Remove superfluous example

This commit is contained in:
Jeroen Domburg 2017-02-21 15:01:43 +08:00
parent fe3082fa98
commit 43c0758b8d
5 changed files with 0 additions and 808 deletions

View file

@ -1,9 +0,0 @@
#
# This is a project Makefile. It is assumed the directory this Makefile resides in is a
# project subdirectory.
#
PROJECT_NAME := psram_demo
include $(IDF_PATH)/make/project.mk

View file

@ -1,31 +0,0 @@
简介:
本工程主要演示psram的初始化以及读写操作
注意事项:
psram进行读写操作软件应用层面需要做原子保护
###Brief:
This example shows how to
* init psram: call psram_enable() API
* PSRAM_CACHE_F40M_S40M mean flash cache 40Mhz and sram cache 40Mhz, which is the recommended option in current version.
* read & write psram: Must add lock for read/write operations in this version.
* We need to initialize mmu in set_cache_and_start_app() of bootloader_start.c, refer to bootloader_start.c in the demo folder.
```
//32KBytes for each page, totally 128 pages, that is 4MBytes.
cache_sram_mmu_set( 0, 0, 0x3f800000, 0, 32, 128 );
```
###Restrictions:
1. GPIO16, GPIO17 and GPIO20 are occupied, can not be used in app code.
2. GPIO matrix signal 224 and 225 are occupied, can not be used in app code.
3. SPI1 is used to initialize the psram chip.
4. Must add lock for psram read/write operations in this version.
5. ~~For now, we have some confilcts between spi flash read/write and psram driver, we will resolve it soon.~~
###update on 161206: Item No.5 has been fixed

