spi_flash: change argument types
spi_flash_read and spi_flash_write currently have a limitation that source and destination must be word-aligned. This can be fixed by adding code paths for various unaligned scenarios, but function signatures also need to be adjusted. As a first step (since we are pre-1.0 and can still change function signatures) alignment checks are added, and pointer types are relaxed to uint8_t. Later we will add handling of unaligned operations. This change also introduces spi_flash_erase_range and spi_flash_get_chip_size functions. We probably need something like spi_flash_chip_size_detect which will detect actual chip size. This is to allow single application binary to be used on a variety of boards and modules.
This commit is contained in:
parent
079d9ea018
commit
2c5340d47e
6 changed files with 146 additions and 48 deletions
|
@ -37,7 +37,7 @@ esp_err_t Page::load(uint32_t sectorNumber)
|
|||
mErasedEntryCount = 0;
|
||||
|
||||
Header header;
|
||||
auto rc = spi_flash_read(mBaseAddress, reinterpret_cast<uint32_t*>(&header), sizeof(header));
|
||||
auto rc = spi_flash_read(mBaseAddress, reinterpret_cast<uint8_t*>(&header), sizeof(header));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -48,7 +48,7 @@ esp_err_t Page::load(uint32_t sectorNumber)
|
|||
// reading the whole page takes ~40 times less than erasing it
|
||||
uint32_t line[8];
|
||||
for (uint32_t i = 0; i < SPI_FLASH_SEC_SIZE; i += sizeof(line)) {
|
||||
rc = spi_flash_read(mBaseAddress + i, line, sizeof(line));
|
||||
rc = spi_flash_read(mBaseAddress + i, reinterpret_cast<uint8_t*>(line), sizeof(line));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -86,7 +86,7 @@ esp_err_t Page::load(uint32_t sectorNumber)
|
|||
|
||||
esp_err_t Page::writeEntry(const Item& item)
|
||||
{
|
||||
auto rc = spi_flash_write(getEntryAddress(mNextFreeEntry), reinterpret_cast<const uint32_t*>(&item), sizeof(item));
|
||||
auto rc = spi_flash_write(getEntryAddress(mNextFreeEntry), reinterpret_cast<const uint8_t*>(&item), sizeof(item));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -114,7 +114,7 @@ esp_err_t Page::writeEntryData(const uint8_t* data, size_t size)
|
|||
assert(mFirstUsedEntry != INVALID_ENTRY);
|
||||
const uint16_t count = size / ENTRY_SIZE;
|
||||
|
||||
auto rc = spi_flash_write(getEntryAddress(mNextFreeEntry), reinterpret_cast<const uint32_t*>(data), static_cast<uint32_t>(size));
|
||||
auto rc = spi_flash_write(getEntryAddress(mNextFreeEntry), data, size);
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -396,8 +396,8 @@ esp_err_t Page::mLoadEntryTable()
|
|||
if (mState == PageState::ACTIVE ||
|
||||
mState == PageState::FULL ||
|
||||
mState == PageState::FREEING) {
|
||||
auto rc = spi_flash_read(mBaseAddress + ENTRY_TABLE_OFFSET, mEntryTable.data(),
|
||||
static_cast<uint32_t>(mEntryTable.byteSize()));
|
||||
auto rc = spi_flash_read(mBaseAddress + ENTRY_TABLE_OFFSET, reinterpret_cast<uint8_t*>(mEntryTable.data()),
|
||||
mEntryTable.byteSize());
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -435,7 +435,7 @@ esp_err_t Page::mLoadEntryTable()
|
|||
while (mNextFreeEntry < ENTRY_COUNT) {
|
||||
uint32_t entryAddress = getEntryAddress(mNextFreeEntry);
|
||||
uint32_t header;
