OVMS3-idf/components/driver/spi_common.c

397 lines
16 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "driver/spi_master.h"
#include "soc/gpio_sig_map.h"
#include "soc/spi_reg.h"
#include "soc/dport_reg.h"
#include "soc/spi_struct.h"
#include "soc/rtc_cntl_reg.h"
#include "rom/ets_sys.h"
#include "esp_types.h"
#include "esp_attr.h"
#include "esp_intr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "freertos/ringbuf.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "soc/uart_struct.h"
#include "rom/lldesc.h"
#include "driver/uart.h"
#include "driver/gpio.h"
#include "driver/periph_ctrl.h"
#include "esp_heap_alloc_caps.h"
#include "driver/spi_common.h"
static const char *SPI_TAG = "spi";
#define SPI_CHECK(a, str, ret_val) \
if (!(a)) { \
ESP_LOGE(SPI_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
return (ret_val); \
}
typedef struct spi_device_t spi_device_t;
/*
Stores a bunch of per-spi-peripheral data.
*/
typedef struct {
const uint8_t spiclk_out; //GPIO mux output signals
const uint8_t spiclk_in;
const uint8_t spid_out;
const uint8_t spiq_out;
const uint8_t spiwp_out;
const uint8_t spihd_out;
const uint8_t spid_in; //GPIO mux input signals
const uint8_t spiq_in;
const uint8_t spiwp_in;
const uint8_t spihd_in;
const uint8_t spics_out[3]; // /CS GPIO output mux signals
const uint8_t spics_in;
const uint8_t spiclk_native; //IO pins of IO_MUX muxed signals
const uint8_t spid_native;
const uint8_t spiq_native;
const uint8_t spiwp_native;
const uint8_t spihd_native;
const uint8_t spics0_native;
const uint8_t irq; //irq source for interrupt mux
const uint8_t irq_dma; //dma irq source for interrupt mux
const periph_module_t module; //peripheral module, for enabling clock etc
spi_dev_t *hw; //Pointer to the hardware registers
} spi_signal_conn_t;
/*
Bunch of constants for every SPI peripheral: GPIO signals, irqs, hw addr of registers etc
*/
static const spi_signal_conn_t io_signal[3]={
{
.spiclk_out=SPICLK_OUT_IDX,
.spiclk_in=SPICLK_IN_IDX,
.spid_out=SPID_OUT_IDX,
.spiq_out=SPIQ_OUT_IDX,
.spiwp_out=SPIWP_OUT_IDX,
.spihd_out=SPIHD_OUT_IDX,
.spid_in=SPID_IN_IDX,
.spiq_in=SPIQ_IN_IDX,
.spiwp_in=SPIWP_IN_IDX,
.spihd_in=SPIHD_IN_IDX,
.spics_out={SPICS0_OUT_IDX, SPICS1_OUT_IDX, SPICS2_OUT_IDX},
.spics_in=SPICS0_IN_IDX,
.spiclk_native=6,
.spid_native=8,
.spiq_native=7,
.spiwp_native=10,
.spihd_native=9,
.spics0_native=11,
.irq=ETS_SPI1_INTR_SOURCE,
.irq_dma=ETS_SPI1_DMA_INTR_SOURCE,
.module=PERIPH_SPI_MODULE,
.hw=&SPI1
}, {
.spiclk_out=HSPICLK_OUT_IDX,
.spiclk_in=HSPICLK_IN_IDX,
.spid_out=HSPID_OUT_IDX,
.spiq_out=HSPIQ_OUT_IDX,
.spiwp_out=HSPIWP_OUT_IDX,
.spihd_out=HSPIHD_OUT_IDX,
.spid_in=HSPID_IN_IDX,
.spiq_in=HSPIQ_IN_IDX,
.spiwp_in=HSPIWP_IN_IDX,
.spihd_in=HSPIHD_IN_IDX,
.spics_out={HSPICS0_OUT_IDX, HSPICS1_OUT_IDX, HSPICS2_OUT_IDX},
.spics_in=HSPICS0_IN_IDX,
.spiclk_native=14,
.spid_native=13,
.spiq_native=12,
.spiwp_native=2,
.spihd_native=4,
.spics0_native=15,
.irq=ETS_SPI2_INTR_SOURCE,
.irq_dma=ETS_SPI2_DMA_INTR_SOURCE,
.module=PERIPH_HSPI_MODULE,
.hw=&SPI2
}, {
.spiclk_out=VSPICLK_OUT_IDX,
.spiclk_in=VSPICLK_IN_IDX,
.spid_out=VSPID_OUT_IDX,
.spiq_out=VSPIQ_OUT_IDX,
.spiwp_out=VSPIWP_OUT_IDX,
.spihd_out=VSPIHD_OUT_IDX,
.spid_in=VSPID_IN_IDX,
.spiq_in=VSPIQ_IN_IDX,
.spiwp_in=VSPIWP_IN_IDX,
.spihd_in=VSPIHD_IN_IDX,
.spics_out={VSPICS0_OUT_IDX, VSPICS1_OUT_IDX, VSPICS2_OUT_IDX},
.spics_in=VSPICS0_IN_IDX,
.spiclk_native=18,
.spid_native=23,
.spiq_native=19,
.spiwp_native=22,
.spihd_native=21,
.spics0_native=5,
.irq=ETS_SPI3_INTR_SOURCE,
.irq_dma=ETS_SPI3_DMA_INTR_SOURCE,
.module=PERIPH_VSPI_MODULE,
.hw=&SPI3
}
};
//Periph 1 is 'claimed' by SPI flash code.
