Merge branch 'driver_merge_tmp/merge_ledc' into 'master'

add ledc driver code



See merge request !110
This commit is contained in:
Jeroen Domburg 2016-09-29 11:57:52 +08:00
commit 44f559a281
8 changed files with 1315 additions and 281 deletions

View file

@ -90,7 +90,6 @@ const uint32_t GPIO_PIN_MUX_REG[GPIO_PIN_COUNT] = {
GPIO_PIN_REG_39
};
#define IS_VALID_GPIO(gpio_num) ( (gpio_num < GPIO_PIN_COUNT && GPIO_PIN_MUX_REG[gpio_num] != 0))
static int is_valid_gpio(int gpio_num)
{
if(gpio_num >= GPIO_PIN_COUNT || GPIO_PIN_MUX_REG[gpio_num] == 0) {
@ -102,8 +101,9 @@ static int is_valid_gpio(int gpio_num)
esp_err_t gpio_set_intr_type(gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(intr_type >= GPIO_INTR_MAX) {
GPIO_ERROR("Unknown GPIO intr:%u\n",intr_type);
return ESP_ERR_INVALID_ARG;
@ -114,8 +114,9 @@ esp_err_t gpio_set_intr_type(gpio_num_t gpio_num, gpio_int_type_t intr_type)
esp_err_t gpio_intr_enable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(xPortGetCoreID() == 0) {
GPIO.pin[gpio_num].int_ena = GPIO_PRO_CPU_INTR_ENA; //enable pro cpu intr
} else {
@ -126,16 +127,18 @@ esp_err_t gpio_intr_enable(gpio_num_t gpio_num)
esp_err_t gpio_intr_disable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO.pin[gpio_num].int_ena = 0; //disable GPIO intr
return ESP_OK;
}
static esp_err_t gpio_output_disable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(gpio_num < 32) {
GPIO.enable_w1tc = (0x1 << gpio_num);
} else {
@ -150,8 +153,9 @@ static esp_err_t gpio_output_enable(gpio_num_t gpio_num)
GPIO_ERROR("io_num=%d can only be input\n",gpio_num);
return ESP_ERR_INVALID_ARG;
}
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(gpio_num < 32) {
GPIO.enable_w1ts = (0x1 << gpio_num);
} else {
@ -162,18 +166,21 @@ static esp_err_t gpio_output_enable(gpio_num_t gpio_num)
esp_err_t gpio_set_level(gpio_num_t gpio_num, uint32_t level)
{
if(!IS_VALID_GPIO(gpio_num))
if(!GPIO_IS_VALID_GPIO(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(level) {
if(gpio_num < 32)
if(gpio_num < 32) {
GPIO.out_w1ts = (1 << gpio_num);
else
} else {
GPIO.out1_w1ts.data = (1 << (gpio_num - 32));
}
} else {
if(gpio_num < 32)
if(gpio_num < 32) {
GPIO.out_w1tc = (1 << gpio_num);
else
} else {
GPIO.out1_w1tc.data = (1 << (gpio_num - 32));
}
}
return ESP_OK;
}
@ -189,8 +196,9 @@ int gpio_get_level(gpio_num_t gpio_num)
esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
switch(pull) {
case GPIO_PULLUP_ONLY:
@ -219,8 +227,9 @@ esp_err_t gpio_set_pull_mode(gpio_num_t gpio_num, gpio_pull_mode_t pull)
esp_err_t gpio_set_direction(gpio_num_t gpio_num, gpio_mode_t mode)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
if(gpio_num >= 34 && (mode & (GPIO_MODE_DEF_OUTPUT))) {
GPIO_ERROR("io_num=%d can only be input\n",gpio_num);
return ESP_ERR_INVALID_ARG;
@ -290,7 +299,8 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
gpio_output_enable(io_num);
} else {
gpio_output_disable(io_num);
}GPIO_INFO("|");
}
GPIO_INFO("|");
if(pGPIOConfig->pull_up_en) {
GPIO_INFO("PU ");
PIN_PULLUP_EN(io_reg);
@ -310,7 +320,7 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
} else {
gpio_intr_disable(io_num);
}
PIN_FUNC_SELECT(io_reg, GPIO_FUNC_SEL); /*function number 2 is GPIO_FUNC for each pin */
PIN_FUNC_SELECT(io_reg, PIN_FUNC_GPIO); /*function number 2 is GPIO_FUNC for each pin */
} else if(bit_valid && (io_reg == 0)) {
GPIO_WARNING("io_num=%d does not exist\n",io_num);
}
@ -321,8 +331,9 @@ esp_err_t gpio_config(gpio_config_t *pGPIOConfig)
esp_err_t gpio_isr_register(uint32_t gpio_intr_num, void (*fn)(void*), void * arg)
{
if(fn == NULL)
if(fn == NULL) {
return ESP_ERR_INVALID_ARG;
}
ESP_INTR_DISABLE(gpio_intr_num);
intr_matrix_set(xPortGetCoreID(), ETS_GPIO_INTR_SOURCE, gpio_intr_num);
xt_set_interrupt_handler(gpio_intr_num, fn, arg);
@ -333,8 +344,9 @@ esp_err_t gpio_isr_register(uint32_t gpio_intr_num, void (*fn)(void*), void * ar
/*only level interrupt can be used for wake-up function*/
esp_err_t gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
if((intr_type == GPIO_INTR_LOW_LEVEL) || (intr_type == GPIO_INTR_HIGH_LEVEL)) {
GPIO.pin[gpio_num].int_type = intr_type;
@ -348,8 +360,9 @@ esp_err_t gpio_wakeup_enable(gpio_num_t gpio_num, gpio_int_type_t intr_type)
esp_err_t gpio_wakeup_disable(gpio_num_t gpio_num)
{
if(!is_valid_gpio(gpio_num))
if(!is_valid_gpio(gpio_num)) {
return ESP_ERR_INVALID_ARG;
}
GPIO.pin[gpio_num].wakeup_enable = 0;
return ESP_OK;
}

View file

@ -14,7 +14,7 @@
#ifndef _DRIVER_GPIO_H_
#define _DRIVER_GPIO_H_
#include "esp_err.h"
#include <esp_types.h>
#include "soc/gpio_reg.h"
#include "soc/gpio_struct.h"
@ -65,8 +65,6 @@ extern "C" {
#define GPIO_SEL_38 ((uint64_t)(((uint64_t)1)<<38)) /* Pin 38 selected */
#define GPIO_SEL_39 ((uint64_t)(((uint64_t)1)<<39)) /* Pin 39 selected */
#define GPIO_FUNC_SEL 2
#define GPIO_PIN_REG_0 PERIPHS_IO_MUX_GPIO0_U
#define GPIO_PIN_REG_1 PERIPHS_IO_MUX_U0TXD_U
#define GPIO_PIN_REG_2 PERIPHS_IO_MUX_GPIO2_U
@ -115,6 +113,8 @@ extern "C" {
#define GPIO_PIN_COUNT 40
extern const uint32_t GPIO_PIN_MUX_REG[GPIO_PIN_COUNT];
#define GPIO_IS_VALID_GPIO(gpio_num) ((gpio_num < GPIO_PIN_COUNT && GPIO_PIN_MUX_REG[gpio_num] != 0)) //to decide whether it is a valid GPIO number
#define GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) ((GPIO_IS_VALID_GPIO(gpio_num)) && (gpio_num < 34)) //to decide whether it can be a valid GPIO number of output mode
typedef enum {
GPIO_NUM_0 = 0,

