fatfs: add vfs support

This commit is contained in:
Ivan Grokhotkov 2017-01-09 05:54:04 +08:00
parent d418776982
commit 44ce833d76
12 changed files with 1408 additions and 62 deletions

View File

@ -1,2 +1,2 @@
COMPONENT_ADD_INCLUDEDIRS := src
COMPONENT_SRCDIRS := src src/option
COMPONENT_SRCDIRS := src/option src

View File

@ -1,5 +1,6 @@
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module skeleton for FatFs (C)ChaN, 2016 */
/* ESP-IDF port Copyright 2016 Espressif Systems (Shanghai) PTE LTD */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
@ -56,7 +57,8 @@ DWORD get_fattime(void)
{
time_t t = time(NULL);
struct tm *tmr = gmtime(&t);
return ((DWORD)(tmr->tm_year - 80) << 25)
int year = tmr->tm_year < 80 ? 0 : tmr->tm_year - 80;
return ((DWORD)(year) << 25)
| ((DWORD)(tmr->tm_mon + 1) << 21)
| ((DWORD)tmr->tm_mday << 16)
| (WORD)(tmr->tm_hour << 11)
@ -78,7 +80,7 @@ DRESULT ff_sdmmc_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_read_blocks(card, buff, sector, count);
esp_err_t err = sdmmc_read_sectors(card, buff, sector, count);
if (err != ESP_OK) {
ESP_LOGE(TAG, "sdmmc_read_blocks failed (%d)", err);
return RES_ERROR;
@ -90,7 +92,7 @@ DRESULT ff_sdmmc_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count)
{
sdmmc_card_t* card = s_cards[pdrv];
assert(card);
esp_err_t err = sdmmc_write_blocks(card, buff, sector, count);
esp_err_t err = sdmmc_write_sectors(card, buff, sector, count);
if (err != ESP_OK) {
ESP_LOGE(TAG, "sdmmc_write_blocks failed (%d)", err);
return RES_ERROR;

View File

@ -44,16 +44,36 @@ DRESULT disk_read (BYTE pdrv, BYTE* buff, DWORD sector, UINT count);
DRESULT disk_write (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count);
DRESULT disk_ioctl (BYTE pdrv, BYTE cmd, void* buff);
/**
* Structure of pointers to disk IO driver functions.
*
* See FatFs documentation for details about these functions
*/
typedef struct {
DSTATUS (*init) (BYTE pdrv);
DSTATUS (*status) (BYTE pdrv);
DRESULT (*read) (BYTE pdrv, BYTE* buff, DWORD sector, UINT count);
DRESULT (*write) (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count);
DRESULT (*ioctl) (BYTE pdrv, BYTE cmd, void* buff);
DSTATUS (*init) (BYTE pdrv); /*!< disk initialization function */
DSTATUS (*status) (BYTE pdrv); /*!< disk status check function */
DRESULT (*read) (BYTE pdrv, BYTE* buff, DWORD sector, UINT count); /*!< sector read function */
DRESULT (*write) (BYTE pdrv, const BYTE* buff, DWORD sector, UINT count); /*!< sector write function */
DRESULT (*ioctl) (BYTE pdrv, BYTE cmd, void* buff); /*!< function to get info about disk and do some misc operations */
} ff_diskio_impl_t;
/**
* Register diskio driver for given drive number.
*
* When FATFS library calls one of disk_xxx functions for driver number pdrv,
* corresponding function in discio_impl for given pdrv will be called.
*
* @param pdrv drive number
* @param discio_impl pointer to ff_diskio_impl_t structure with diskio functions
*/
void ff_diskio_register(BYTE pdrv, const ff_diskio_impl_t* discio_impl);
/**
* Register SD/MMC diskio driver
*
* @param pdrv drive number
* @param card pointer to sdmmc_card_t structure describing a card; card should be initialized before calling f_mount.
*/
void ff_diskio_register_sdmmc(BYTE pdrv, sdmmc_card_t* card);
/* Disk Status Bits (DSTATUS) */