|
||||
auto rc = spi_flash_read(entryAddress, &header, sizeof(header));
|
||||
auto rc = spi_flash_read(entryAddress, reinterpret_cast<uint8_t*>(&header), sizeof(header));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -559,7 +559,7 @@ esp_err_t Page::initialize()
|
|||
header.mSeqNumber = mSeqNumber;
|
||||
header.mCrc32 = header.calculateCrc32();
|
||||
|
||||
auto rc = spi_flash_write(mBaseAddress, reinterpret_cast<uint32_t*>(&header), sizeof(header));
|
||||
auto rc = spi_flash_write(mBaseAddress, reinterpret_cast<const uint8_t*>(&header), sizeof(header));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -577,7 +577,8 @@ esp_err_t Page::alterEntryState(size_t index, EntryState state)
|
|||
mEntryTable.set(index, state);
|
||||
size_t wordToWrite = mEntryTable.getWordIndex(index);
|
||||
uint32_t word = mEntryTable.data()[wordToWrite];
|
||||
auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordToWrite) * 4, &word, 4);
|
||||
auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordToWrite) * 4,
|
||||
reinterpret_cast<uint8_t*>(&word), sizeof(word));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -600,7 +601,8 @@ esp_err_t Page::alterEntryRangeState(size_t begin, size_t end, EntryState state)
|
|||
}
|
||||
if (nextWordIndex != wordIndex) {
|
||||
uint32_t word = mEntryTable.data()[wordIndex];
|
||||
auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordIndex) * 4, &word, 4);
|
||||
auto rc = spi_flash_write(mBaseAddress + ENTRY_TABLE_OFFSET + static_cast<uint32_t>(wordIndex) * 4,
|
||||
reinterpret_cast<const uint8_t*>(&word), 4);
|
||||
if (rc != ESP_OK) {
|
||||
return rc;
|
||||
}
|
||||
|
@ -612,7 +614,8 @@ esp_err_t Page::alterEntryRangeState(size_t begin, size_t end, EntryState state)
|
|||
|
||||
esp_err_t Page::alterPageState(PageState state)
|
||||
{
|
||||
auto rc = spi_flash_write(mBaseAddress, reinterpret_cast<uint32_t*>(&state), sizeof(state));
|
||||
uint32_t state_val = static_cast<uint32_t>(state);
|
||||
auto rc = spi_flash_write(mBaseAddress, reinterpret_cast<const uint8_t*>(&state_val), sizeof(state));
|
||||
if (rc != ESP_OK) {
|
||||
mState = PageState::INVALID;
|
||||
return rc;
|
||||
|
@ -623,7 +626,7 @@ esp_err_t Page::alterPageState(PageState state)
|
|||
|
||||
esp_err_t Page::readEntry(size_t index, Item& dst) const
|
||||
{
|
||||
auto rc = spi_flash_read(getEntryAddress(index), reinterpret_cast<uint32_t*>(&dst), sizeof(dst));
|
||||
auto rc = spi_flash_read(getEntryAddress(index), reinterpret_cast<uint8_t*>(&dst), sizeof(dst));
|
||||
if (rc != ESP_OK) {
|
||||
return rc;
|
||||
}
|
||||
|
|
|
@ -22,7 +22,7 @@ void spi_flash_emulator_set(SpiFlashEmulator* e)
|
|||
s_emulator = e;
|
||||
}
|
||||
|
||||
esp_err_t spi_flash_erase_sector(uint16_t sec)
|
||||
esp_err_t spi_flash_erase_sector(size_t sec)
|
||||
{
|
||||
if (!s_emulator) {
|
||||
return ESP_ERR_FLASH_OP_TIMEOUT;
|
||||
|
@ -35,26 +35,26 @@ esp_err_t spi_flash_erase_sector(uint16_t sec)
|
|||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t spi_flash_write(uint32_t des_addr, const uint32_t *src_addr, uint32_t size)
|
||||
esp_err_t spi_flash_write(size_t des_addr, const uint8_t *src_addr, size_t size)
|
||||
{
|
||||
if (!s_emulator) {
|
||||