View file

@ -0,0 +1,406 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_LEDC_H_
#define _DRIVER_LEDC_H_
#include "esp_err.h"
#include "soc/soc.h"
#include "soc/ledc_reg.h"
#include "soc/ledc_reg.h"
#include "soc/ledc_struct.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#ifdef __cplusplus
extern "C" {
#endif
#define LEDC_APB_CLK_HZ (APB_CLK_FREQ)
#define LEDC_REF_CLK_HZ (1*1000000)
typedef enum {
LEDC_HIGH_SPEED_MODE = 0, /*LEDC high speed speed_mode */
//in this version, we only support high speed speed_mode. We will access low speed speed_mode later
//LEDC_LOW_SPEED_MODE, /*LEDC low speed speed_mode */
LEDC_SPEED_MODE_MAX,
} ledc_mode_t;
typedef enum {
LEDC_INTR_DISABLE = 0, /*Disable LEDC interrupt */
LEDC_INTR_FADE_END, /*Enable LEDC interrupt */
} ledc_intr_type_t;
typedef enum {
LEDC_DUTY_DIR_DECREASE = 0, /*LEDC duty decrease direction */
LEDC_DUTY_DIR_INCREASE = 1, /*LEDC duty increase direction */
} ledc_duty_direction_t;
typedef enum {
LEDC_REF_TICK = 0, /*LEDC timer clock divided from reference tick(1Mhz) */
LEDC_APB_CLK, /*LEDC timer clock divided from APB clock(80Mhz)*/
} ledc_clk_src_t;
typedef enum {
LEDC_TIMER_0 = 0, /*LEDC source timer TIMER0 */
LEDC_TIMER_1, /*LEDC source timer TIMER1 */
LEDC_TIMER_2, /*LEDC source timer TIMER2 */
LEDC_TIMER_3, /*LEDC source timer TIMER3 */
} ledc_timer_t;
typedef enum {
LEDC_CHANNEL_0 = 0, /*LEDC channel 0 */
LEDC_CHANNEL_1, /*LEDC channel 1 */
LEDC_CHANNEL_2, /*LEDC channel 2 */
LEDC_CHANNEL_3, /*LEDC channel 3 */
LEDC_CHANNEL_4, /*LEDC channel 4 */
LEDC_CHANNEL_5, /*LEDC channel 5 */
LEDC_CHANNEL_6, /*LEDC channel 6 */
LEDC_CHANNEL_7, /*LEDC channel 7 */
} ledc_channel_t;
typedef enum {
LEDC_TIMER_10_BIT = 10, /*LEDC PWM depth 10Bit */
LEDC_TIMER_11_BIT = 11, /*LEDC PWM depth 11Bit */
LEDC_TIMER_12_BIT = 12, /*LEDC PWM depth 12Bit */
LEDC_TIMER_13_BIT = 13, /*LEDC PWM depth 13Bit */
LEDC_TIMER_14_BIT = 14, /*LEDC PWM depth 14Bit */
LEDC_TIMER_15_BIT = 15, /*LEDC PWM depth 15Bit */
} ledc_timer_bit_t;
typedef struct {
int gpio_num; /*the LEDC output gpio_num, if you want to use gpio16, gpio_num = 16*/
ledc_mode_t speed_mode; /*LEDC speed speed_mode, high-speed mode or low-speed mode*/
ledc_channel_t channel; /*LEDC channel(0 - 7)*/
ledc_intr_type_t intr_type; /*configure interrupt, Fade interrupt enable or Fade interrupt disable*/
ledc_timer_t timer_sel; /*Select the timer source of channel (0 - 3)*/
uint32_t duty; /*LEDC channel duty, the duty range is [0, (2**bit_num) - 1], */
} ledc_channel_config_t;
typedef struct {
ledc_mode_t speed_mode; /*LEDC speed speed_mode, high-speed mode or low-speed mode*/
ledc_timer_bit_t bit_num; /*LEDC channel duty depth*/
ledc_timer_t timer_num; /*The timer source of channel (0 - 3)*/
uint32_t freq_hz; /*LEDC timer frequency(Hz)*/
} ledc_timer_config_t;
/**
* @brief LEDC channel configuration
*
* User this Function, configure LEDC channel with the given channel/output gpio_num/interrupt/source timer/frequency(Hz)/LEDC depth
*
* @param[in] ledc_channel_config_t
* ledc_channel_config_t.speed_mode : LEDC speed speed_mode
* ledc_channel_config_t.gpio_num : LEDC output gpio_num, if you want to use gpio16, ledc_channel_config_t.gpio_num = 16
* ledc_channel_config_t.channel : LEDC channel(0 - 7)
* ledc_channel_config_t.intr_type : configure interrupt, Fade interrupt enable or Fade interrupt disable
* ledc_channel_config_t.timer_sel : Select the timer source of channel (0 - 3), high speed channel must bind with high speed timer.
* ledc_channel_config_t.duty : LEDC channel duty, the duty range is [0, (2**timer_bit_num) - 1],
* @return ESP_OK: success
* ESP_ERR_INVALID_ARG: parameter error
*
*/
esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf);
/**
* @brief LEDC timer configuration
*
* User this Function, configure LEDC timer with the given source timer/frequency(Hz)/bit_num
*
* @param[in] ledc_timer_config_t
* ledc_timer_config_t.speed_mode : LEDC speed speed_mode
* ledc_timer_config_t.timer_num : Select the timer source of channel (0 - 3)
* ledc_timer_config_t.freq_hz : LEDC channel frequency(Hz),
* ledc_timer_config_t.bit_num : LEDC channel duty depth
* @return ESP_OK: success
* ESP_ERR_INVALID_ARG: parameter error
* ESP_FAIL: Can not find a proper pre-divider number base on the given frequency and the current bit_num.
*
*/
esp_err_t ledc_timer_config(ledc_timer_config_t* timer_conf);
/**
* @brief LEDC update channel parameters
*
* Call this function to activate the LEDC updated parameters.
* After ledc_set_duty, ledc_set_fade, we need to call this function to update the settings.
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] channel : LEDC channel(0-7), select from ledc_channel_t
*
* @return ESP_OK: success
* ESP_ERR_INVALID_ARG: parameter error
*
*/
esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel);
/**
* @brief LEDC stop
*
* Disable LEDC output, and set idle level
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] channel : LEDC channel(0-7), select from ledc_channel_t
*
* @return ESP_OK: success
* ESP_ERR_INVALID_ARG: parameter error
*/
esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level);
/**
* @brief LEDC set channel frequency(Hz)
*
* Set LEDC frequency(Hz)
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] timer_num : LEDC timer index(0-3), select from ledc_timer_t
*
* @param[in] freq_hz : set the LEDC frequency
*
* @return ESP_OK: success
* ESP_ERR_INVALID_ARG: parameter error
* ESP_FAIL: Can not find a proper pre-divider number base on the given frequency and the current bit_num.
*/
esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz);
/**
* @brief LEDC get channel frequency(Hz)
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] timer_num : LEDC timer index(0-3), select from ledc_timer_t
*
* @return 0 : error
* others : current LEDC frequency
*
*/
uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num);
/**
* @brief LEDC set duty
*
* Set LEDC duty, After the function calls the ledc_update_duty function, the function can take effect.
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] channel : LEDC channel(0-7), select from ledc_channel_t
*
* @param[in] duty : set the LEDC duty, the duty range is [0, (2**bit_num) - 1]
*
* @return ESP_OK: success
* ESP_ERR_INVALID_ARG: parameter error
*/
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty);
/**
* @brief LEDC get duty
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] channel : LEDC channel(0-7), select from ledc_channel_t
*
*
* @return -1: parameter error
* other value: current LEDC duty
*
*/
int ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel);
/**
* @brief LEDC set gradient
*
* Set LEDC gradient, After the function calls the ledc_update_duty function, the function can take effect.
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] channel : LEDC channel(0-7), select from ledc_channel_t
*
* @param[in] duty : set the start of the gradient duty, the duty range is [0, (2**bit_num) - 1]
*
* @param[in] gradule_direction : set the direction of the gradient
*
* @param[in] step_num : set the number of the gradient
*
* @param[in] duty_cyle_num : set how many LEDC tick each time the gradient lasts
*
* @param[in] duty_scale : set gradient change amplitude
*
* @return ESP_OK : success
* ESP_ERR_INVALID_ARG : parameter error
*/
esp_err_t ledc_set_fade(ledc_mode_t speed_mode, uint32_t channel, uint32_t duty, ledc_duty_direction_t gradule_direction,
uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale);
/**
* @brief register LEDC interrupt handler, the handler is an ISR.
* The handler will be attached to the same CPU core that this function is running on.
* Users should know that which CPU is running and then pick a INUM that is not used by system.
* We can find the information of INUM and interrupt level in soc.h.
* TODO: to move INUM options to menu_config
* @param[in] uint32_t ledc_intr_num : LEDC interrupt number, check the info in soc.h, and please see the core-isa.h for more details
* @param[in] void (* fn)(void* ) : interrupt handler function.
* Note that the handler function MUST be defined with attribution of "IRAM_ATTR".
* @param[in] void * arg : parameter for handler function
*
* @return ESP_OK : success ;
* ESP_ERR_INVALID_ARG : function ptr error.
*/
esp_err_t ledc_isr_register(uint32_t ledc_intr_num, void (*fn)(void*), void * arg);
/**
* @brief configure LEDC settings
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] timer_sel : timer index(0-3), there are 4 timers in LEDC module
*
* @param[in] div_num : timer clock divide number, the timer clock is divided from the selected clock source
*
* @param[in] bit_num : the count number of one period, counter range is 0 ~ ((2 ** bit_num) - 1)
*
* @param[in] clk_src : select LEDC source clock.
*
* @return -1: parameter error
* other value: current LEDC duty
*
*/
esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t div_num, uint32_t bit_num, ledc_clk_src_t clk_src);
/**
* @brief reset LEDC timer
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] timer_sel : LEDC timer index(0-3), select from ledc_timer_t
*
*
* @return ESP_ERR_INVALID_ARG: parameter error
* ESP_OK: success
*
*/
esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, uint32_t timer_sel);
/**
* @brief pause LEDC timer counter
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] timer_sel : LEDC timer index(0-3), select from ledc_timer_t
*
*
* @return ESP_ERR_INVALID_ARG: parameter error
* ESP_OK: success
*
*/
esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, uint32_t timer_sel);
/**
* @brief pause LEDC timer resume
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] timer_sel : LEDC timer index(0-3), select from ledc_timer_t
*
*
* @return ESP_ERR_INVALID_ARG: parameter error
* ESP_OK: success
*
*/
esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, uint32_t timer_sel);
/**
* @brief bind LEDC channel with the selected timer
*
* @param[in] speed_mode : select the LEDC speed_mode, high-speed mode and low-speed mode, now we only support high-speed mode. We will access low-speed mode in next version
*
* @param[in] channel : LEDC channel index(0-7), select from ledc_channel_t
*
* @param[in] timer_idx : LEDC timer index(0-3), select from ledc_timer_t
*
*
* @return ESP_ERR_INVALID_ARG: parameter error
* ESP_OK: success
*
*/
esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, uint32_t channel, uint32_t timer_idx);
/***************************EXAMPLE**********************************
*
*
* ----------------EXAMPLE OF LEDC SETTING ---------------------
* //1. enable LEDC
* periph_module_enable(PERIPH_LEDC_MODULE); //enable LEDC module, or you can not set any register of it.
*
* //2. set LEDC timer
* ledc_timer_config_t timer_conf = {
* .bit_num = LEDC_TIMER_12_BIT, //set timer counter bit number
* .freq_hz = 1000, //set frequency of pwm, here, 1000Hz
* .speed_mode = LEDC_HIGH_SPEED_MODE //timer mode,
* .timer_num = LEDC_TIMER_0, //timer number
* };
* ledc_timer_config(&timer_conf); //setup timer.
*
* //3. set LEDC channel
* ledc_channel_config_t ledc_conf = {
* .channel = LEDC_CHANNEL_0; //set LEDC channel 0
* .duty = 1000; //set the duty for initialization.(duty range is 0 ~ ((2**bit_num)-1)
* .gpio_num = 16; //GPIO number
* .intr_type = LEDC_INTR_FADE_END; //GPIO INTR TYPE, as an example, we enable fade_end interrupt here.
* .speed_mode = LEDC_HIGH_SPEED_MODE; //set LEDC mode, from ledc_mode_t
* .timer_sel = LEDC_TIMER_0; //set LEDC timer source, if different channel use one timer, the frequency and bit_num of these channels should be the same
* }
* ledc_channel_config(&ledc_conf); //setup the configuration
*
* ----------------EXAMPLE OF SETTING DUTY --- -----------------
* uint32_t ledc_channel = LEDC_CHANNEL_0; //LEDC channel(0-73)
* uint32_t duty = 2000; //duty range is 0 ~ ((2**bit_num)-1)
* LEDC_set_duty(LEDC_HIGH_SPEED_MODE, ledc_channel, duty); //set speed mode, channel, and duty.
* ledc_update_duty(LEDC_HIGH_SPEED_MODE, ledc_channel); //after set duty, we need to call ledc_update_duty to update the settings.
*
*
* ----------------EXAMPLE OF LEDC INTERRUPT ------------------
* //we have fade_end interrupt and counter overflow interrupt. we just give an example of fade_end interrupt here.
* ledc_isr_register(18, ledc_isr_handler, NULL); //hook the isr handler for LEDC interrupt
* //the first parameter is INUM, you can pick one form interrupt level 1/2 which is not used by the system.
* //NOTE1:user should arrange the INUMs that used, better not to use a same INUM for different interrupt source.
* //NOTE2:do not pick the INUM that already occupied by the system.
* //NOTE3:refer to soc.h to check which INUMs that can be used.
* ----------------EXAMPLE OF INTERRUPT HANDLER ---------------
* #include "esp_attr.h"
* void IRAM_ATTR ledc_isr_handler(void* arg) //we should add 'IRAM_ATTR' attribution when we declare the isr function
* {
* uint32_t intr_st = LEDC.int_st.val; //read LEDC interrupt status.
*
* //you will find which channels have triggered fade_end interrupt here,
* //then, you can post some event to RTOS queue to process the event.
* //later we will add a queue in the driver code.
*
* LEDC.int_clr.val = intr_st; //clear LEDC interrupt status.
* }
*
*
*--------------------------END OF EXAMPLE --------------------------
*/
#ifdef __cplusplus
}
#endif
#endif /* _DRIVER_LEDC_H_ */