View File

@ -0,0 +1,107 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <stddef.h>
#include "esp_err.h"
#include "driver/gpio.h"
#include "driver/sdmmc_types.h"
#include "driver/sdmmc_host.h"
#include "ff.h"
/**
* @brief Register FATFS with VFS component
*
* This function registers given FAT drive in VFS, at the specified base path.
* If only one drive is used, fat_drive argument can be an empty string.
* Refer to FATFS library documentation on how to specify FAT drive.
* This function also allocates FATFS structure which should be used for f_mount
* call.
*
* @note This function doesn't mount the drive into FATFS, it just connects
* POSIX and C standard library IO function with FATFS. You need to mount
* desired drive into FATFS separately.
*
* @param base_path path prefix where FATFS should be registered
* @param fat_drive FATFS drive specification; if only one drive is used, can be an empty string
* @param max_files maximum number of files which can be open at the same time
* @param[out] out_fs pointer to FATFS structure which can be used for FATFS f_mount call is returned via this argument.
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_register was already called
* - ESP_ERR_NO_MEM if not enough memory or too many VFSes already registered
*/
esp_err_t esp_vfs_fat_register(const char* base_path, const char* fat_drive,
size_t max_files, FATFS** out_fs);
/**
* @brief Un-register FATFS from VFS
*
* @note FATFS structure returned by esp_vfs_fat_register is destroyed after
* this call. Make sure to call f_mount function to unmount it before
* calling esp_vfs_fat_unregister.
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if FATFS is not registered in VFS
*/
esp_err_t esp_vfs_fat_unregister();
/**
* @brief Configuration arguments for esp_vfs_fat_sdmmc_mount function
*/
typedef struct {
bool format_if_mount_failed; ///< If FAT partition can not be mounted, and this parameter is true, create partition table and format the filesystem
int max_files; ///< Max number of open files
} esp_vfs_fat_sdmmc_mount_config_t;
/**
* @brief Convenience function to get FAT filesystem on SD card registered in VFS
*
* This is an all-in-one function which does the following:
* - initializes SD/MMC peripheral with configuration in host_config
* - initializes SD/MMC card with configuration in slot_config
* - mounts FAT partition on SD/MMC card using FATFS library, with configuration in mount_config
* - registers FATFS library with VFS, with prefix given by base_prefix variable
*
* This function is intended to make example code more compact.
* For real world applications, developers should implement the logic of
* probing SD card, locating and mounting partition, and registering FATFS in VFS,
* with proper error checking and handling of exceptional conditions.
*
* @param base_path path where partition should be registered (e.g. "/sdcard")
* @param host_config pointer to structure describing SDMMC host
* @param slot_config pointer to structure with extra SDMMC slot configuration
* @param mount_config pointer to structure with extra parameters for mounting FATFS
* @param[out] out_card if not NULL, pointer to the card information structure will be returned via this argument
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
* - ESP_ERR_NO_MEM if memory can not be allocated
* - ESP_FAIL if partition can not be mounted
* - other error codes from SDMMC host, SDMMC protocol, or FATFS drivers
*/
esp_err_t esp_vfs_fat_sdmmc_mount(const char* base_path,
const sdmmc_host_t* host_config,
const sdmmc_slot_config_t* slot_config,
const esp_vfs_fat_sdmmc_mount_config_t* mount_config,
sdmmc_card_t** out_card);
/**
* @brief Unmount FAT filesystem and release resources acquired using esp_vfs_fat_sdmmc_mount
*
* @return
* - ESP_OK on success
* - ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount hasn't been called
*/
esp_err_t esp_vfs_fat_sdmmc_unmount();

View File

@ -241,9 +241,9 @@
/ lock control is independent of re-entrancy. */
#define _FS_REENTRANT 0
#define _FS_REENTRANT 1
#define _FS_TIMEOUT 1000
#define _SYNC_t HANDLE
#define _SYNC_t SemaphoreHandle_t
/* The option _FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
@ -261,7 +261,7 @@
/ SemaphoreHandle_t and etc.. A header file for O/S definitions needs to be
/ included somewhere in the scope of ff.h. */
/* #include <windows.h> // O/S definitions */
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
/*--- End of configuration options ---*/

View File

@ -21,22 +21,8 @@ int ff_cre_syncobj ( /* 1:Function succeeded, 0:Could not create the sync object
_SYNC_t *sobj /* Pointer to return the created sync object */
)
{
int ret;
*sobj = CreateMutex(NULL, FALSE, NULL); /* Win32 */
ret = (int)(*sobj != INVALID_HANDLE_VALUE);
// *sobj = SyncObjects[vol]; /* uITRON (give a static sync object) */
// ret = 1; /* The initial value of the semaphore must be 1. */
// *sobj = OSMutexCreate(0, &err); /* uC/OS-II */
// ret = (int)(err == OS_NO_ERR);
// *sobj = xSemaphoreCreateMutex(); /* FreeRTOS */
// ret = (int)(*sobj != NULL);
return ret;
*sobj = xSemaphoreCreateMutex();
return (*sobj != NULL) ? 1 : 0;
}
@ -53,20 +39,8 @@ int ff_del_syncobj ( /* 1:Function succeeded, 0:Could not delete due to any erro
_SYNC_t sobj /* Sync object tied to the logical drive to be deleted */
)
{
int ret;
ret = CloseHandle(sobj); /* Win32 */
// ret = 1; /* uITRON (nothing to do) */
// OSMutexDel(sobj, OS_DEL_ALWAYS, &err); /* uC/OS-II */
// ret = (int)(err == OS_NO_ERR);
// vSemaphoreDelete(sobj); /* FreeRTOS */
// ret = 1;
return ret;
vSemaphoreDelete(sobj);
return 1;
}
@ -82,18 +56,7 @@ int ff_req_grant ( /* 1:Got a grant to access the volume, 0:Could not get a gran
_SYNC_t sobj /* Sync object to wait */
)
{
int ret;
ret = (int)(WaitForSingleObject(sobj, _FS_TIMEOUT) == WAIT_OBJECT_0); /* Win32 */
// ret = (int)(wai_sem(sobj) == E_OK); /* uITRON */
// OSMutexPend(sobj, _FS_TIMEOUT, &err)); /* uC/OS-II */
// ret = (int)(err == OS_NO_ERR);
// ret = (int)(xSemaphoreTake(sobj, _FS_TIMEOUT) == pdTRUE); /* FreeRTOS */
return ret;
return (xSemaphoreTake(sobj, _FS_TIMEOUT) == pdTRUE) ? 1 : 0;
}
@ -108,13 +71,7 @@ void ff_rel_grant (
_SYNC_t sobj /* Sync object to be signaled */
)
{
ReleaseMutex(sobj); /* Win32 */
// sig_sem(sobj); /* uITRON */
// OSMutexPost(sobj); /* uC/OS-II */
// xSemaphoreGive(sobj); /* FreeRTOS */
xSemaphoreGive(sobj);
}
#endif