return ESP_ERR_FLASH_OP_TIMEOUT;
|
||||
}
|
||||
|
||||
if (!s_emulator->write(des_addr, src_addr, size)) {
|
||||
if (!s_emulator->write(des_addr, reinterpret_cast<const uint32_t*>(src_addr), size)) {
|
||||
return ESP_ERR_FLASH_OP_FAIL;
|
||||
}
|
||||
|
||||
return ESP_OK;
|
||||
}
|
||||
|
||||
esp_err_t spi_flash_read(uint32_t src_addr, uint32_t *des_addr, uint32_t size)
|
||||
esp_err_t spi_flash_read(size_t src_addr, uint8_t *des_addr, size_t size)
|
||||
{
|
||||
if (!s_emulator) {
|
||||
return ESP_ERR_FLASH_OP_TIMEOUT;
|
||||
}
|
||||
|
||||
if (!s_emulator->read(des_addr, src_addr, size)) {
|
||||
if (!s_emulator->read(reinterpret_cast<uint32_t*>(des_addr), src_addr, size)) {
|
||||
return ESP_ERR_FLASH_OP_FAIL;
|
||||
}
|
||||
|
||||
|
|
|
@ -44,7 +44,7 @@ public:
|
|||
spi_flash_emulator_set(nullptr);
|
||||
}
|
||||
|
||||
bool read(uint32_t* dest, uint32_t srcAddr, size_t size) const
|
||||
bool read(uint32_t* dest, size_t srcAddr, size_t size) const
|
||||
{
|
||||
if (srcAddr % 4 != 0 ||
|
||||
size % 4 != 0 ||
|
||||
|
@ -60,7 +60,7 @@ public:
|
|||
return true;
|
||||
}
|
||||
|
||||
bool write(uint32_t dstAddr, const uint32_t* src, size_t size)
|
||||
bool write(size_t dstAddr, const uint32_t* src, size_t size)
|
||||
{
|
||||
uint32_t sectorNumber = dstAddr/SPI_FLASH_SEC_SIZE;
|
||||
if (sectorNumber < mLowerSectorBound || sectorNumber >= mUpperSectorBound) {
|
||||
|
@ -96,7 +96,7 @@ public:
|
|||
return true;
|
||||
}
|
||||
|
||||
bool erase(uint32_t sectorNumber)
|
||||
bool erase(size_t sectorNumber)
|
||||
{
|
||||
size_t offset = sectorNumber * SPI_FLASH_SEC_SIZE / 4;
|
||||
if (offset > mData.size()) {
|
||||
|
|
|
@ -30,7 +30,7 @@ TEST_CASE("flash starts with all bytes == 0xff", "[spi_flash_emu]")
|
|||
uint8_t sector[SPI_FLASH_SEC_SIZE];
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
CHECK(spi_flash_read(0, reinterpret_cast<uint32_t*>(sector), sizeof(sector)) == ESP_OK);
|
||||
CHECK(spi_flash_read(0, sector, sizeof(sector)) == ESP_OK);
|
||||
for (auto v: sector) {
|
||||
CHECK(v == 0xff);
|
||||
}
|
||||
|
@ -42,9 +42,9 @@ TEST_CASE("invalid writes are checked", "[spi_flash_emu]")
|
|||
SpiFlashEmulator emu(1);
|
||||
|
||||
uint32_t val = 0;
|
||||
CHECK(spi_flash_write(0, &val, 4) == ESP_OK);
|
||||
CHECK(spi_flash_write(0, reinterpret_cast<const uint8_t*>(&val), 4) == ESP_OK);
|
||||
val = 1;
|
||||
CHECK(spi_flash_write(0, &val, 4) == ESP_ERR_FLASH_OP_FAIL);
|
||||
CHECK(spi_flash_write(0, reinterpret_cast<const uint8_t*>(&val), 4) == ESP_ERR_FLASH_OP_FAIL);
|
||||
}
|
||||
|
||||
|
||||
|
@ -53,11 +53,11 @@ TEST_CASE("out of bounds writes fail", "[spi_flash_emu]")
|
|||
SpiFlashEmulator emu(4);
|
||||
uint32_t vals[8];
|
||||
std::fill_n(vals, 8, 0);
|
||||
CHECK(spi_flash_write(0, vals, sizeof(vals)) == ESP_OK);
|
||||
CHECK(spi_flash_write(0, reinterpret_cast<const uint8_t*>(vals), sizeof(vals)) == ESP_OK);
|
||||
|
||||
CHECK(spi_flash_write(4*4096 - sizeof(vals), vals, sizeof(vals)) == ESP_OK);
|
||||
CHECK(spi_flash_write(4*4096 - sizeof(vals), reinterpret_cast<const uint8_t*>(vals), sizeof(vals)) == ESP_OK);
|
||||
|
||||
CHECK(spi_flash_write(4*4096 - sizeof(vals) + 4, vals, sizeof(vals)) == ESP_ERR_FLASH_OP_FAIL);
|
||||