View file

@ -0,0 +1,70 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _DRIVER_PERIPH_CTRL_H_
#define _DRIVER_PERIPH_CTRL_H_
#include "esp_err.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum {
PERIPH_LEDC_MODULE = 0,
PERIPH_UART0_MODULE,
PERIPH_UART1_MODULE,
PERIPH_UART2_MODULE,
PERIPH_I2C0_MODULE,
PERIPH_I2C1_MODULE,
PERIPH_I2S0_MODULE,
PERIPH_I2S1_MODULE,
PERIPH_TIMG0_MODULE,
PERIPH_TIMG1_MODULE,
PERIPH_PWM0_MODULE,
PERIPH_PWM1_MODULE,
PERIPH_PWM2_MODULE,
PERIPH_PWM3_MODULE,
PERIPH_UHCI0_MODULE,
PERIPH_UHCI1_MODULE,
} periph_module_t;
/**
* @brief enable peripheral module
*
* @param[in] periph : Peripheral module name
*
*
* @return NULL
*
*/
void periph_module_enable(periph_module_t periph);
/**
* @brief disable peripheral module
*
* @param[in] periph : Peripheral module name
*
*
* @return NULL
*
*/
void periph_module_disable(periph_module_t periph);
#ifdef __cplusplus
}
#endif
#endif /* _DRIVER_PERIPH_CTRL_H_ */