View file

@ -1,620 +0,0 @@
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include "esp_attr.h"
#include "esp_log.h"
#include "rom/cache.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/crc.h"
#include "rom/rtc.h"
#include "soc/soc.h"
#include "soc/cpu.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "sdkconfig.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "bootloader_flash.h"
#include "bootloader_config.h"
extern int _bss_start;
extern int _bss_end;
static const char* TAG = "boot";
/*
We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
*/
// TODO: make a nice header file for ROM functions instead of adding externs all over the place
extern void Cache_Flush(int);
void bootloader_main();
static void unpack_load_app(const esp_partition_pos_t *app_node);
void print_flash_info(const esp_image_header_t* pfhdr);
void set_cache_and_start_app(uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
static void update_flash_config(const esp_image_header_t* pfhdr);
void IRAM_ATTR call_start_cpu0()
{
cpu_configure_region_protection();
//Clear bss
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
/* completely reset MMU for both CPUs
(in case serial bootloader was running) */
Cache_Read_Disable(0);
Cache_Read_Disable(1);
Cache_Flush(0);
Cache_Flush(1);
mmu_init(0);
REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
mmu_init(1);
REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
/* (above steps probably unnecessary for most serial bootloader
usage, all that's absolutely needed is that we unmask DROM0
cache on the following two lines - normal ROM boot exits with
DROM0 cache unmasked, but serial bootloader exits with it
masked. However can't hurt to be thorough and reset
everything.)
The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
necessary to work around a hardware bug.
*/
REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
bootloader_main();
}
/**
* @function : load_partition_table
* @description: Parse partition table, get useful data such as location of
* OTA info sector, factory app sector, and test app sector.
*
* @inputs: bs bootloader state structure used to save the data
* @return: return true, if the partition table is loaded (and MD5 checksum is valid)
*
*/
bool load_partition_table(bootloader_state_t* bs)
{
const esp_partition_info_t *partitions;
const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
const int MAX_PARTITIONS = ESP_PARTITION_TABLE_DATA_LEN / sizeof(esp_partition_info_t);
char *partition_usage;
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
#ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
if(esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying partition table signature...");
esp_err_t err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table signature.");
return false;
}
ESP_LOGD(TAG, "Partition table signature verified");
}
#endif
partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
for(int i = 0; i < MAX_PARTITIONS; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
partition_usage = "unknown";
if (partition->magic != ESP_PARTITION_MAGIC) {
/* invalid partition definition indicates end-of-table */
break;
}
/* valid partition table */
switch(partition->type) {
case PART_TYPE_APP: /* app partition */
switch(partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
}
else {
partition_usage = "Unknown app";
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
}
bootloader_munmap(partitions);
ESP_LOGI(TAG,"End of partition table");
return true;
}
static uint32_t ota_select_crc(const esp_ota_select_entry_t *s)
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
static bool ota_select_valid(const esp_ota_select_entry_t *s)
{
return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
}
/**
* @function : bootloader_main
* @description: entry function of 2nd bootloader
*
* @inputs: void
*/
void bootloader_main()
{
ESP_LOGI(TAG, "Espressif ESP32 2nd stage bootloader v. %s", BOOT_VERSION);
esp_image_header_t fhdr;
bootloader_state_t bs;
SpiFlashOpResult spiRet1,spiRet2;
esp_ota_select_entry_t sa,sb;
const esp_ota_select_entry_t *ota_select_map;
memset(&bs, 0, sizeof(bs));
ESP_LOGI(TAG, "compile time " __TIME__ );
/* disable watch dog here */
REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
SPIUnlock();
if(esp_image_load_header(0x1000, &fhdr) != ESP_OK) {
ESP_LOGE(TAG, "failed to load bootloader header!");
return;
}
print_flash_info(&fhdr);
update_flash_config(&fhdr);
if (!load_partition_table(&bs)) {
ESP_LOGE(TAG, "load partition table error!");
return;
}
esp_partition_pos_t load_part_pos;
if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition
//ESP_LOGE("OTA info sector handling is not implemented");
if (bs.ota_info.size < 2 * sizeof(esp_ota_select_entry_t)) {
ESP_LOGE(TAG, "ERROR: ota_info partition size %d is too small (minimum %d bytes)", bs.ota_info.size, sizeof(esp_ota_select_entry_t));
return;
}
ota_select_map = bootloader_mmap(bs.ota_info.offset, bs.ota_info.size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs.ota_info.offset, bs.ota_info.size);
return;
}
sa = ota_select_map[0];
sb = ota_select_map[1];
bootloader_munmap(ota_select_map);
if(sa.ota_seq == 0xFFFFFFFF && sb.ota_seq == 0xFFFFFFFF) {
// init status flash
if (bs.factory.offset != 0) { // if have factory bin,boot factory bin
load_part_pos = bs.factory;
} else {
load_part_pos = bs.ota[0];
sa.ota_seq = 0x01;
sa.crc = ota_select_crc(&sa);
sb.ota_seq = 0x00;
sb.crc = ota_select_crc(&sb);
Cache_Read_Disable(0);
spiRet1 = SPIEraseSector(bs.ota_info.offset/0x1000);
spiRet2 = SPIEraseSector(bs.ota_info.offset/0x1000+1);
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return;
}
spiRet1 = SPIWrite(bs.ota_info.offset,(uint32_t *)&sa,sizeof(esp_ota_select_entry_t));
spiRet2 = SPIWrite(bs.ota_info.offset + 0x1000,(uint32_t *)&sb,sizeof(esp_ota_select_entry_t));
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return;
}
Cache_Read_Enable(0);
}
//TODO:write data in ota info
} else {
if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
load_part_pos = bs.ota[(((sa.ota_seq > sb.ota_seq)?sa.ota_seq:sb.ota_seq) - 1)%bs.app_count];
}else if(ota_select_valid(&sa)) {
load_part_pos = bs.ota[(sa.ota_seq - 1) % bs.app_count];
}else if(ota_select_valid(&sb)) {
load_part_pos = bs.ota[(sb.ota_seq - 1) % bs.app_count];
}else {