CHECK(spi_flash_write(4*4096 - sizeof(vals) + 4, reinterpret_cast<const uint8_t*>(vals), sizeof(vals)) == ESP_ERR_FLASH_OP_FAIL);
|
||||
}
|
||||
|
||||
|
||||
|
@ -65,9 +65,9 @@ TEST_CASE("after erase the sector is set to 0xff", "[spi_flash_emu]")
|
|||
{
|
||||
SpiFlashEmulator emu(4);
|
||||
uint32_t val1 = 0xab00cd12;
|
||||
CHECK(spi_flash_write(0, &val1, sizeof(val1)) == ESP_OK);
|
||||
CHECK(spi_flash_write(0, reinterpret_cast<const uint8_t*>(&val1), sizeof(val1)) == ESP_OK);
|
||||
uint32_t val2 = 0x5678efab;
|
||||
CHECK(spi_flash_write(4096 - 4, &val2, sizeof(val2)) == ESP_OK);
|
||||
CHECK(spi_flash_write(4096 - 4, reinterpret_cast<const uint8_t*>(&val2), sizeof(val2)) == ESP_OK);
|
||||
|
||||
CHECK(emu.words()[0] == val1);
|
||||
CHECK(range_empty_n(emu.words() + 1, 4096 / 4 - 2));
|
||||
|
@ -83,7 +83,7 @@ TEST_CASE("after erase the sector is set to 0xff", "[spi_flash_emu]")
|
|||
TEST_CASE("read/write/erase operation times are calculated correctly", "[spi_flash_emu]")
|
||||
{
|
||||
SpiFlashEmulator emu(1);
|
||||
uint32_t data[128];
|
||||
uint8_t data[512];
|
||||
spi_flash_read(0, data, 4);
|
||||
CHECK(emu.getTotalTime() == 7);
|
||||
CHECK(emu.getReadOps() == 1);
|
||||
|
@ -141,7 +141,7 @@ TEST_CASE("read/write/erase operation times are calculated correctly", "[spi_fla
|
|||
CHECK(emu.getTotalTime() == 37142);
|
||||
}
|
||||
|
||||
TEST_CASE("data is randomized predicatbly", "[spi_flash_emu]")
|
||||
TEST_CASE("data is randomized predictably", "[spi_flash_emu]")
|
||||
{
|
||||
SpiFlashEmulator emu1(3);
|
||||
emu1.randomize(0x12345678);
|
||||
|
|
|
@ -64,6 +64,11 @@ void spi_flash_init()
|
|||
#endif
|
||||
}
|
||||
|
||||
size_t spi_flash_get_chip_size()
|
||||
{
|
||||
return g_rom_flashchip.chip_size;
|
||||
}
|
||||
|
||||
SpiFlashOpResult IRAM_ATTR spi_flash_unlock()
|
||||
{
|
||||
static bool unlocked = false;
|
||||
|
@ -77,28 +82,74 @@ SpiFlashOpResult IRAM_ATTR spi_flash_unlock()
|
|||
return SPI_FLASH_RESULT_OK;
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_erase_sector(uint16_t sec)
|
||||
esp_err_t IRAM_ATTR spi_flash_erase_sector(size_t sec)
|
||||
{
|
||||
return spi_flash_erase_range(sec * SPI_FLASH_SEC_SIZE, SPI_FLASH_SEC_SIZE);
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
|
||||
{
|
||||
if (start_addr % SPI_FLASH_SEC_SIZE != 0) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (size % SPI_FLASH_SEC_SIZE != 0) {
|
||||
return ESP_ERR_INVALID_SIZE;
|
||||
}
|
||||
if (size + start_addr > spi_flash_get_chip_size()) {
|
||||
return ESP_ERR_INVALID_SIZE;
|
||||
}
|
||||
size_t start = start_addr / SPI_FLASH_SEC_SIZE;
|
||||
size_t end = start + size / SPI_FLASH_SEC_SIZE;
|
||||
const size_t sectors_per_block = 16;
|
||||
COUNTER_START();
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
SpiFlashOpResult rc;
|
||||
rc = spi_flash_unlock();
|
||||
if (rc == SPI_FLASH_RESULT_OK) {
|
||||
rc = SPIEraseSector(sec);
|
||||
for (size_t sector = start; sector != end && rc == SPI_FLASH_RESULT_OK; ) {
|
||||
if (sector % sectors_per_block == 0 && end - sector > sectors_per_block) {
|
||||
rc = SPIEraseBlock(sector / sectors_per_block);
|
||||
sector += sectors_per_block;
|
||||
COUNTER_ADD_BYTES(erase, sectors_per_block * SPI_FLASH_SEC_SIZE);
|