432
components/driver/ledc.c Normal file
View file

@ -0,0 +1,432 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include "esp_intr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "soc/gpio_sig_map.h"
#include "driver/ledc.h"
//TODO: to use APIs in esp_log.h.
#define LEDC_DBG_WARING_ENABLE (0)
#define LEDC_DBG_ERROR_ENABLE (0)
#define LEDC_INFO_ENABLE (0)
#define LEDC_DBG_ENABLE (0)
//DBG INFOR
#if LEDC_DBG_ENABLE
#define LEDC_DBG(format,...) do{\
ets_printf("[dbg][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_DBG(...)
#endif
#if LEDC_INFO_ENABLE
#define LEDC_INFO(format,...) do{\
ets_printf("[info][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_INFO(...)
#endif
#if LEDC_DBG_WARING_ENABLE
#define LEDC_WARING(format,...) do{\
ets_printf("[waring][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_WARING(...)
#endif
#if LEDC_DBG_ERROR_ENABLE
#define LEDC_ERROR(format,...) do{\
ets_printf("[error][%s#%u]",__FUNCTION__,__LINE__);\
ets_printf(format,##__VA_ARGS__);\
}while(0)
#else
#define LEDC_ERROR(...)
#endif
static portMUX_TYPE ledc_spinlock = portMUX_INITIALIZER_UNLOCKED;
static bool ledc_is_valid_channel(uint32_t channel)
{
if(channel > LEDC_CHANNEL_7) {
LEDC_ERROR("LEDC CHANNEL ERR: %d\n",channel);
return false;
}
return true;
}
static bool ledc_is_valid_mode(uint32_t mode)
{
if(mode >= LEDC_SPEED_MODE_MAX) {
LEDC_ERROR("LEDC MODE ERR: %d\n",mode);
return false;
}
return true;
}
static bool ledc_is_valid_timer(int timer)
{
if(timer > LEDC_TIMER_3) {
LEDC_ERROR("LEDC TIMER ERR: %d\n", timer);
return false;
}
return true;
}
esp_err_t ledc_timer_set(ledc_mode_t speed_mode, ledc_timer_t timer_sel, uint32_t div_num, uint32_t bit_num, ledc_clk_src_t clk_src)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.div_num = div_num;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.tick_sel = clk_src;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.bit_num = bit_num;
if(speed_mode != LEDC_HIGH_SPEED_MODE) {
LEDC.timer_group[speed_mode].timer[timer_sel].conf.low_speed_update = 1;
}
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
static esp_err_t ledc_duty_config(ledc_mode_t speed_mode, uint32_t channel_num, uint32_t hpoint_val, uint32_t duty_val,
uint32_t duty_direction, uint32_t duty_num, uint32_t duty_cycle, uint32_t duty_scale)
{
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel_num].hpoint.hpoint = hpoint_val;
LEDC.channel_group[speed_mode].channel[channel_num].duty.duty = duty_val;
LEDC.channel_group[speed_mode].channel[channel_num].conf1.val = ((duty_direction & LEDC_DUTY_INC_HSCH0_V) << LEDC_DUTY_INC_HSCH0_S) |
((duty_num & LEDC_DUTY_NUM_HSCH0_V) << LEDC_DUTY_NUM_HSCH0_S) |
((duty_cycle & LEDC_DUTY_CYCLE_HSCH0_V) << LEDC_DUTY_CYCLE_HSCH0_S) |
((duty_scale & LEDC_DUTY_SCALE_HSCH0_V) << LEDC_DUTY_SCALE_HSCH0_S);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_bind_channel_timer(ledc_mode_t speed_mode, uint32_t channel, uint32_t timer_idx)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_idx)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.timer_sel = timer_idx;
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_rst(ledc_mode_t speed_mode, uint32_t timer_sel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.rst = 1;
LEDC.timer_group[speed_mode].timer[timer_sel].conf.rst = 0;
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_pause(ledc_mode_t speed_mode, uint32_t timer_sel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.pause = 1;
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_resume(ledc_mode_t speed_mode, uint32_t timer_sel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_timer(timer_sel)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.timer_group[speed_mode].timer[timer_sel].conf.pause = 0;
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
static esp_err_t ledc_enable_intr_type(ledc_mode_t speed_mode, uint32_t channel, ledc_intr_type_t type)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
uint32_t value;
uint32_t intr_type = type;
portENTER_CRITICAL(&ledc_spinlock);
value = LEDC.int_ena.val;
if(intr_type == LEDC_INTR_FADE_END) {
LEDC.int_ena.val = value | BIT(LEDC_DUTY_CHNG_END_HSCH0_INT_ENA_S + channel);
} else {
LEDC.int_ena.val = (value & (~(BIT(LEDC_DUTY_CHNG_END_HSCH0_INT_ENA_S + channel))));
}
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_isr_register(uint32_t ledc_intr_num, void (*fn)(void*), void * arg)
{
if(fn == NULL) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
ESP_INTR_DISABLE(ledc_intr_num);
intr_matrix_set(xPortGetCoreID(), ETS_LEDC_INTR_SOURCE, ledc_intr_num);
xt_set_interrupt_handler(ledc_intr_num, fn, arg);
ESP_INTR_ENABLE(ledc_intr_num);
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_timer_config(ledc_timer_config_t* timer_conf)
{
int freq_hz = timer_conf->freq_hz;
int bit_num = timer_conf->bit_num;
int timer_num = timer_conf->timer_num;
int speed_mode = timer_conf->speed_mode;
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(freq_hz == 0 || bit_num == 0 || bit_num > LEDC_TIMER_15_BIT) {
LEDC_ERROR("freq_hz=%u bit_num=%u\n", freq_hz, bit_num);
return ESP_ERR_INVALID_ARG;
}
if(timer_num > LEDC_TIMER_3) {
LEDC_ERROR("Time Select %u\n", timer_num);
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
uint32_t precision = (0x1 << bit_num); //2**depth
uint64_t div_param = ((uint64_t) LEDC_APB_CLK_HZ << 8) / freq_hz / precision; //8bit fragment
int timer_clk_src;
/*Fail ,because the div_num overflow or too small*/
if(div_param <= 256 || div_param > LEDC_DIV_NUM_HSTIMER0_V) { //REF TICK
/*Selet the reference tick*/
div_param = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
if(div_param <= 256 || div_param > LEDC_DIV_NUM_HSTIMER0_V) {
LEDC_ERROR("div param err,div_param=%u\n", div_param);
ret = ESP_FAIL;
}
timer_clk_src = LEDC_REF_TICK;
} else { //APB TICK
timer_clk_src = LEDC_APB_CLK;
}
/*set timer parameters*/
/*timer settings decide the clk of counter and the period of PWM*/
ledc_timer_set(speed_mode, timer_num, div_param, bit_num, timer_clk_src);
/* reset timer.*/
ledc_timer_rst(speed_mode, timer_num);
return ret;
}
esp_err_t ledc_channel_config(ledc_channel_config_t* ledc_conf)
{
uint32_t speed_mode = ledc_conf->speed_mode;
uint32_t gpio_num = ledc_conf->gpio_num;
uint32_t ledc_channel = ledc_conf->channel;
uint32_t timer_select = ledc_conf->timer_sel;
uint32_t intr_type = ledc_conf->intr_type;
uint32_t duty = ledc_conf->duty;
if(!ledc_is_valid_channel(ledc_channel)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)) {
LEDC_ERROR("GPIO number error: IO%d\n ", gpio_num);
return ESP_ERR_INVALID_ARG;
}
if(timer_select > LEDC_TIMER_3) {
LEDC_ERROR("Time Select %u\n", timer_select);
return ESP_ERR_INVALID_ARG;
}
esp_err_t ret = ESP_OK;
/*set channel parameters*/
/* channel parameters decide how the waveform looks like in one period*/
/* set channel duty, duty range is (0 ~ ((2 ** bit_num) - 1))*/
ledc_set_duty(speed_mode, ledc_channel, duty);
/*update duty settings*/
ledc_update_duty(speed_mode, ledc_channel);
/*bind the channel with the timer*/
ledc_bind_channel_timer(speed_mode, ledc_channel, timer_select);
/*set interrupt type*/
ledc_enable_intr_type(speed_mode, ledc_channel, intr_type);
LEDC_INFO("LEDC_PWM CHANNEL %1u|GPIO %02u|Duty %04u|Time %01u\n",
ledc_channel, gpio_num, duty, timer_select
);
/*set LEDC signal in gpio matrix*/
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, LEDC_HS_SIG_OUT0_IDX + ledc_channel, 0, 0);
return ret;
}
esp_err_t ledc_update_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.sig_out_en = 1;
LEDC.channel_group[speed_mode].channel[channel].conf1.duty_start = 1;
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_stop(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t idle_level)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
LEDC.channel_group[speed_mode].channel[channel].conf0.idle_lv = idle_level & 0x1;
LEDC.channel_group[speed_mode].channel[channel].conf0.sig_out_en = 0;
LEDC.channel_group[speed_mode].channel[channel].conf1.duty_start = 0;
portEXIT_CRITICAL(&ledc_spinlock);
return ESP_OK;
}
esp_err_t ledc_set_fade(ledc_mode_t speed_mode, uint32_t channel, uint32_t duty, ledc_duty_direction_t fade_direction,
uint32_t step_num, uint32_t duty_cyle_num, uint32_t duty_scale)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
if(fade_direction > LEDC_DUTY_DIR_INCREASE) {
LEDC_ERROR("Duty direction err\n");
return ESP_ERR_INVALID_ARG;
}
if(step_num > LEDC_DUTY_NUM_HSCH0_V || duty_cyle_num > LEDC_DUTY_CYCLE_HSCH0_V || duty_scale > LEDC_DUTY_SCALE_HSCH0_V) {
LEDC_ERROR("step_num=%u duty_cyle_num=%u duty_scale=%u\n", step_num, duty_cyle_num, duty_scale);
return ESP_ERR_INVALID_ARG;
}
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
0, //uint32_t hpoint_val,
duty << 4, //uint32_t duty_val,the least 4 bits are decimal part
fade_direction, //uint32_t increase,
step_num, //uint32_t duty_num,
duty_cyle_num, //uint32_t duty_cycle,
duty_scale //uint32_t duty_scale
);
return ESP_OK;
}
esp_err_t ledc_set_duty(ledc_mode_t speed_mode, ledc_channel_t channel, uint32_t duty)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
if(!ledc_is_valid_channel(channel)) {
return ESP_ERR_INVALID_ARG;
}
ledc_duty_config(speed_mode,
channel, //uint32_t chan_num,
0, //uint32_t hpoint_val,
duty << 4, //uint32_t duty_val,the least 4 bits are decimal part
1, //uint32_t increase,
1, //uint32_t duty_num,
1, //uint32_t duty_cycle,
0 //uint32_t duty_scale
);
return ESP_OK;
}
int ledc_get_duty(ledc_mode_t speed_mode, ledc_channel_t channel)
{
if(!ledc_is_valid_mode(speed_mode)) {
return -1;
}
uint32_t duty = (LEDC.channel_group[speed_mode].channel[channel].duty_rd.duty_read >> 4);
return duty;
}
esp_err_t ledc_set_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num, uint32_t freq_hz)
{
if(!ledc_is_valid_mode(speed_mode)) {
return ESP_ERR_INVALID_ARG;
}
portENTER_CRITICAL(&ledc_spinlock);
esp_err_t ret = ESP_OK;
uint32_t div_num = 0;
uint32_t bit_num = LEDC.timer_group[speed_mode].timer[timer_num].conf.bit_num;
uint32_t timer_source_clk = LEDC.timer_group[speed_mode].timer[timer_num].conf.tick_sel;
uint32_t precision = (0x1 << bit_num);
if(timer_source_clk == LEDC_APB_CLK) {
div_num = ((uint64_t) LEDC_APB_CLK_HZ << 8) / freq_hz / precision;
} else {
div_num = ((uint64_t) LEDC_REF_CLK_HZ << 8) / freq_hz / precision;
}
if(div_num <= 256 || div_num > LEDC_DIV_NUM_HSTIMER0) {
LEDC_ERROR("div param err,div_param=%u\n", div_num);
ret = ESP_FAIL;
}
LEDC.timer_group[speed_mode].timer[timer_num].conf.div_num = div_num;
portEXIT_CRITICAL(&ledc_spinlock);
return ret;
}
uint32_t ledc_get_freq(ledc_mode_t speed_mode, ledc_timer_t timer_num)
{
if(!ledc_is_valid_mode(speed_mode)) {
return 0;
}
portENTER_CRITICAL(&ledc_spinlock);
uint32_t freq = 0;
uint32_t timer_source_clk = LEDC.timer_group[speed_mode].timer[timer_num].conf.tick_sel;
uint32_t bit_num = LEDC.timer_group[speed_mode].timer[timer_num].conf.bit_num;
uint32_t div_num = LEDC.timer_group[speed_mode].timer[timer_num].conf.div_num;
uint32_t precision = (0x1 << bit_num);
if(timer_source_clk == LEDC_APB_CLK) {
freq = ((uint64_t) LEDC_APB_CLK_HZ << 8) / precision / div_num;
} else {
freq = ((uint64_t) LEDC_REF_CLK_HZ << 8) / precision / div_num;
}
portEXIT_CRITICAL(&ledc_spinlock);
return freq;
}

