OVMS3-idf/components/app_trace/app_trace_util.c

197 lines
6.4 KiB
C
Raw Normal View History

// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_app_trace_util.h"
#include "sdkconfig.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/clk.h"
2020-01-17 03:47:08 +00:00
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/clk.h"
#endif
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////// TIMEOUT /////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#define ESP_APPTRACE_CPUTICKS2US(_t_, _cpu_freq_) ((_t_)/(_cpu_freq_/1000000))
#define ESP_APPTRACE_US2CPUTICKS(_t_, _cpu_freq_) ((_t_)*(_cpu_freq_/1000000))
esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo)
{
int cpu_freq = esp_clk_cpu_freq();
if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE) {
unsigned cur = portGET_RUN_TIME_COUNTER_VALUE();
if (tmo->start <= cur) {
tmo->elapsed = ESP_APPTRACE_CPUTICKS2US(cur - tmo->start, cpu_freq);
} else {
tmo->elapsed = ESP_APPTRACE_CPUTICKS2US(0xFFFFFFFF - tmo->start + cur, cpu_freq);
}
if (tmo->elapsed >= tmo->tmo) {
return ESP_ERR_TIMEOUT;
}
}
return ESP_OK;
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////// LOCK ////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *lock, esp_apptrace_tmo_t *tmo)
{
int res;
while (1) {
// do not overwrite lock->int_state before we actually acquired the mux
unsigned int_state = portENTER_CRITICAL_NESTED();
// FIXME: if mux is busy it is not good idea to loop during the whole tmo with disabled IRQs.
// So we check mux state using zero tmo, restore IRQs and let others tasks/IRQs to run on this CPU
// while we are doing our own tmo check.
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
bool success = vPortCPUAcquireMutexTimeout(&lock->mux, 0, __FUNCTION__, __LINE__);
#else
bool success = vPortCPUAcquireMutexTimeout(&lock->mux, 0);
#endif
if (success) {
lock->int_state = int_state;
return ESP_OK;
}
portEXIT_CRITICAL_NESTED(int_state);
// we can be preempted from this place till the next call (above) to portENTER_CRITICAL_NESTED()
res = esp_apptrace_tmo_check(tmo);
if (res != ESP_OK) {
break;
}
}
return res;
}
esp_err_t esp_apptrace_lock_give(esp_apptrace_lock_t *lock)
{
// save lock's irq state value for this CPU
unsigned int_state = lock->int_state;
// after call to the following func we can not be sure that lock->int_state
// is not overwritten by other CPU who has acquired the mux just after we released it. See esp_apptrace_lock_take().
#ifdef CONFIG_FREERTOS_PORTMUX_DEBUG
vPortCPUReleaseMutex(&lock->mux, __FUNCTION__, __LINE__);
#else
vPortCPUReleaseMutex(&lock->mux);
#endif
portEXIT_CRITICAL_NESTED(int_state);
return ESP_OK;
}
///////////////////////////////////////////////////////////////////////////////
////////////////////////////// RING BUFFER ////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
uint8_t *esp_apptrace_rb_produce(esp_apptrace_rb_t *rb, uint32_t size)
{
uint8_t *ptr = rb->data + rb->wr;
// check for avalable space
if (rb->rd <= rb->wr) {
// |?R......W??|
if (rb->wr + size >= rb->size) {
if (rb->rd == 0) {
return NULL; // cannot wrap wr
}
if (rb->wr + size == rb->size) {
rb->wr = 0;
} else {
// check if we can wrap wr earlier to get space for requested size
if (size > rb->rd - 1) {
return NULL; // cannot wrap wr
}
// shrink buffer a bit, full size will be restored at rd wrapping
rb->cur_size = rb->wr;
rb->wr = 0;
ptr = rb->data;
if (rb->rd == rb->cur_size) {
rb->rd = 0;
if (rb->cur_size < rb->size) {
rb->cur_size = rb->size;
}
}
rb->wr += size;
}
} else {
rb->wr += size;
}
} else {
// |?W......R??|
if (size > rb->rd - rb->wr - 1) {
return NULL;
}
rb->wr += size;
}
return ptr;
}
uint8_t *esp_apptrace_rb_consume(esp_apptrace_rb_t *rb, uint32_t size)
{
uint8_t *ptr = rb->data + rb->rd;
if (rb->rd <= rb->wr) {
// |?R......W??|
if (rb->rd + size > rb->wr) {
return NULL;
}
rb->rd += size;
} else {
// |?W......R??|
if (rb->rd + size > rb->cur_size) {
return NULL;
} else if (rb->rd + size == rb->cur_size) {
// restore full size usage
if (rb->cur_size < rb->size) {
rb->cur_size = rb->size;
}
rb->rd = 0;
} else {
rb->rd += size;
}
}
return ptr;
}
uint32_t esp_apptrace_rb_read_size_get(esp_apptrace_rb_t *rb)
{
uint32_t size = 0;
if (rb->rd <= rb->wr) {
// |?R......W??|
size = rb->wr - rb->rd;
} else {
// |?W......R??|
size = rb->cur_size - rb->rd;
}
return size;
}
uint32_t esp_apptrace_rb_write_size_get(esp_apptrace_rb_t *rb)
{
uint32_t size = 0;
if (rb->rd <= rb->wr) {
// |?R......W??|
size = rb->size - rb->wr;
if (size && rb->rd == 0) {
size--;
}
} else {
// |?W......R??|
size = rb->rd - rb->wr - 1;
}
return size;
}