||||
}
|
||||
else {
|
||||
rc = SPIEraseSector(sector);
|
||||
++sector;
|
||||
COUNTER_ADD_BYTES(erase, SPI_FLASH_SEC_SIZE);
|
||||
}
|
||||
}
|
||||
}
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
COUNTER_STOP(erase);
|
||||
return spi_flash_translate_rc(rc);
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_write(uint32_t dest_addr, const uint32_t *src, uint32_t size)
|
||||
esp_err_t IRAM_ATTR spi_flash_write(size_t dest_addr, const uint8_t *src, size_t size)
|
||||
{
|
||||
// TODO: replace this check with code which deals with unaligned sources
|
||||
if (((ptrdiff_t) src) % 4 != 0) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
// Destination alignment is also checked in ROM code, but we can give
|
||||
// better error code here
|
||||
// TODO: add handling of unaligned destinations
|
||||
if (dest_addr % 4 != 0) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (size % 4 != 0) {
|
||||
return ESP_ERR_INVALID_SIZE;
|
||||
}
|
||||
// Out of bound writes are checked in ROM code, but we can give better
|
||||
// error code here
|
||||
if (dest_addr + size > g_rom_flashchip.chip_size) {
|
||||
return ESP_ERR_INVALID_SIZE;
|
||||
}
|
||||
COUNTER_START();
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
SpiFlashOpResult rc;
|
||||
rc = spi_flash_unlock();
|
||||
if (rc == SPI_FLASH_RESULT_OK) {
|
||||
rc = SPIWrite(dest_addr, src, (int32_t) size);
|
||||
rc = SPIWrite((uint32_t) dest_addr, (const uint32_t*) src, (int32_t) size);
|
||||
COUNTER_ADD_BYTES(write, size);
|
||||
}
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
|
@ -106,11 +157,29 @@ esp_err_t IRAM_ATTR spi_flash_write(uint32_t dest_addr, const uint32_t *src, uin
|
|||
return spi_flash_translate_rc(rc);
|
||||
}
|
||||
|
||||
esp_err_t IRAM_ATTR spi_flash_read(uint32_t src_addr, uint32_t *dest, uint32_t size)
|
||||
esp_err_t IRAM_ATTR spi_flash_read(size_t src_addr, uint8_t *dest, size_t size)
|
||||
{
|
||||
// TODO: replace this check with code which deals with unaligned destinations
|
||||
if (((ptrdiff_t) dest) % 4 != 0) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
// Source alignment is also checked in ROM code, but we can give
|
||||
// better error code here
|
||||
// TODO: add handling of unaligned destinations
|
||||
if (src_addr % 4 != 0) {
|
||||
return ESP_ERR_INVALID_ARG;
|
||||
}
|
||||
if (size % 4 != 0) {
|
||||
return ESP_ERR_INVALID_SIZE;
|
||||
}
|
||||
// Out of bound reads are checked in ROM code, but we can give better
|
||||
// error code here
|
||||
if (src_addr + size > g_rom_flashchip.chip_size) {
|
||||
return ESP_ERR_INVALID_SIZE;
|
||||
}
|
||||
COUNTER_START();
|
||||
spi_flash_disable_interrupts_caches_and_other_cpu();
|
||||
SpiFlashOpResult rc = SPIRead(src_addr, dest, (int32_t) size);
|
||||
SpiFlashOpResult rc = SPIRead((uint32_t) src_addr, (uint32_t*) dest, (int32_t) size);
|
||||
COUNTER_ADD_BYTES(read, size);
|
||||
spi_flash_enable_interrupts_caches_and_other_cpu();
|
||||
COUNTER_STOP(read);
|
||||
|
|
|
@ -38,37 +38,63 @@ extern "C" {
|
|||
*/
|
||||
void spi_flash_init();
|
||||
|
||||
/**
|
||||
* @brief Get flash chip size, as set in binary image header
|
||||
*
|
||||
* @note This value does not necessarily match real flash size.