View file

@ -0,0 +1,170 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <esp_types.h>
#include "esp_intr.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "soc/dport_reg.h"
#include "driver/periph_ctrl.h"
static portMUX_TYPE periph_spinlock = portMUX_INITIALIZER_UNLOCKED;
void periph_module_enable(periph_module_t periph)
{
portENTER_CRITICAL(&periph_spinlock);
switch(periph) {
case PERIPH_LEDC_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
break;
case PERIPH_UART0_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART_RST);
break;
case PERIPH_UART1_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART1_RST);
break;
case PERIPH_UART2_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART2_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART2_RST);
break;
case PERIPH_I2C0_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2C_EXT0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2C_EXT0_RST);
break;
case PERIPH_I2C1_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2C_EXT1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2C_EXT1_RST);
break;
case PERIPH_I2S0_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2S0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2S0_RST);
break;
case PERIPH_I2S1_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2S1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2S1_RST);
break;
case PERIPH_TIMG0_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_TIMERGROUP_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP_RST);
break;
case PERIPH_TIMG1_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_TIMERGROUP1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP1_RST);
break;
case PERIPH_PWM0_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM0_RST);
break;
case PERIPH_PWM1_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM1_RST);
break;
case PERIPH_PWM2_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM2_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM2_RST);
break;
case PERIPH_PWM3_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM3_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM3_RST);
break;
case PERIPH_UHCI0_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UHCI0_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UHCI0_RST);
break;
case PERIPH_UHCI1_MODULE:
SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UHCI1_CLK_EN);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UHCI1_RST);
break;
default:
break;
}
portEXIT_CRITICAL(&periph_spinlock);
}
void periph_module_disable(periph_module_t periph)
{
portENTER_CRITICAL(&periph_spinlock);
switch(periph) {
case PERIPH_LEDC_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_LEDC_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_LEDC_RST);
break;
case PERIPH_UART0_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART_RST);
break;
case PERIPH_UART1_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART1_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART1_RST);
break;
case PERIPH_UART2_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UART2_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UART2_RST);
break;
case PERIPH_I2C0_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2C_EXT0_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2C_EXT0_RST);
break;
case PERIPH_I2C1_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2C_EXT0_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2C_EXT1_RST);
break;
case PERIPH_I2S0_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2S0_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2S0_RST);
break;
case PERIPH_I2S1_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_I2S1_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_I2S1_RST);
break;
case PERIPH_TIMG0_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_TIMERGROUP_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP_RST);
break;
case PERIPH_TIMG1_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_TIMERGROUP1_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_TIMERGROUP1_RST);
break;
case PERIPH_PWM0_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM0_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM0_RST);
break;
case PERIPH_PWM1_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM1_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM1_RST);
break;
case PERIPH_PWM2_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM2_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM2_RST);
break;
case PERIPH_PWM3_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_PWM3_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_PWM3_RST);
break;
case PERIPH_UHCI0_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UHCI0_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UHCI0_RST);
break;
case PERIPH_UHCI1_MODULE:
CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_UHCI1_CLK_EN);
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_UHCI1_RST);
break;
default:
break;
}
portEXIT_CRITICAL(&periph_spinlock);
}