View File

@ -0,0 +1,538 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/errno.h>
#include <sys/fcntl.h>
#include <sys/lock.h>
#include "esp_vfs.h"
#include "esp_log.h"
#include "ff.h"
#include "diskio.h"
typedef struct {
char fat_drive[8];
size_t max_files;
FATFS fs;
FIL files[0];
_lock_t lock;
} vfs_fat_ctx_t;
typedef struct {
DIR dir;
long offset;
FF_DIR ffdir;
FILINFO filinfo;
struct dirent cur_dirent;
} vfs_fat_dir_t;
static const char* TAG = "vfs_fat";
static size_t vfs_fat_write(void* p, int fd, const void * data, size_t size);
static off_t vfs_fat_lseek(void* p, int fd, off_t size, int mode);
static ssize_t vfs_fat_read(void* ctx, int fd, void * dst, size_t size);
static int vfs_fat_open(void* ctx, const char * path, int flags, int mode);
static int vfs_fat_close(void* ctx, int fd);
static int vfs_fat_fstat(void* ctx, int fd, struct stat * st);
static int vfs_fat_stat(void* ctx, const char * path, struct stat * st);
static int vfs_fat_link(void* ctx, const char* n1, const char* n2);
static int vfs_fat_unlink(void* ctx, const char *path);
static int vfs_fat_rename(void* ctx, const char *src, const char *dst);
static DIR* vfs_fat_opendir(void* ctx, const char* name);
static struct dirent* vfs_fat_readdir(void* ctx, DIR* pdir);
static int vfs_fat_readdir_r(void* ctx, DIR* pdir, struct dirent* entry, struct dirent** out_dirent);
static long vfs_fat_telldir(void* ctx, DIR* pdir);
static void vfs_fat_seekdir(void* ctx, DIR* pdir, long offset);
static int vfs_fat_closedir(void* ctx, DIR* pdir);
static int vfs_fat_mkdir(void* ctx, const char* name, mode_t mode);
static int vfs_fat_rmdir(void* ctx, const char* name);
static char s_base_path[ESP_VFS_PATH_MAX];
static vfs_fat_ctx_t* s_fat_ctx = NULL;
esp_err_t esp_vfs_fat_register(const char* base_path, const char* fat_drive, size_t max_files, FATFS** out_fs)
{
if (s_fat_ctx) {
return ESP_ERR_INVALID_STATE;
}
const esp_vfs_t vfs = {
.flags = ESP_VFS_FLAG_CONTEXT_PTR,
.write_p = &vfs_fat_write,
.lseek_p = &vfs_fat_lseek,
.read_p = &vfs_fat_read,
.open_p = &vfs_fat_open,
.close_p = &vfs_fat_close,
.fstat_p = &vfs_fat_fstat,
.stat_p = &vfs_fat_stat,
.link_p = &vfs_fat_link,
.unlink_p = &vfs_fat_unlink,
.rename_p = &vfs_fat_rename,
.opendir_p = &vfs_fat_opendir,
.closedir_p = &vfs_fat_closedir,
.readdir_p = &vfs_fat_readdir,
.readdir_r_p = &vfs_fat_readdir_r,
.seekdir_p = &vfs_fat_seekdir,
.telldir_p = &vfs_fat_telldir,
.mkdir_p = &vfs_fat_mkdir,
.rmdir_p = &vfs_fat_rmdir
};
size_t ctx_size = sizeof(vfs_fat_ctx_t) + max_files * sizeof(FIL);
s_fat_ctx = (vfs_fat_ctx_t*) calloc(1, ctx_size);
if (s_fat_ctx == NULL) {
return ESP_ERR_NO_MEM;
}
s_fat_ctx->max_files = max_files;
strncpy(s_fat_ctx->fat_drive, fat_drive, sizeof(s_fat_ctx->fat_drive) - 1);
*out_fs = &s_fat_ctx->fs;
esp_err_t err = esp_vfs_register(base_path, &vfs, s_fat_ctx);
if (err != ESP_OK) {
free(s_fat_ctx);
s_fat_ctx = NULL;
return err;
}
_lock_init(&s_fat_ctx->lock);
strncpy(s_base_path, base_path, sizeof(s_base_path) - 1);
s_base_path[sizeof(s_base_path) - 1] = 0;
return ESP_OK;
}
esp_err_t esp_vfs_fat_unregister()
{
if (s_fat_ctx == NULL) {
return ESP_ERR_INVALID_STATE;
}
esp_err_t err = esp_vfs_unregister(s_base_path);
if (err != ESP_OK) {
return err;
}
_lock_close(&s_fat_ctx->lock);
free(s_fat_ctx);
s_fat_ctx = NULL;
return ESP_OK;
}
static int get_next_fd(vfs_fat_ctx_t* fat_ctx)
{
for (size_t i = 0; i < fat_ctx->max_files; ++i) {
if (fat_ctx->files[i].obj.fs == NULL) {
return (int) i;
}
}
return -1;
}
static int fat_mode_conv(int m)
{
int res = 0;
int acc_mode = m & O_ACCMODE;
if (acc_mode == O_RDONLY) {
res |= FA_READ;
} else if (acc_mode == O_WRONLY) {
res |= FA_WRITE;
} else if (acc_mode == O_RDWR) {
res |= FA_READ | FA_WRITE;
}
if ((m & O_CREAT) && (m & O_EXCL)) {
res |= FA_CREATE_NEW;
} else if (m & O_CREAT) {
res |= FA_CREATE_ALWAYS;
} else if (m & O_APPEND) {
res |= FA_OPEN_ALWAYS;
} else {
res |= FA_OPEN_EXISTING;
}
return res;
}
static int fresult_to_errno(FRESULT fr)
{
switch(fr) {
case FR_DISK_ERR: return EIO;
case FR_INT_ERR:
assert(0 && "fatfs internal error");
return EIO;
case FR_NOT_READY: return ENODEV;
case FR_NO_FILE: return ENOENT;
case FR_NO_PATH: return ENOENT;
case FR_INVALID_NAME: return EINVAL;
case FR_DENIED: return EACCES;
case FR_EXIST: return EEXIST;
case FR_INVALID_OBJECT: return EBADF;
case FR_WRITE_PROTECTED: return EACCES;
case FR_INVALID_DRIVE: return ENXIO;
case FR_NOT_ENABLED: return ENODEV;
case FR_NO_FILESYSTEM: return ENODEV;
case FR_MKFS_ABORTED: return EINTR;
case FR_TIMEOUT: return ETIMEDOUT;
case FR_LOCKED: return EACCES;
case FR_NOT_ENOUGH_CORE: return ENOMEM;
case FR_TOO_MANY_OPEN_FILES: return ENFILE;
case FR_INVALID_PARAMETER: return EINVAL;
case FR_OK: return 0;
}
assert(0 && "unhandled FRESULT");
return ENOTSUP;
}
static void file_cleanup(vfs_fat_ctx_t* ctx, int fd)
{
memset(&ctx->files[fd], 0, sizeof(FIL));
}
static int vfs_fat_open(void* ctx, const char * path, int flags, int mode)
{
ESP_LOGV(TAG, "%s: path=\"%s\", flags=%x, mode=%x", __func__, path, flags, mode);
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&s_fat_ctx->lock);
int fd = get_next_fd(fat_ctx);
if (fd < 0) {
ESP_LOGE(TAG, "open: no free file descriptors");
errno = ENFILE;
fd = -1;
goto out;
}
FRESULT res = f_open(&fat_ctx->files[fd], path, fat_mode_conv(flags));
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
file_cleanup(fat_ctx, fd);
errno = fresult_to_errno(res);
fd = -1;
goto out;
}
out:
_lock_release(&s_fat_ctx->lock);
return fd;
}
static size_t vfs_fat_write(void* ctx, int fd, const void * data, size_t size)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
unsigned written = 0;
FRESULT res = f_write(file, data, size, &written);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
if (written == 0) {
return -1;
}
}