ESP_LOGE(TAG, "ota data partition info error");
return;
}
}
} else if (bs.factory.offset != 0) { // otherwise, look for factory app partition
load_part_pos = bs.factory;
} else if (bs.test.offset != 0) { // otherwise, look for test app parition
load_part_pos = bs.test;
} else { // nothing to load, bail out
ESP_LOGE(TAG, "nothing to load");
return;
}
ESP_LOGI(TAG, "Loading app partition at offset %08x", load_part_pos);
#ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
/* Generate secure digest from this bootloader to protect future
modifications */
esp_err_t err = esp_secure_boot_permanently_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
/* Allow booting to continue, as the failure is probably
due to user-configured EFUSEs for testing...
*/
}
#endif
if(fhdr.encrypt_flag == 0x01) {
/* encrypt flash */
if (false == flash_encrypt(&bs)) {
ESP_LOGE(TAG, "flash encrypt failed");
return;
}
}
// copy loaded segments to RAM, set up caches for mapped segments, and start application
unpack_load_app(&load_part_pos);
}
static void unpack_load_app(const esp_partition_pos_t* partition)
{
esp_err_t err;
esp_image_header_t image_header;
uint32_t image_length;
/* TODO: verify the app image as part of OTA boot decision, so can have fallbacks */
err = esp_image_basic_verify(partition->offset, &image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify app image @ 0x%x (%d)", partition->offset, err);
return;
}
#ifdef CONFIG_SECURE_BOOTLOADER_ENABLED
if (esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying app signature @ 0x%x (length 0x%x)", partition->offset, image_length);
err = esp_secure_boot_verify_signature(partition->offset, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "App image @ 0x%x failed signature verification (%d)", partition->offset, err);
return;
}
ESP_LOGD(TAG, "App signature is valid");
}
#endif
if (esp_image_load_header(partition->offset, &image_header) != ESP_OK) {
ESP_LOGE(TAG, "Failed to load app image header @ 0x%x", partition->offset);
return;
}
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
/* Reload the RTC memory segments whenever a non-deepsleep reset
is occurring */
bool load_rtc_memory = rtc_get_reset_reason(0) != DEEPSLEEP_RESET;
ESP_LOGD(TAG, "bin_header: %u %u %u %u %08x", image_header.magic,
image_header.segment_count,
image_header.spi_mode,
image_header.spi_size,
(unsigned)image_header.entry_addr);
for (int segment = 0; segment < image_header.segment_count; segment++) {
esp_image_segment_header_t segment_header;
uint32_t data_offs;
if(esp_image_load_segment_header(segment, partition->offset,
&image_header, &segment_header,
&data_offs) != ESP_OK) {
ESP_LOGE(TAG, "failed to load segment header #%d", segment);
return;
}
const uint32_t address = segment_header.load_addr;
bool load = true;
bool map = false;
if (address == 0x00000000) { // padding, ignore block
load = false;
}
if (address == 0x00000004) {
load = false; // md5 checksum block
// TODO: actually check md5
}
if (address >= DROM_LOW && address < DROM_HIGH) {
ESP_LOGD(TAG, "found drom segment, map from %08x to %08x", data_offs,
segment_header.load_addr);
drom_addr = data_offs;
drom_load_addr = segment_header.load_addr;
drom_size = segment_header.data_len + sizeof(segment_header);
load = false;
map = true;
}
if (address >= IROM_LOW && address < IROM_HIGH) {
ESP_LOGD(TAG, "found irom segment, map from %08x to %08x", data_offs,
segment_header.load_addr);
irom_addr = data_offs;
irom_load_addr = segment_header.load_addr;
irom_size = segment_header.data_len + sizeof(segment_header);
load = false;
map = true;
}
if (!load_rtc_memory && address >= RTC_IRAM_LOW && address < RTC_IRAM_HIGH) {
ESP_LOGD(TAG, "Skipping RTC code segment at %08x\n", data_offs);
load = false;
}
if (!load_rtc_memory && address >= RTC_DATA_LOW && address < RTC_DATA_HIGH) {
ESP_LOGD(TAG, "Skipping RTC data segment at %08x\n", data_offs);
load = false;
}
ESP_LOGI(TAG, "segment %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", segment, data_offs - sizeof(esp_image_segment_header_t),
segment_header.load_addr, segment_header.data_len, segment_header.data_len, (load)?"load":(map)?"map":"");
if (load) {
const void *data = bootloader_mmap(data_offs, segment_header.data_len);
if(!data) {
ESP_LOGE(TAG, "bootloader_mmap(0x%xc, 0x%x) failed",
data_offs, segment_header.data_len);
return;
}
memcpy((void *)segment_header.load_addr, data, segment_header.data_len);
bootloader_munmap(data);
}
}
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
image_header.entry_addr);
}
void set_cache_and_start_app(
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr)
{
ESP_LOGD(TAG, "configure drom and irom and start");
Cache_Read_Disable( 0 );
Cache_Flush( 0 );
cache_sram_mmu_set( 0, 0, 0x3f800000, 0, 32, 128 );
uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
Cache_Read_Enable( 0 );
// Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
typedef void (*entry_t)(void);
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
static void update_flash_config(const esp_image_header_t* pfhdr)
{
uint32_t size;
switch(pfhdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
Cache_Read_Disable( 0 );
// Set flash chip size
SPIParamCfg(g_rom_flashchip.deviceId, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
// TODO: set mode
// TODO: set frequency
Cache_Flush(0);
Cache_Read_Enable( 0 );
}
void print_flash_info(const esp_image_header_t* phdr)
{
#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
ESP_LOGD(TAG, "magic %02x", phdr->magic );
ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
const char* str;
switch ( phdr->spi_speed ) {
case ESP_IMAGE_SPI_SPEED_40M:
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str );
switch ( phdr->spi_mode ) {
case ESP_IMAGE_SPI_MODE_QIO:
str = "QIO";
break;
case ESP_IMAGE_SPI_MODE_QOUT:
str = "QOUT";
break;
case ESP_IMAGE_SPI_MODE_DIO:
str = "DIO";
break;
case ESP_IMAGE_SPI_MODE_DOUT:
str = "DOUT";
break;
case ESP_IMAGE_SPI_MODE_FAST_READ:
str = "FAST READ";
break;
case ESP_IMAGE_SPI_MODE_SLOW_READ:
str = "SLOW READ";
break;
default:
str = "DIO";
break;
}
ESP_LOGI(TAG, "SPI Mode : %s", str );
switch ( phdr->spi_size ) {
case ESP_IMAGE_FLASH_SIZE_1MB:
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
str = "16MB";
break;
default:
str = "2MB";
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str );
#endif
}