View file

@ -40,6 +40,8 @@
#define PIN_PULLDWN_EN(PIN_NAME) REG_SET_BIT(PIN_NAME, FUN_PD)
#define PIN_FUNC_SELECT(PIN_NAME, FUNC) REG_SET_FIELD(PIN_NAME, MCU_SEL, FUNC)
#define PIN_FUNC_GPIO 2
#define PIN_CTRL (DR_REG_IO_MUX_BASE +0x00)
#define CLK_OUT3 0xf
#define CLK_OUT3_S 8
@ -48,84 +50,17 @@
#define CLK_OUT1 0xf
#define CLK_OUT1_S 0
#define PERIPHS_IO_MUX_GPIO36_U (DR_REG_IO_MUX_BASE +0x04)
#define FUNC_GPIO36_GPIO36 2
#define FUNC_GPIO36_GPIO36_0 0
#define PERIPHS_IO_MUX_GPIO0_U (DR_REG_IO_MUX_BASE +0x44)
#define FUNC_GPIO0_EMAC_TX_CLK 5
#define FUNC_GPIO0_GPIO0 2
#define FUNC_GPIO0_CLK_OUT1 1
#define FUNC_GPIO0_GPIO0_0 0
#define PERIPHS_IO_MUX_GPIO37_U (DR_REG_IO_MUX_BASE +0x08)
#define FUNC_GPIO37_GPIO37 2
#define FUNC_GPIO37_GPIO37_0 0
#define PERIPHS_IO_MUX_GPIO38_U (DR_REG_IO_MUX_BASE +0x0c)
#define FUNC_GPIO38_GPIO38 2
#define FUNC_GPIO38_GPIO38_0 0
#define PERIPHS_IO_MUX_GPIO39_U (DR_REG_IO_MUX_BASE +0x10)
#define FUNC_GPIO39_GPIO39 2
#define FUNC_GPIO39_GPIO39_0 0
#define PERIPHS_IO_MUX_GPIO34_U (DR_REG_IO_MUX_BASE +0x14)
#define FUNC_GPIO34_GPIO34 2
#define FUNC_GPIO34_GPIO34_0 0
#define PERIPHS_IO_MUX_GPIO35_U (DR_REG_IO_MUX_BASE +0x18)
#define FUNC_GPIO35_GPIO35 2
#define FUNC_GPIO35_GPIO35_0 0
#define PERIPHS_IO_MUX_GPIO32_U (DR_REG_IO_MUX_BASE +0x1c)
#define FUNC_GPIO32_GPIO32 2
#define FUNC_GPIO32_GPIO32_0 0
#define PERIPHS_IO_MUX_GPIO33_U (DR_REG_IO_MUX_BASE +0x20)
#define FUNC_GPIO33_GPIO33 2
#define FUNC_GPIO33_GPIO33_0 0
#define PERIPHS_IO_MUX_GPIO25_U (DR_REG_IO_MUX_BASE +0x24)
#define FUNC_GPIO25_EMAC_RXD0 5
#define FUNC_GPIO25_GPIO25 2
#define FUNC_GPIO25_GPIO25_0 0
#define PERIPHS_IO_MUX_GPIO26_U (DR_REG_IO_MUX_BASE +0x28)
#define FUNC_GPIO26_EMAC_RXD1 5
#define FUNC_GPIO26_GPIO26 2
#define FUNC_GPIO26_GPIO26_0 0
#define PERIPHS_IO_MUX_GPIO27_U (DR_REG_IO_MUX_BASE +0x2c)
#define FUNC_GPIO27_EMAC_RX_DV 5
#define FUNC_GPIO27_GPIO27 2
#define FUNC_GPIO27_GPIO27_0 0
#define PERIPHS_IO_MUX_MTMS_U (DR_REG_IO_MUX_BASE +0x30)
#define FUNC_MTMS_EMAC_TXD2 5
#define FUNC_MTMS_SD_CLK 4
#define FUNC_MTMS_HS2_CLk 3
#define FUNC_MTMS_GPIO14 2
#define FUNC_MTMS_HSPICLK 1
#define FUNC_MTMS_MTMS 0
#define PERIPHS_IO_MUX_MTDI_U (DR_REG_IO_MUX_BASE +0x34)
#define FUNC_MTDI_EMAC_TXD3 5
#define FUNC_MTDI_SD_DATA2 4
#define FUNC_MTDI_HS2_DATA2 3
#define FUNC_MTDI_GPIO12 2
#define FUNC_MTDI_HSPIQ 1
#define FUNC_MTDI_MTDI 0
#define PERIPHS_IO_MUX_MTCK_U (DR_REG_IO_MUX_BASE +0x38)
#define FUNC_MTCK_EMAC_RX_ER 5
#define FUNC_MTCK_SD_DATA3 4
#define FUNC_MTCK_HS2_DATA3 3
#define FUNC_MTCK_GPIO13 2
#define FUNC_MTCK_HSPID 1
#define FUNC_MTCK_MTCK 0
#define PERIPHS_IO_MUX_MTDO_U (DR_REG_IO_MUX_BASE +0x3c)
#define FUNC_MTDO_EMAC_RXD3 5
#define FUNC_MTDO_SD_CMD 4
#define FUNC_MTDO_HS2_CMD 3
#define FUNC_MTDO_GPIO15 2
#define FUNC_MTDO_HSPICS0 1
#define FUNC_MTDO_MTDO 0
#define PERIPHS_IO_MUX_U0TXD_U (DR_REG_IO_MUX_BASE +0x88)
#define FUNC_U0TXD_EMAC_RXD2 3
#define FUNC_U0TXD_GPIO1 2
#define FUNC_U0TXD_CLK_OUT3 1
#define FUNC_U0TXD_U0TXD 0
#define PERIPHS_IO_MUX_GPIO2_U (DR_REG_IO_MUX_BASE +0x40)
#define FUNC_GPIO2_SD_DATA0 4
@ -134,11 +69,10 @@
#define FUNC_GPIO2_HSPIWP 1
#define FUNC_GPIO2_GPIO2_0 0
#define PERIPHS_IO_MUX_GPIO0_U (DR_REG_IO_MUX_BASE +0x44)
#define FUNC_GPIO0_EMAC_TX_CLK 5
#define FUNC_GPIO0_GPIO0 2
#define FUNC_GPIO0_CLK_OUT1 1
#define FUNC_GPIO0_GPIO0_0 0
#define PERIPHS_IO_MUX_U0RXD_U (DR_REG_IO_MUX_BASE +0x84)
#define FUNC_U0RXD_GPIO3 2
#define FUNC_U0RXD_CLK_OUT2 1
#define FUNC_U0RXD_U0RXD 0
#define PERIPHS_IO_MUX_GPIO4_U (DR_REG_IO_MUX_BASE +0x48)
#define FUNC_GPIO4_EMAC_TX_ER 5
@ -148,40 +82,12 @@
#define FUNC_GPIO4_HSPIHD 1
#define FUNC_GPIO4_GPIO4_0 0
#define PERIPHS_IO_MUX_GPIO16_U (DR_REG_IO_MUX_BASE +0x4c)
#define FUNC_GPIO16_EMAC_CLK_OUT 5
#define FUNC_GPIO16_U2RXD 4
#define FUNC_GPIO16_HS1_DATA4 3
#define FUNC_GPIO16_GPIO16 2
#define FUNC_GPIO16_GPIO16_0 0
#define PERIPHS_IO_MUX_GPIO17_U (DR_REG_IO_MUX_BASE +0x50)
#define FUNC_GPIO17_EMAC_CLK_OUT_180 5
#define FUNC_GPIO17_U2TXD 4
#define FUNC_GPIO17_HS1_DATA5 3
#define FUNC_GPIO17_GPIO17 2
#define FUNC_GPIO17_GPIO17_0 0
#define PERIPHS_IO_MUX_SD_DATA2_U (DR_REG_IO_MUX_BASE +0x54)
#define FUNC_SD_DATA2_U1RXD 4
#define FUNC_SD_DATA2_HS1_DATA2 3
#define FUNC_SD_DATA2_GPIO9 2
#define FUNC_SD_DATA2_SPIHD 1
#define FUNC_SD_DATA2_SD_DATA2 0
#define PERIPHS_IO_MUX_SD_DATA3_U (DR_REG_IO_MUX_BASE +0x58)
#define FUNC_SD_DATA3_U1TXD 4
#define FUNC_SD_DATA3_HS1_DATA3 3
#define FUNC_SD_DATA3_GPIO10 2
#define FUNC_SD_DATA3_SPIWP 1
#define FUNC_SD_DATA3_SD_DATA3 0
#define PERIPHS_IO_MUX_SD_CMD_U (DR_REG_IO_MUX_BASE +0x5c)
#define FUNC_SD_CMD_U1RTS 4
#define FUNC_SD_CMD_HS1_CMD 3
#define FUNC_SD_CMD_GPIO11 2
#define FUNC_SD_CMD_SPICS0 1