return written;
}
static ssize_t vfs_fat_read(void* ctx, int fd, void * dst, size_t size)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
unsigned read = 0;
FRESULT res = f_read(file, dst, size, &read);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
if (read == 0) {
return -1;
}
}
return read;
}
static int vfs_fat_close(void* ctx, int fd)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
_lock_acquire(&s_fat_ctx->lock);
FIL* file = &fat_ctx->files[fd];
FRESULT res = f_close(file);
file_cleanup(fat_ctx, fd);
int rc = 0;
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
rc = -1;
}
_lock_release(&s_fat_ctx->lock);
return rc;
}
static off_t vfs_fat_lseek(void* ctx, int fd, off_t offset, int mode)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
off_t new_pos;
if (mode == SEEK_SET) {
new_pos = offset;
} else if (mode == SEEK_CUR) {
off_t cur_pos = f_tell(file);
new_pos = cur_pos + offset;
} else if (mode == SEEK_END) {
off_t size = f_size(file);
new_pos = size + offset;
} else {
errno = EINVAL;
return -1;
}
FRESULT res = f_lseek(file, new_pos);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return new_pos;
}
static int vfs_fat_fstat(void* ctx, int fd, struct stat * st)
{
vfs_fat_ctx_t* fat_ctx = (vfs_fat_ctx_t*) ctx;
FIL* file = &fat_ctx->files[fd];
st->st_size = f_size(file);
st->st_mode = S_IRWXU | S_IRWXG | S_IRWXO | S_IFREG;
return 0;
}
static int vfs_fat_stat(void* ctx, const char * path, struct stat * st)
{
FILINFO info;
FRESULT res = f_stat(path, &info);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
st->st_size = info.fsize;
st->st_mode = S_IRWXU | S_IRWXG | S_IRWXO |
((info.fattrib & AM_DIR) ? S_IFDIR : S_IFREG);
struct tm tm;
uint16_t fdate = info.fdate;
tm.tm_mday = fdate & 0x1f;
fdate >>= 5;
tm.tm_mon = (fdate & 0xf) - 1;
fdate >>=4;
tm.tm_year = fdate + 80;
uint16_t ftime = info.ftime;
tm.tm_sec = (ftime & 0x1f) * 2;
ftime >>= 5;
tm.tm_min = (ftime & 0x3f);
ftime >>= 6;
tm.tm_hour = (ftime & 0x1f);
st->st_mtime = mktime(&tm);
return 0;
}
static int vfs_fat_unlink(void* ctx, const char *path)
{
FRESULT res = f_unlink(path);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_link(void* ctx, const char* n1, const char* n2)
{
const size_t copy_buf_size = 4096;
void* buf = malloc(copy_buf_size);
if (buf == NULL) {
errno = ENOMEM;
return -1;
}
FIL f1;
FRESULT res = f_open(&f1, n1, FA_READ | FA_OPEN_EXISTING);
if (res != FR_OK) {
goto fail1;
}
FIL f2;
res = f_open(&f2, n2, FA_WRITE | FA_CREATE_NEW);
if (res != FR_OK) {
goto fail2;
}
size_t size_left = f_size(&f1);
while (size_left > 0) {
size_t will_copy = (size_left < copy_buf_size) ? size_left : copy_buf_size;
size_t read;
res = f_read(&f1, buf, will_copy, &read);
if (res != FR_OK) {
goto fail3;
} else if (read != will_copy) {
res = FR_DISK_ERR;
goto fail3;
}
size_t written;
res = f_write(&f2, buf, will_copy, &written);
if (res != FR_OK) {
goto fail3;
} else if (written != will_copy) {
res = FR_DISK_ERR;
goto fail3;
}
size_left -= will_copy;
}
fail3:
f_close(&f2);
fail2:
f_close(&f1);
fail1:
free(buf);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_rename(void* ctx, const char *src, const char *dst)
{
FRESULT res = f_rename(src, dst);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static DIR* vfs_fat_opendir(void* ctx, const char* name)
{
vfs_fat_dir_t* fat_dir = calloc(1, sizeof(vfs_fat_dir_t));
if (!fat_dir) {
errno = ENOMEM;
return NULL;
}
FRESULT res = f_opendir(&fat_dir->ffdir, name);
if (res != FR_OK) {
free(fat_dir);
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return NULL;
}
return (DIR*) fat_dir;
}
static int vfs_fat_closedir(void* ctx, DIR* pdir)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res = f_closedir(&fat_dir->ffdir);
free(pdir);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static struct dirent* vfs_fat_readdir(void* ctx, DIR* pdir)
{
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
struct dirent* out_dirent;
int err = vfs_fat_readdir_r(ctx, pdir, &fat_dir->cur_dirent, &out_dirent);
if (err != 0) {
errno = err;
return NULL;
}
return out_dirent;
}
static int vfs_fat_readdir_r(void* ctx, DIR* pdir,
struct dirent* entry, struct dirent** out_dirent)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res = f_readdir(&fat_dir->ffdir, &fat_dir->filinfo);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
return fresult_to_errno(res);
}
if (fat_dir->filinfo.fname[0] == 0) {
// end of directory
*out_dirent = NULL;
return 0;
}
entry->d_ino = 0;
if (fat_dir->filinfo.fattrib & AM_DIR) {
entry->d_type = DT_DIR;
} else {
entry->d_type = DT_REG;
}
strlcpy(entry->d_name, fat_dir->filinfo.fname,
sizeof(entry->d_name));
fat_dir->offset++;
*out_dirent = entry;
return 0;
}
static long vfs_fat_telldir(void* ctx, DIR* pdir)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
return fat_dir->offset;
}
static void vfs_fat_seekdir(void* ctx, DIR* pdir, long offset)
{
assert(pdir);
vfs_fat_dir_t* fat_dir = (vfs_fat_dir_t*) pdir;
FRESULT res;
if (offset < fat_dir->offset) {
res = f_rewinddir(&fat_dir->ffdir);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: rewinddir fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return;
}
fat_dir->offset = 0;
}
while (fat_dir->offset < offset) {
res = f_readdir(&fat_dir->ffdir, &fat_dir->filinfo);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: f_readdir fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return;
}
fat_dir->offset++;
}
}
static int vfs_fat_mkdir(void* ctx, const char* name, mode_t mode)
{
(void) mode;
FRESULT res = f_mkdir(name);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}
static int vfs_fat_rmdir(void* ctx, const char* name)
{
FRESULT res = f_unlink(name);
if (res != FR_OK) {
ESP_LOGD(TAG, "%s: fresult=%d", __func__, res);
errno = fresult_to_errno(res);
return -1;
}
return 0;
}