View file

@ -1,5 +0,0 @@
#
# "main" pseudo-component makefile.
#
# (Uses default behaviour of compiling all source files in directory, adding 'include' to include path.)

View file

@ -1,143 +0,0 @@
/* Timer group-hardware timer example
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include "esp_types.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "psram.h"
#define TEST_DATA_LEN 1024
#define PSRAM_START_ADR (0x3F800000) //0x3F800000 is psram start address
#define mutex_t xSemaphoreHandle
mutex_t psram_mem_mutex = NULL;
uint8_t inRam0[TEST_DATA_LEN] = {0};
uint8_t inRam1[TEST_DATA_LEN] = {0};
int mutex_init(mutex_t *pxMutex);
void mutex_lock(mutex_t *pxMutex);
void mutex_unlock(mutex_t *pxMutex);
/** Create a new mutex
* @param mutex pointer to the mutex to create
* @return 0: successed;1:failed;
*/
int mutex_init(mutex_t *pxMutex)
{
int xReturn = -1;
*pxMutex = xSemaphoreCreateMutex();
if (*pxMutex != NULL) {
xReturn = 0;
}
return xReturn;
}
/** Lock a mutex
* @param mutex the mutex to lock
*/
void mutex_lock(mutex_t *pxMutex)
{
while (xSemaphoreTake(*pxMutex, portMAX_DELAY) != pdPASS);
}
/** Unlock a mutex
* @param mutex the mutex to unlock
*/
void mutex_unlock(mutex_t *pxMutex)
{
xSemaphoreGive(*pxMutex);
}
/**
* @brief Memcpy with a cache, atomic protected, speaking, reading and writing
*/
void psram_cache_memcpy(uint8_t *dst, uint8_t *src, uint16_t len)
{
if(psram_mem_mutex == NULL)
{
mutex_init(&psram_mem_mutex);
}
mutex_lock(&psram_mem_mutex);
memcpy(dst, src, len);
mutex_unlock(&psram_mem_mutex);
}
/**
* @brief Memset with a cache, atomic protected, speaking, reading and writing
*/
void psram_cache_memset(uint8_t *addr, uint8_t c, uint32_t len)
{
if(psram_mem_mutex == NULL)
{
mutex_init(&psram_mem_mutex);
}
mutex_lock(&psram_mem_mutex);
memset(addr, c, len);
mutex_unlock(&psram_mem_mutex);
}
/**
* @brief Print multiple bytes
*/
void printfByteS(uint8_t *indata, uint16_t len)
{
int i = 0;
for(; i < len ; i++)
{
printf("%02X", indata[i]);
}
printf("\n");
}
/**
* @brief psram test task
*/
void psram_test_task()
{
uint8_t *psram_buf_ptr = (uint8_t*) PSRAM_START_ADR;
printf("*****************psram demo start*****************\n");
psram_enable(PSRAM_CACHE_F40M_S40M);
psram_cache_memset(psram_buf_ptr, 0x00, TEST_DATA_LEN); //clear zero
memset(inRam0, 0x5A, TEST_DATA_LEN);
memset(inRam1, 0xA5, TEST_DATA_LEN);
printf("1.write psram data\n");
psram_cache_memcpy(psram_buf_ptr, inRam0, TEST_DATA_LEN);
printf("2.read psram data (expect 0x5A)\n");
printfByteS(psram_buf_ptr, TEST_DATA_LEN);
printf("3.write psram data\n");
psram_cache_memcpy(psram_buf_ptr, inRam1, TEST_DATA_LEN);
printf("4.read psram data (expect 0xA5)\n");
printfByteS(psram_buf_ptr, TEST_DATA_LEN);
printf("*****************psram demo end******************\n");
while(1)
{
vTaskDelay(100);
}
}
/**
* @brief In this test
*/
void app_main()
{
xTaskCreate(psram_test_task, "psram_test_task", 1024 * 5, NULL, 5, NULL);
}