#define FUNC_SD_CMD_SD_CMD 0
#define PERIPHS_IO_MUX_GPIO5_U (DR_REG_IO_MUX_BASE +0x6c)
#define FUNC_GPIO5_EMAC_RX_CLK 5
#define FUNC_GPIO5_HS1_DATA6 3
#define FUNC_GPIO5_GPIO5 2
#define FUNC_GPIO5_VSPICS0 1
#define FUNC_GPIO5_GPIO5_0 0
#define PERIPHS_IO_MUX_SD_CLK_U (DR_REG_IO_MUX_BASE +0x60)
#define FUNC_SD_CLK_U1CTS 4
@ -204,12 +110,72 @@
#define FUNC_SD_DATA1_SPID 1
#define FUNC_SD_DATA1_SD_DATA1 0
#define PERIPHS_IO_MUX_GPIO5_U (DR_REG_IO_MUX_BASE +0x6c)
#define FUNC_GPIO5_EMAC_RX_CLK 5
#define FUNC_GPIO5_HS1_DATA6 3
#define FUNC_GPIO5_GPIO5 2
#define FUNC_GPIO5_VSPICS0 1
#define FUNC_GPIO5_GPIO5_0 0
#define PERIPHS_IO_MUX_SD_DATA2_U (DR_REG_IO_MUX_BASE +0x54)
#define FUNC_SD_DATA2_U1RXD 4
#define FUNC_SD_DATA2_HS1_DATA2 3
#define FUNC_SD_DATA2_GPIO9 2
#define FUNC_SD_DATA2_SPIHD 1
#define FUNC_SD_DATA2_SD_DATA2 0
#define PERIPHS_IO_MUX_SD_DATA3_U (DR_REG_IO_MUX_BASE +0x58)
#define FUNC_SD_DATA3_U1TXD 4
#define FUNC_SD_DATA3_HS1_DATA3 3
#define FUNC_SD_DATA3_GPIO10 2
#define FUNC_SD_DATA3_SPIWP 1
#define FUNC_SD_DATA3_SD_DATA3 0
#define PERIPHS_IO_MUX_SD_CMD_U (DR_REG_IO_MUX_BASE +0x5c)
#define FUNC_SD_CMD_U1RTS 4
#define FUNC_SD_CMD_HS1_CMD 3
#define FUNC_SD_CMD_GPIO11 2
#define FUNC_SD_CMD_SPICS0 1
#define FUNC_SD_CMD_SD_CMD 0
#define PERIPHS_IO_MUX_MTDI_U (DR_REG_IO_MUX_BASE +0x34)
#define FUNC_MTDI_EMAC_TXD3 5
#define FUNC_MTDI_SD_DATA2 4
#define FUNC_MTDI_HS2_DATA2 3
#define FUNC_MTDI_GPIO12 2
#define FUNC_MTDI_HSPIQ 1
#define FUNC_MTDI_MTDI 0
#define PERIPHS_IO_MUX_MTCK_U (DR_REG_IO_MUX_BASE +0x38)
#define FUNC_MTCK_EMAC_RX_ER 5
#define FUNC_MTCK_SD_DATA3 4
#define FUNC_MTCK_HS2_DATA3 3
#define FUNC_MTCK_GPIO13 2
#define FUNC_MTCK_HSPID 1
#define FUNC_MTCK_MTCK 0
#define PERIPHS_IO_MUX_MTMS_U (DR_REG_IO_MUX_BASE +0x30)
#define FUNC_MTMS_EMAC_TXD2 5
#define FUNC_MTMS_SD_CLK 4
#define FUNC_MTMS_HS2_CLk 3
#define FUNC_MTMS_GPIO14 2
#define FUNC_MTMS_HSPICLK 1
#define FUNC_MTMS_MTMS 0
#define PERIPHS_IO_MUX_MTDO_U (DR_REG_IO_MUX_BASE +0x3c)
#define FUNC_MTDO_EMAC_RXD3 5
#define FUNC_MTDO_SD_CMD 4
#define FUNC_MTDO_HS2_CMD 3
#define FUNC_MTDO_GPIO15 2
#define FUNC_MTDO_HSPICS0 1
#define FUNC_MTDO_MTDO 0
#define PERIPHS_IO_MUX_GPIO16_U (DR_REG_IO_MUX_BASE +0x4c)
#define FUNC_GPIO16_EMAC_CLK_OUT 5
#define FUNC_GPIO16_U2RXD 4
#define FUNC_GPIO16_HS1_DATA4 3
#define FUNC_GPIO16_GPIO16 2
#define FUNC_GPIO16_GPIO16_0 0
#define PERIPHS_IO_MUX_GPIO17_U (DR_REG_IO_MUX_BASE +0x50)
#define FUNC_GPIO17_EMAC_CLK_OUT_180 5
#define FUNC_GPIO17_U2TXD 4
#define FUNC_GPIO17_HS1_DATA5 3
#define FUNC_GPIO17_GPIO17 2
#define FUNC_GPIO17_GPIO17_0 0
#define PERIPHS_IO_MUX_GPIO18_U (DR_REG_IO_MUX_BASE +0x70)
#define FUNC_GPIO18_HS1_DATA7 3
@ -241,17 +207,6 @@
#define FUNC_GPIO22_VSPIWP 1
#define FUNC_GPIO22_GPIO22_0 0
#define PERIPHS_IO_MUX_U0RXD_U (DR_REG_IO_MUX_BASE +0x84)
#define FUNC_U0RXD_GPIO3 2
#define FUNC_U0RXD_CLK_OUT2 1
#define FUNC_U0RXD_U0RXD 0
#define PERIPHS_IO_MUX_U0TXD_U (DR_REG_IO_MUX_BASE +0x88)
#define FUNC_U0TXD_EMAC_RXD2 3
#define FUNC_U0TXD_GPIO1 2
#define FUNC_U0TXD_CLK_OUT3 1
#define FUNC_U0TXD_U0TXD 0
#define PERIPHS_IO_MUX_GPIO23_U (DR_REG_IO_MUX_BASE +0x8c)
#define FUNC_GPIO23_HS1_STROBE 3
#define FUNC_GPIO23_GPIO23 2
@ -262,4 +217,51 @@
#define FUNC_GPIO24_GPIO24 2
#define FUNC_GPIO24_GPIO24_0 0
#define PERIPHS_IO_MUX_GPIO25_U (DR_REG_IO_MUX_BASE +0x24)
#define FUNC_GPIO25_EMAC_RXD0 5
#define FUNC_GPIO25_GPIO25 2
#define FUNC_GPIO25_GPIO25_0 0
#define PERIPHS_IO_MUX_GPIO26_U (DR_REG_IO_MUX_BASE +0x28)
#define FUNC_GPIO26_EMAC_RXD1 5
#define FUNC_GPIO26_GPIO26 2
#define FUNC_GPIO26_GPIO26_0 0
#define PERIPHS_IO_MUX_GPIO27_U (DR_REG_IO_MUX_BASE +0x2c)
#define FUNC_GPIO27_EMAC_RX_DV 5
#define FUNC_GPIO27_GPIO27 2
#define FUNC_GPIO27_GPIO27_0 0
#define PERIPHS_IO_MUX_GPIO32_U (DR_REG_IO_MUX_BASE +0x1c)
#define FUNC_GPIO32_GPIO32 2
#define FUNC_GPIO32_GPIO32_0 0
#define PERIPHS_IO_MUX_GPIO33_U (DR_REG_IO_MUX_BASE +0x20)
#define FUNC_GPIO33_GPIO33 2
#define FUNC_GPIO33_GPIO33_0 0
#define PERIPHS_IO_MUX_GPIO34_U (DR_REG_IO_MUX_BASE +0x14)
#define FUNC_GPIO34_GPIO34 2
#define FUNC_GPIO34_GPIO34_0 0
#define PERIPHS_IO_MUX_GPIO35_U (DR_REG_IO_MUX_BASE +0x18)
#define FUNC_GPIO35_GPIO35 2
#define FUNC_GPIO35_GPIO35_0 0
#define PERIPHS_IO_MUX_GPIO36_U (DR_REG_IO_MUX_BASE +0x04)
#define FUNC_GPIO36_GPIO36 2
#define FUNC_GPIO36_GPIO36_0 0
#define PERIPHS_IO_MUX_GPIO37_U (DR_REG_IO_MUX_BASE +0x08)
#define FUNC_GPIO37_GPIO37 2
#define FUNC_GPIO37_GPIO37_0 0
#define PERIPHS_IO_MUX_GPIO38_U (DR_REG_IO_MUX_BASE +0x0c)
#define FUNC_GPIO38_GPIO38 2
#define FUNC_GPIO38_GPIO38_0 0
#define PERIPHS_IO_MUX_GPIO39_U (DR_REG_IO_MUX_BASE +0x10)
#define FUNC_GPIO39_GPIO39 2
#define FUNC_GPIO39_GPIO39_0 0
#endif /* _SOC_IO_MUX_REG_H_ */