View File

@ -0,0 +1,126 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include "esp_log.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "driver/sdmmc_host.h"
#include "sdmmc_cmd.h"
#include "diskio.h"
static const char* TAG = "vfs_fat_sdmmc";
static sdmmc_card_t* s_card = NULL;
esp_err_t esp_vfs_fat_sdmmc_mount(const char* base_path,
const sdmmc_host_t* host_config,
const sdmmc_slot_config_t* slot_config,
const esp_vfs_fat_sdmmc_mount_config_t* mount_config,
sdmmc_card_t** out_card)
{
const size_t workbuf_size = 4096;
void* workbuf = NULL;
if (s_card != NULL) {
return ESP_ERR_INVALID_STATE;
}
// enable SDMMC
sdmmc_host_init();
// enable card slot
sdmmc_host_init_slot(host_config->slot, slot_config);
s_card = malloc(sizeof(sdmmc_card_t));
if (s_card == NULL) {
return ESP_ERR_NO_MEM;
}
// probe and initialize card
esp_err_t err = sdmmc_card_init(host_config, s_card);
if (err != ESP_OK) {
ESP_LOGD(TAG, "sdmmc_card_init failed 0x(%x)", err);
goto fail;
}
if (out_card != NULL) {
*out_card = s_card;
}
// connect SDMMC driver to FATFS
ff_diskio_register_sdmmc(0, s_card);
// connect FATFS to VFS
FATFS* fs;
err = esp_vfs_fat_register(base_path, "", mount_config->max_files, &fs);
if (err == ESP_ERR_INVALID_STATE) {
// it's okay, already registered with VFS
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "esp_vfs_fat_register failed 0x(%x)", err);
goto fail;
}
// Try to mount partition
FRESULT res = f_mount(fs, "", 1);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGW(TAG, "failed to mount card (%d)", res);
if (!(res == FR_NO_FILESYSTEM && mount_config->format_if_mount_failed)) {
goto fail;
}
ESP_LOGW(TAG, "partitioning card");
DWORD plist[] = {100, 0, 0, 0};
workbuf = malloc(workbuf_size);
res = f_fdisk(0, plist, workbuf);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_fdisk failed (%d)", res);
goto fail;
}
ESP_LOGW(TAG, "formatting card");
res = f_mkfs("", FM_ANY, s_card->csd.sector_size, workbuf, workbuf_size);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_mkfs failed (%d)", res);
goto fail;
}
free(workbuf);
ESP_LOGW(TAG, "mounting again");
res = f_mount(fs, "", 0);
if (res != FR_OK) {
err = ESP_FAIL;
ESP_LOGD(TAG, "f_mount failed after formatting (%d)", res);
goto fail;
}
}
return ESP_OK;
fail:
free(workbuf);
esp_vfs_unregister(base_path);
free(s_card);
s_card = NULL;
return err;
}
esp_err_t esp_vfs_fat_sdmmc_unmount()
{
if (s_card == NULL) {
return ESP_ERR_INVALID_STATE;
}
// unmount
f_mount(0, "", 0);
// release SD driver
free(s_card);
s_card = NULL;
sdmmc_host_deinit();
return esp_vfs_fat_unregister();
}