|
||||
*
|
||||
* @return size of flash chip, in bytes
|
||||
*/
|
||||
size_t spi_flash_get_chip_size();
|
||||
|
||||
/**
|
||||
* @brief Erase the Flash sector.
|
||||
*
|
||||
* @param uint16 sec : Sector number, the count starts at sector 0, 4KB per sector.
|
||||
* @param sector Sector number, the count starts at sector 0, 4KB per sector.
|
||||
*
|
||||
* @return esp_err_t
|
||||
*/
|
||||
esp_err_t spi_flash_erase_sector(uint16_t sec);
|
||||
esp_err_t spi_flash_erase_sector(size_t sector);
|
||||
|
||||
/**
|
||||
* @brief Erase a range of flash sectors
|
||||
*
|
||||
* @param uint32_t start_address : Address where erase operation has to start.
|
||||
* Must be 4kB-aligned
|
||||
* @param uint32_t size : Size of erased range, in bytes. Must be divisible by 4kB.
|
||||
*
|
||||
* @return esp_err_t
|
||||
*/
|
||||
esp_err_t spi_flash_erase_range(size_t start_addr, size_t size);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Write data to Flash.
|
||||
*
|
||||
* @param uint32 des_addr : destination address in Flash.
|
||||
* @param uint32 *src_addr : source address of the data.
|
||||
* @param uint32 size : length of data
|
||||
* @note Both des_addr and src_addr have to be 4-byte aligned.
|
||||
* This is a temporary limitation which will be removed.
|
||||
*
|
||||
* @param des_addr destination address in Flash
|
||||
* @param src_addr source address of the data
|
||||
* @param size length of data, in bytes
|
||||
*
|
||||
* @return esp_err_t
|
||||
*/
|
||||
esp_err_t spi_flash_write(uint32_t des_addr, const uint32_t *src_addr, uint32_t size);
|
||||
esp_err_t spi_flash_write(size_t des_addr, const uint8_t *src_addr, size_t size);
|
||||
|
||||
/**
|
||||
* @brief Read data from Flash.
|
||||
*
|
||||
* @param uint32 src_addr : source address of the data in Flash.
|
||||
* @param uint32 *des_addr : destination address.
|
||||
* @param uint32 size : length of data
|
||||
* @note Both des_addr and src_addr have to be 4-byte aligned.
|
||||
* This is a temporary limitation which will be removed.
|
||||
*
|
||||
* @param src_addr source address of the data in Flash.
|
||||
* @param des_addr destination address
|
||||
* @param size length of data
|
||||
*
|
||||
* @return esp_err_t
|
||||
*/
|
||||
esp_err_t spi_flash_read(uint32_t src_addr, uint32_t *des_addr, uint32_t size);
|
||||
|
||||
esp_err_t spi_flash_read(size_t src_addr, uint8_t *des_addr, size_t size);
|
||||
|
||||
/**
|
||||
* @brief Enumeration which specifies memory space requested in an mmap call
|
||||
|
@ -135,7 +161,7 @@ void spi_flash_mmap_dump();
|
|||
typedef struct {
|
||||
uint32_t count; // number of times operation was executed
|
||||
uint32_t time; // total time taken, in microseconds
|
||||
uint32_t bytes; // total number of bytes, for read and write operations
|
||||
uint32_t bytes; // total number of bytes
|
||||
} spi_flash_counter_t;
|
||||
|
||||
typedef struct {
|
||||
|
|
Loading…
Reference in a new issue