View file

@ -14,133 +14,74 @@
#ifndef _SOC_LEDC_STRUCT_H_
#define _SOC_LEDC_STRUCT_H_
typedef volatile struct {
struct{
union {
struct {
uint32_t timer_sel: 2; /*There are four high speed timers the two bits are used to select one of them for high speed channel. 2'b00: seletc hstimer0. 2'b01: select hstimer1. 2'b10: select hstimer2. 2'b11: select hstimer3.*/
uint32_t sig_out_en: 1; /*This is the output enable control bit for high speed channel*/
uint32_t idle_lv: 1; /*This bit is used to control the output value when high speed channel is off.*/
uint32_t reserved4: 27;
uint32_t clk_en: 1; /*This bit is clock gating control signal. when software configure LED_PWM internal registers it controls the register clock.*/
};
uint32_t val;
} conf0;
union {
struct {
uint32_t hpoint: 20; /*The output value changes to high when htimerx(x=[0 3]) selected by high speed channel has reached reg_hpoint_hsch0[19:0]*/
uint32_t reserved20: 12;
};
uint32_t val;
} hpoint;
union {
struct {
uint32_t duty: 25; /*The register is used to control output duty. When hstimerx(x=[0 3]) chosen by high speed channel has reached reg_lpoint_hsch0 the output signal changes to low. reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4]) (1) reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
uint32_t reserved25: 7;
};
uint32_t val;
} duty;
union {
struct {
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for high speed channel.*/
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_hsch0 cycles for high speed channel.*/
uint32_t duty_num: 10; /*This register is used to control the number of increased or decreased times for high speed channel.*/
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel.*/
uint32_t duty_start: 1; /*When reg_duty_num_hsch0 reg_duty_cycle_hsch0 and reg_duty_scale_hsch0 has been configured. these register won't take effect until set reg_duty_start_hsch0. this bit is automatically cleared by hardware.*/
};
uint32_t val;
} conf1;
union {
struct {
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for high speed channel.*/
uint32_t reserved25: 7;
};
uint32_t val;
} duty_rd;
} high_speed_channel[8];
struct{
union {
struct {
uint32_t timer_sel: 2; /*There are four low speed timers the two bits are used to select one of them for low speed channel. 2'b00: seletc lstimer0. 2'b01: select lstimer1. 2'b10: select lstimer2. 2'b11: select lstimer3.*/
uint32_t sig_out_en: 1; /*This is the output enable control bit for low speed channel.*/
uint32_t idle_lv: 1; /*This bit is used to control the output value when low speed channel is off.*/
uint32_t para_up: 1; /*This bit is used to update register LEDC_LSCH0_HPOINT and LEDC_LSCH0_DUTY for low speed channel.*/
uint32_t reserved5: 27;
};
uint32_t val;
} conf0;
union {
struct {
uint32_t hpoint: 20; /*The output value changes to high when lstimerx(x=[0 3]) selected by low speed channel has reached reg_hpoint_lsch0[19:0]*/
uint32_t reserved20: 12;
};
uint32_t val;
} hpoint;
union {
struct {
uint32_t duty: 25; /*The register is used to control output duty. When lstimerx(x=[0 3]) choosed by low speed channel has reached reg_lpoint_lsch0 the output signal changes to low. reg_lpoint_lsch0=(reg_hpoint_lsch0[19:0]+reg_duty_lsch0[24:4]) (1) reg_lpoint_lsch0=(reg_hpoint_lsch0[19:0]+reg_duty_lsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
uint32_t reserved25: 7;
};
uint32_t val;
} duty;
union {
struct {
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for low speed channel.*/
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_lsch0 cycles for low speed channel.*/
uint32_t duty_num: 10; /*This register is used to control the num of increased or decreased times for low speed channel6.*/
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for low speed channel6.*/
uint32_t duty_start: 1; /*When reg_duty_num_hsch1 reg_duty_cycle_hsch1 and reg_duty_scale_hsch1 has been configured. these register won't take effect until set reg_duty_start_hsch1. this bit is automatically cleared by hardware.*/
};
uint32_t val;
} conf1;
union {
struct {
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for low speed channel.*/
uint32_t reserved25: 7;
};
uint32_t val;
} duty_r;
} low_speed_channel[8];
struct{
union {
struct {
uint32_t timer_lim: 5; /*This register controls the range of the counter in high speed timer. the counter range is [0 2**reg_hstimer0_lim] the max bit width for counter is 20.*/
uint32_t div_num: 18; /*This register is used to configure parameter for divider in high speed timer the least significant eight bits represent the decimal part.*/
uint32_t pause: 1; /*This bit is used to pause the counter in high speed timer*/
uint32_t rst: 1; /*This bit is used to reset high speed timer the counter will be 0 after reset.*/
uint32_t tick_sel: 1; /*This bit is used to choose apb_clk or ref_tick for high speed timer. 1'b1:apb_clk 0:ref_tick*/
uint32_t reserved26: 6;
};
uint32_t val;
} conf;
union {
struct {
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in high speed timer*/
uint32_t reserved20: 12;
};
uint32_t val;
} value;
} high_speed_timer[4];
struct{
union {
struct {
uint32_t timer_lim: 5; /*This register controls the range of the counter in low speed timer. the counter range is [0 2**reg_lstimer0_lim] the max bit width for counter is 20.*/
uint32_t div_num: 18; /*This register is used to configure parameter for divider in low speed timer the least significant eight bits represent the decimal part.*/
uint32_t pause: 1; /*This bit is used to pause the counter in low speed timer.*/
uint32_t rst: 1; /*This bit is used to reset low speed timer the counter will be 0 after reset.*/
uint32_t tick_sel: 1; /*This bit is used to choose slow_clk or ref_tick for low speed timer. 1'b1:slow_clk 0:ref_tick*/
uint32_t param_update: 1; /*Set this bit to update reg_div_num_lstime0 and reg_lstimer0_lim.*/
uint32_t reserved27: 5;
};
uint32_t val;
} conf;
union {
struct {
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in low speed timer.*/
uint32_t reserved20: 12;
};
uint32_t val;
} value;
} low_speed_timer[4];
struct {
struct {
union {
struct {
uint32_t timer_sel: 2; /*There are four high speed timers the two bits are used to select one of them for high speed channel. 2'b00: seletc hstimer0. 2'b01: select hstimer1. 2'b10: select hstimer2. 2'b11: select hstimer3.*/
uint32_t sig_out_en: 1; /*This is the output enable control bit for high speed channel*/
uint32_t idle_lv: 1; /*This bit is used to control the output value when high speed channel is off.*/
uint32_t reserved4: 27;
uint32_t clk_en: 1; /*This bit is clock gating control signal. when software configure LED_PWM internal registers it controls the register clock.*/
};
uint32_t val;
} conf0;
union {
struct {
uint32_t hpoint: 20; /*The output value changes to high when htimerx(x=[0 3]) selected by high speed channel has reached reg_hpoint_hsch0[19:0]*/
uint32_t reserved20: 12;
};
uint32_t val;
} hpoint;
union {
struct {
uint32_t duty: 25; /*The register is used to control output duty. When hstimerx(x=[0 3]) chosen by high speed channel has reached reg_lpoint_hsch0 the output signal changes to low. reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4]) (1) reg_lpoint_hsch0=(reg_hpoint_hsch0[19:0]+reg_duty_hsch0[24:4] +1) (2) The least four bits in this register represent the decimal part and determines when to choose (1) or (2)*/
uint32_t reserved25: 7;
};
uint32_t val;
} duty;
union {
struct {
uint32_t duty_scale:10; /*This register controls the increase or decrease step scale for high speed channel.*/
uint32_t duty_cycle:10; /*This register is used to increase or decrease the duty every reg_duty_cycle_hsch0 cycles for high speed channel.*/
uint32_t duty_num: 10; /*This register is used to control the number of increased or decreased times for high speed channel.*/
uint32_t duty_inc: 1; /*This register is used to increase the duty of output signal or decrease the duty of output signal for high speed channel.*/
uint32_t duty_start: 1; /*When reg_duty_num_hsch0 reg_duty_cycle_hsch0 and reg_duty_scale_hsch0 has been configured. these register won't take effect until set reg_duty_start_hsch0. this bit is automatically cleared by hardware.*/
};
uint32_t val;
} conf1;
union {
struct {
uint32_t duty_read: 25; /*This register represents the current duty of the output signal for high speed channel.*/
uint32_t reserved25: 7;
};
uint32_t val;
} duty_rd;
} channel[8];
} channel_group[2]; /*two channel groups : 0: high-speed channels; 1: low-speed channels*/
struct {
struct {
union {
struct {
uint32_t bit_num: 5; /*This register controls the range of the counter in high speed timer. the counter range is [0 2**reg_hstimer0_lim] the max bit width for counter is 20.*/
uint32_t div_num: 18; /*This register is used to configure parameter for divider in high speed timer the least significant eight bits represent the decimal part.*/
uint32_t pause: 1; /*This bit is used to pause the counter in high speed timer*/
uint32_t rst: 1; /*This bit is used to reset high speed timer the counter will be 0 after reset.*/
uint32_t tick_sel: 1; /*This bit is used to choose apb_clk or ref_tick for high speed timer. 1'b1:apb_clk 0:ref_tick*/
uint32_t low_speed_update: 1; /*This bit is only useful for low speed timer channels, reserved for high speed timers*/
uint32_t reserved26: 5;
};
uint32_t val;
} conf;
union {
struct {
uint32_t timer_cnt: 20; /*software can read this register to get the current counter value in high speed timer*/
uint32_t reserved20: 12;
};
uint32_t val;
} value;
} timer[4];
} timer_group[2]; /*two channel groups : 0: high-speed channels; 1: low-speed channels*/
union {
struct {
uint32_t hstimer0_ovf: 1; /*The interrupt raw bit for high speed channel0 counter overflow.*/