View File

@ -0,0 +1 @@
COMPONENT_ADD_LDFLAGS = -Wl,--whole-archive -l$(COMPONENT_NAME) -Wl,--no-whole-archive

View File

@ -0,0 +1,552 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include "unity.h"
#include "esp_log.h"
#include "esp_system.h"
#include "esp_vfs.h"
#include "esp_vfs_fat.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "driver/sdmmc_host.h"
#include "driver/sdmmc_defs.h"
#include "sdmmc_cmd.h"
#include "diskio.h"
#include "ff.h"
static const char* hello_str = "Hello, World!\n";
#define HEAP_SIZE_CAPTURE() \
size_t heap_size = esp_get_free_heap_size();
#define HEAP_SIZE_CHECK(tolerance) \
do {\
size_t final_heap_size = esp_get_free_heap_size(); \
if (final_heap_size < heap_size - tolerance) { \
printf("Initial heap size: %d, final: %d, diff=%d\n", heap_size, final_heap_size, heap_size - final_heap_size); \
} \
} while(0)
static void create_file_with_text(const char* name, const char* text)
{
FILE* f = fopen(name, "wb");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_TRUE(fputs(text, f) != EOF);
TEST_ASSERT_EQUAL(0, fclose(f));
}
TEST_CASE("can create and write file on sd card", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
create_file_with_text("/sdcard/hello.txt", hello_str);
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
TEST_CASE("can read file on sd card", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = false,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
FILE* f = fopen("/sdcard/hello.txt", "r");
TEST_ASSERT_NOT_NULL(f);
char buf[32];
int cb = fread(buf, 1, sizeof(buf), f);
TEST_ASSERT_EQUAL(strlen(hello_str), cb);
TEST_ASSERT_EQUAL(0, strcmp(hello_str, buf));
TEST_ASSERT_EQUAL(0, fclose(f));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
static void speed_test(void* buf, size_t buf_size, size_t file_size, bool write)
{
const size_t buf_count = file_size / buf_size;
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = write,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
FILE* f = fopen("/sdcard/4mb.bin", (write) ? "wb" : "rb");
TEST_ASSERT_NOT_NULL(f);
struct timeval tv_start;
gettimeofday(&tv_start, NULL);
for (size_t n = 0; n < buf_count; ++n) {
if (write) {
TEST_ASSERT_EQUAL(1, fwrite(buf, buf_size, 1, f));
} else {
if (fread(buf, buf_size, 1, f) != 1) {
printf("reading at n=%d, eof=%d", n, feof(f));
TEST_FAIL();
}
}
}
struct timeval tv_end;
gettimeofday(&tv_end, NULL);
TEST_ASSERT_EQUAL(0, fclose(f));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
float t_s = tv_end.tv_sec - tv_start.tv_sec + 1e-6f * (tv_end.tv_usec - tv_start.tv_usec);
printf("%s %d bytes (block size %d) in %.3fms (%.3f MB/s)\n",
(write)?"Wrote":"Read", file_size, buf_size, t_s * 1e3,
(file_size / 1024 / 1024) / t_s);
}
TEST_CASE("read speed test", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
const size_t file_size = 4 * 1024 * 1024;
speed_test(buf, 4 * 1024, file_size, false);
HEAP_SIZE_CHECK(0);
speed_test(buf, 8 * 1024, file_size, false);
HEAP_SIZE_CHECK(0);
speed_test(buf, 16 * 1024, file_size, false);
HEAP_SIZE_CHECK(0);
free(buf);
HEAP_SIZE_CHECK(0);
}
TEST_CASE("write speed test", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
const size_t buf_size = 16 * 1024;
uint32_t* buf = (uint32_t*) calloc(1, buf_size);
for (size_t i = 0; i < buf_size / 4; ++i) {
buf[i] = esp_random();
}
const size_t file_size = 4 * 1024 * 1024;
speed_test(buf, 4 * 1024, file_size, true);
speed_test(buf, 8 * 1024, file_size, true);
speed_test(buf, 16 * 1024, file_size, true);
free(buf);
HEAP_SIZE_CHECK(0);
}
TEST_CASE("can lseek", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
FILE* f = fopen("/sdcard/seek.txt", "wb+");
TEST_ASSERT_NOT_NULL(f);
TEST_ASSERT_EQUAL(11, fprintf(f, "0123456789\n"));
TEST_ASSERT_EQUAL(0, fseek(f, -2, SEEK_CUR));
TEST_ASSERT_EQUAL('9', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 3, SEEK_SET));
TEST_ASSERT_EQUAL('3', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, -3, SEEK_END));
TEST_ASSERT_EQUAL('8', fgetc(f));
TEST_ASSERT_EQUAL(0, fseek(f, 3, SEEK_END));
TEST_ASSERT_EQUAL(14, ftell(f));
TEST_ASSERT_EQUAL(4, fprintf(f, "abc\n"));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_END));
TEST_ASSERT_EQUAL(18, ftell(f));
TEST_ASSERT_EQUAL(0, fseek(f, 0, SEEK_SET));
char buf[20];
TEST_ASSERT_EQUAL(18, fread(buf, 1, sizeof(buf), f));
const char ref_buf[] = "0123456789\n\0\0\0abc\n";
TEST_ASSERT_EQUAL_INT8_ARRAY(ref_buf, buf, sizeof(ref_buf) - 1);
TEST_ASSERT_EQUAL(0, fclose(f));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
