatile uint32_t *addr, uint32_t compare, uint32_t *set) {
__asm__ __volatile__ (

View file

@ -315,7 +315,7 @@ STRUCT_END(XtSolFrame)
/*
Macro to get the current core ID. Only uses the reg given as an argument.
Reading PRID on the ESP32 gives us 0xCDCD on the PRO processor (0)
and 0xABAB on the APP CPU (1). We distinguish between the two by simply checking
and 0xABAB on the APP CPU (1). We can distinguish between the two by checking
bit 13: it's 1 on the APP and 0 on the PRO processor.
*/
#ifdef __ASSEMBLER__