TEST_CASE("stat returns correct values", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
struct tm tm;
tm.tm_year = 2016 - 1900;
tm.tm_mon = 0;
tm.tm_mday = 10;
tm.tm_hour = 16;
tm.tm_min = 30;
tm.tm_sec = 0;
time_t t = mktime(&tm);
printf("Setting time: %s", asctime(&tm));
struct timeval now = { .tv_sec = t };
settimeofday(&now, NULL);
create_file_with_text("/sdcard/stat.txt", "foo\n");
struct stat st;
TEST_ASSERT_EQUAL(0, stat("/sdcard/stat.txt", &st));
time_t mtime = st.st_mtime;
struct tm mtm;
localtime_r(&mtime, &mtm);
printf("File time: %s", asctime(&mtm));
TEST_ASSERT(abs(mtime - t) < 2); // fatfs library stores time with 2 second precision
TEST_ASSERT(st.st_mode & S_IFREG);
TEST_ASSERT_FALSE(st.st_mode & S_IFDIR);
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
TEST_CASE("unlink removes a file", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
create_file_with_text("/sdcard/unlink.txt", "unlink\n");
TEST_ASSERT_EQUAL(0, unlink("/sdcard/unlink.txt"));
TEST_ASSERT_NULL(fopen("/sdcard/unlink.txt", "r"));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
TEST_CASE("link copies a file, rename moves a file", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
unlink("/sdcard/linkcopy.txt");
unlink("/sdcard/link_dst.txt");
unlink("/sdcard/link_src.txt");
FILE* f = fopen("/sdcard/link_src.txt", "w+");
TEST_ASSERT_NOT_NULL(f);
char* str = "0123456789";
for (int i = 0; i < 4000; ++i) {
TEST_ASSERT_NOT_EQUAL(EOF, fputs(str, f));
}
TEST_ASSERT_EQUAL(0, fclose(f));
TEST_ASSERT_EQUAL(0, link("/sdcard/link_src.txt", "/sdcard/linkcopy.txt"));
FILE* fcopy = fopen("/sdcard/linkcopy.txt", "r");
TEST_ASSERT_NOT_NULL(fcopy);
TEST_ASSERT_EQUAL(0, fseek(fcopy, 0, SEEK_END));
TEST_ASSERT_EQUAL(40000, ftell(fcopy));
TEST_ASSERT_EQUAL(0, fclose(fcopy));
TEST_ASSERT_EQUAL(0, rename("/sdcard/linkcopy.txt", "/sdcard/link_dst.txt"));
TEST_ASSERT_NULL(fopen("/sdcard/linkcopy.txt", "r"));
FILE* fdst = fopen("/sdcard/link_dst.txt", "r");
TEST_ASSERT_NOT_NULL(fdst);
TEST_ASSERT_EQUAL(0, fseek(fdst, 0, SEEK_END));
TEST_ASSERT_EQUAL(40000, ftell(fdst));
TEST_ASSERT_EQUAL(0, fclose(fdst));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
typedef struct {
const char* filename;
bool write;
size_t word_count;
int seed;
SemaphoreHandle_t done;
int result;
} read_write_test_arg_t;
#define READ_WRITE_TEST_ARG_INIT(name, seed_) \
{ \
.filename = name, \
.seed = seed_, \
.word_count = 8192, \
.write = true, \
.done = xSemaphoreCreateBinary() \
}
static void read_write_task(void* param)
{
read_write_test_arg_t* args = (read_write_test_arg_t*) param;
FILE* f = fopen(args->filename, args->write ? "wb" : "rb");
if (f == NULL) {
args->result = ESP_ERR_NOT_FOUND;
goto done;
}
srand(args->seed);
for (size_t i = 0; i < args->word_count; ++i) {
uint32_t val = rand();
if (args->write) {
int cnt = fwrite(&val, sizeof(val), 1, f);
if (cnt != 1) {
args->result = ESP_FAIL;
goto close;
}
} else {
uint32_t rval;
int cnt = fread(&rval, sizeof(rval), 1, f);
if (cnt != 1 || rval != val) {
ets_printf("E: i=%d, cnt=%d rval=%d val=%d\n\n", i, cnt, rval, val);
args->result = ESP_FAIL;
goto close;
}
}
}
args->result = ESP_OK;
close:
fclose(f);
done:
xSemaphoreGive(args->done);
vTaskDelay(1);
vTaskDelete(NULL);
}
TEST_CASE("multiple tasks can use same volume", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
read_write_test_arg_t args1 = READ_WRITE_TEST_ARG_INIT("/sdcard/f1", 1);
read_write_test_arg_t args2 = READ_WRITE_TEST_ARG_INIT("/sdcard/f2", 2);
printf("writing f1 and f2\n");
xTaskCreatePinnedToCore(&read_write_task, "rw1", 2048, &args1, 3, NULL, 0);
xTaskCreatePinnedToCore(&read_write_task, "rw2", 2048, &args2, 3, NULL, 1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("f1 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("f2 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
args1.write = false;
args2.write = false;
read_write_test_arg_t args3 = READ_WRITE_TEST_ARG_INIT("/sdcard/f3", 3);
read_write_test_arg_t args4 = READ_WRITE_TEST_ARG_INIT("/sdcard/f4", 4);
printf("reading f1 and f2, writing f3 and f4\n");
xTaskCreatePinnedToCore(&read_write_task, "rw3", 2048, &args3, 3, NULL, 1);
xTaskCreatePinnedToCore(&read_write_task, "rw4", 2048, &args4, 3, NULL, 0);
xTaskCreatePinnedToCore(&read_write_task, "rw1", 2048, &args1, 3, NULL, 0);
xTaskCreatePinnedToCore(&read_write_task, "rw2", 2048, &args2, 3, NULL, 1);
xSemaphoreTake(args1.done, portMAX_DELAY);
printf("f1 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args1.result);
xSemaphoreTake(args2.done, portMAX_DELAY);
printf("f2 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args2.result);
xSemaphoreTake(args3.done, portMAX_DELAY);
printf("f3 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args3.result);
xSemaphoreTake(args4.done, portMAX_DELAY);
printf("f4 done\n");
TEST_ASSERT_EQUAL(ESP_OK, args4.result);
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
vSemaphoreDelete(args1.done);
vSemaphoreDelete(args2.done);
vSemaphoreDelete(args3.done);
vSemaphoreDelete(args4.done);
vTaskDelay(10);
HEAP_SIZE_CHECK(0);
}
TEST_CASE("can create and remove directories", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
TEST_ASSERT_EQUAL(0, mkdir("/sdcard/dir1", 0755));
struct stat st;
TEST_ASSERT_EQUAL(0, stat("/sdcard/dir1", &st));
TEST_ASSERT_TRUE(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
TEST_ASSERT_EQUAL(0, rmdir("/sdcard/dir1"));
TEST_ASSERT_EQUAL(-1, stat("/sdcard/dir1", &st));
TEST_ASSERT_EQUAL(0, mkdir("/sdcard/dir2", 0755));
create_file_with_text("/sdcard/dir2/1.txt", "foo\n");
TEST_ASSERT_EQUAL(0, stat("/sdcard/dir2", &st));
TEST_ASSERT_TRUE(st.st_mode & S_IFDIR);
TEST_ASSERT_FALSE(st.st_mode & S_IFREG);
TEST_ASSERT_EQUAL(0, stat("/sdcard/dir2/1.txt", &st));
TEST_ASSERT_FALSE(st.st_mode & S_IFDIR);
TEST_ASSERT_TRUE(st.st_mode & S_IFREG);
TEST_ASSERT_EQUAL(-1, rmdir("/sdcard/dir2"));
TEST_ASSERT_EQUAL(0, unlink("/sdcard/dir2/1.txt"));
TEST_ASSERT_EQUAL(0, rmdir("/sdcard/dir2"));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}
TEST_CASE("opendir, readdir, rewinddir, seekdir work as expected", "[fatfs]")
{
HEAP_SIZE_CAPTURE();
sdmmc_host_t host = SDMMC_HOST_DEFAULT();
host.max_freq_khz = SDMMC_FREQ_HIGHSPEED;
sdmmc_slot_config_t slot_config = SDMMC_SLOT_CONFIG_DEFAULT();
esp_vfs_fat_sdmmc_mount_config_t mount_config = {
.format_if_mount_failed = true,
.max_files = 5
};
TEST_ESP_OK(esp_vfs_fat_sdmmc_mount("/sdcard", &host, &slot_config, &mount_config, NULL));
unlink("/sdcard/dir/inner/3.txt");
rmdir("/sdcard/dir/inner");
unlink("/sdcard/dir/2.txt");
unlink("/sdcard/dir/1.txt");
unlink("/sdcard/dir/boo.bin");
rmdir("/sdcard/dir");
TEST_ASSERT_EQUAL(0, mkdir("/sdcard/dir", 0755));
create_file_with_text("/sdcard/dir/2.txt", "1\n");
create_file_with_text("/sdcard/dir/1.txt", "1\n");
create_file_with_text("/sdcard/dir/boo.bin", "\01\02\03");
TEST_ASSERT_EQUAL(0, mkdir("/sdcard/dir/inner", 0755));
create_file_with_text("/sdcard/dir/inner/3.txt", "3\n");
DIR* dir = opendir("/sdcard/dir");
TEST_ASSERT_NOT_NULL(dir);
int count = 0;
const char* names[4];
while(count < 4) {
struct dirent* de = readdir(dir);
if (!de) {
break;
}
printf("found '%s'\n", de->d_name);
if (strcasecmp(de->d_name, "1.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "1.txt";
++count;
} else if (strcasecmp(de->d_name, "2.txt") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "2.txt";
++count;
} else if (strcasecmp(de->d_name, "inner") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_DIR);
names[count] = "inner";
++count;
} else if (strcasecmp(de->d_name, "boo.bin") == 0) {
TEST_ASSERT_TRUE(de->d_type == DT_REG);
names[count] = "boo.bin";
++count;
} else {
TEST_FAIL_MESSAGE("unexpected directory entry");
}
}
TEST_ASSERT_EQUAL(count, 4);
rewinddir(dir);
struct dirent* de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[0]));
seekdir(dir, 3);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[3]));
seekdir(dir, 1);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[1]));
seekdir(dir, 2);
de = readdir(dir);
TEST_ASSERT_NOT_NULL(de);
TEST_ASSERT_EQUAL(0, strcasecmp(de->d_name, names[2]));
TEST_ASSERT_EQUAL(0, closedir(dir));
TEST_ESP_OK(esp_vfs_fat_sdmmc_unmount());
HEAP_SIZE_CHECK(0);
}

View File

@ -3,7 +3,9 @@
#include <ctype.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include "unity.h"
#include "sdkconfig.h"
@ -86,6 +88,33 @@ TEST_CASE("test time functions", "[newlib]")
}
TEST_CASE("test asctime", "[newlib]")
{
char buf[64];
struct tm tm = { 0 };
tm.tm_year = 2016 - 1900;
tm.tm_mon = 0;
tm.tm_mday = 10;
tm.tm_hour = 16;
tm.tm_min = 30;
tm.tm_sec = 0;
time_t t = mktime(&tm);
const char* time_str = asctime(&tm);
strlcpy(buf, time_str, sizeof(buf));
printf("Setting time: %s", time_str);
struct timeval now = { .tv_sec = t };
settimeofday(&now, NULL);
struct timeval tv;
gettimeofday(&tv, NULL);
time_t mtime = tv.tv_sec;
struct tm mtm;
localtime_r(&mtime, &mtm);
time_str = asctime(&mtm);
printf("Got time: %s", time_str);
TEST_ASSERT_EQUAL_STRING(buf, time_str);
}
static bool fn_in_rom(void *fn, char *name)
{
const int fnaddr = (int)fn;

View File

@ -1,3 +1,17 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>