static bool spi_periph_claimed[3]={true, false, false};
//Returns true if this peripheral is successfully claimed, false if otherwise.
bool spicommon_periph_claim(spi_host_device_t host) {
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], false, true);
if (ret) periph_module_enable(io_signal[host].module);
return ret;
}
//Returns true if this peripheral is successfully freed, false if otherwise.
bool spicommon_periph_free(spi_host_device_t host) {
bool ret = __sync_bool_compare_and_swap(&spi_periph_claimed[host], true, false);
if (ret) periph_module_disable(io_signal[host].module);
return ret;
}
int spicommon_irqsource_for_host(spi_host_device_t host) {
return io_signal[host].irq;
}
spi_dev_t *spicommon_hw_for_host(spi_host_device_t host) {
return io_signal[host].hw;
}
/*
Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a
bus config struct and it'll set up the GPIO matrix and enable the device. It will set is_native to 1 if the bus
config can be done using the IOMUX instead of using the GPIO matrix.
*/
esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, spi_bus_config_t *bus_config, int dma_chan, int flags, bool *is_native)
{
bool native=true;
bool is_master=(flags&SPICOMMON_BUSFLAG_MASTER)?true:false;
bool use_quad=(flags&SPICOMMON_BUSFLAG_QUAD)?true:false;
SPI_CHECK(bus_config->mosi_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num), "spid pin invalid", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_config->sclk_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->sclk_io_num), "spiclk pin invalid", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_config->miso_io_num<0 || GPIO_IS_VALID_GPIO(bus_config->miso_io_num), "spiq pin invalid", ESP_ERR_INVALID_ARG);
if (use_quad) {
SPI_CHECK(bus_config->quadwp_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadwp_io_num), "spiwp pin invalid", ESP_ERR_INVALID_ARG);
SPI_CHECK(bus_config->quadhd_io_num<0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->quadhd_io_num), "spihd pin invalid", ESP_ERR_INVALID_ARG);
}
//Check if the selected pins correspond to the native pins of the peripheral
if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num!=io_signal[host].spid_native) native=false;
if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num!=io_signal[host].spiq_native) native=false;
if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num!=io_signal[host].spiclk_native) native=false;
if (use_quad) {
if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num!=io_signal[host].spiwp_native) native=false;
if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num!=io_signal[host].spihd_native) native=false;
}
*is_native=native;
if (native) {
//All SPI native pin selections resolve to 1, so we put that here instead of trying to figure
//out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway.
if (bus_config->mosi_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], 1);
if (bus_config->miso_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], 1);
if (use_quad && bus_config->quadwp_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], 1);
if (use_quad && bus_config->quadhd_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], 1);
if (bus_config->sclk_io_num > 0) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], 1);
} else {
//Use GPIO
if (bus_config->mosi_io_num>0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->mosi_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->mosi_io_num, is_master?GPIO_MODE_OUTPUT:GPIO_MODE_INPUT);
gpio_matrix_out(bus_config->mosi_io_num, io_signal[host].spid_out, false, false);
gpio_matrix_in(bus_config->mosi_io_num, io_signal[host].spid_in, false);
}
if (bus_config->miso_io_num>0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->miso_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->miso_io_num, is_master?GPIO_MODE_INPUT:GPIO_MODE_OUTPUT);
gpio_matrix_out(bus_config->miso_io_num, io_signal[host].spiq_out, false, false);
gpio_matrix_in(bus_config->miso_io_num, io_signal[host].spiq_in, false);
}
if (use_quad && bus_config->quadwp_io_num>0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->quadwp_io_num, is_master?GPIO_MODE_OUTPUT:GPIO_MODE_INPUT);
gpio_matrix_out(bus_config->quadwp_io_num, io_signal[host].spiwp_out, false, false);
gpio_matrix_in(bus_config->quadwp_io_num, io_signal[host].spiwp_in, false);
}
if (use_quad && bus_config->quadhd_io_num>0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->quadhd_io_num, is_master?GPIO_MODE_OUTPUT:GPIO_MODE_INPUT);
gpio_matrix_out(bus_config->quadhd_io_num, io_signal[host].spihd_out, false, false);
gpio_matrix_in(bus_config->quadhd_io_num, io_signal[host].spihd_in, false);
}
if (bus_config->sclk_io_num>0) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[bus_config->sclk_io_num], PIN_FUNC_GPIO);
gpio_set_direction(bus_config->sclk_io_num, is_master?GPIO_MODE_OUTPUT:GPIO_MODE_INPUT);
gpio_matrix_out(bus_config->sclk_io_num, io_signal[host].spiclk_out, false, false);
gpio_matrix_in(bus_config->sclk_io_num, io_signal[host].spiclk_in, false);
}
}
//Select DMA channel.
SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2));
return ESP_OK;
}
//Find any pin with output muxed to ``func`` and reset it to GPIO
static void reset_func_to_gpio(int func) {
for (int x=0; x<GPIO_PIN_COUNT; x++) {
if (GPIO_IS_VALID_GPIO(x) && (READ_PERI_REG(GPIO_FUNC0_OUT_SEL_CFG_REG+(x*4))&GPIO_FUNC0_OUT_SEL_M)==func) {
gpio_matrix_out(x, SIG_GPIO_OUT_IDX, false, false);
}
}
}
esp_err_t spicommon_bus_free_io(spi_host_device_t host)
{
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spid_native], MCU_SEL)==1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spid_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiq_native], MCU_SEL)==1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiq_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiclk_native], MCU_SEL)==1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiclk_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spiwp_native], MCU_SEL)==1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spiwp_native], PIN_FUNC_GPIO);
if (REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spihd_native], MCU_SEL)==1) PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spihd_native], PIN_FUNC_GPIO);
reset_func_to_gpio(io_signal[host].spid_out);
reset_func_to_gpio(io_signal[host].spiq_out);
reset_func_to_gpio(io_signal[host].spiclk_out);
reset_func_to_gpio(io_signal[host].spiwp_out);
reset_func_to_gpio(io_signal[host].spihd_out);
return ESP_OK;
}
void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix) {
if (!force_gpio_matrix && cs_io_num == io_signal[host].spics0_native && cs_num==0) {
//The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define.
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], 1);
} else {
//Use GPIO matrix
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], PIN_FUNC_GPIO);
gpio_matrix_out(cs_io_num, io_signal[host].spics_out[cs_num], false, false);
if (cs_num==0) gpio_matrix_in(cs_io_num, io_signal[host].spics_in, false);
}
}
void spicommon_cs_free(spi_host_device_t host, int cs_io_num) {
if (cs_io_num==0 && REG_GET_FIELD(GPIO_PIN_MUX_REG[io_signal[host].spics0_native], MCU_SEL)==1) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[io_signal[host].spics0_native], PIN_FUNC_GPIO);
}
reset_func_to_gpio(io_signal[host].spics_out[cs_io_num]);
}
//Set up a list of dma descriptors. dmadesc is an array of descriptors. Data is the buffer to point to.
void spicommon_setup_dma_desc_links(lldesc_t *dmadesc, int len, const uint8_t *data, bool isrx) {
int n=0;
while (len) {
int dmachunklen=len;
if (dmachunklen > SPI_MAX_DMA_LEN) dmachunklen=SPI_MAX_DMA_LEN;
if (isrx) {
//Receive needs DMA length rounded to next 32-bit boundary
dmadesc[n].size=(dmachunklen+3)&(~3);
dmadesc[n].length=(dmachunklen+3)&(~3);
} else {
dmadesc[n].size=dmachunklen;
dmadesc[n].length=dmachunklen;
}
dmadesc[n].buf=(uint8_t*)data;
dmadesc[n].eof=0;
dmadesc[n].sosf=0;
dmadesc[n].owner=1;
dmadesc[n].qe.stqe_next=&dmadesc[n+1];
len-=dmachunklen;
data+=dmachunklen;
n++;
}
dmadesc[n-1].eof=1; //Mark last DMA desc as end of stream.
dmadesc[n-1].qe.stqe_next=NULL;
}
/*
Code for workaround for DMA issue in ESP32 v0/v1 silicon
*/
static volatile int dmaworkaround_channels_busy[2]={0,0};
static dmaworkaround_cb_t dmaworkaround_cb;
static void *dmaworkaround_cb_arg;
static portMUX_TYPE dmaworkaround_mux=portMUX_INITIALIZER_UNLOCKED;
static int dmaworkaround_waiting_for_chan=0;
bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg)
{
int otherchan=(dmachan==1)?2:1;
bool ret;
portENTER_CRITICAL(&dmaworkaround_mux);
if (dmaworkaround_channels_busy[otherchan]) {
//Other channel is busy. Call back when it's done.
dmaworkaround_cb=cb;
dmaworkaround_cb_arg=arg;
dmaworkaround_waiting_for_chan=otherchan;
ret=false;
} else {
//Reset DMA
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
ret=true;
}
portEXIT_CRITICAL(&dmaworkaround_mux);
return ret;
}
bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress()
{
return (dmaworkaround_waiting_for_chan!=0);
}
void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan) {
portENTER_CRITICAL(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan]=0;
if (dmaworkaround_waiting_for_chan == dmachan) {
//Reset DMA
SET_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_SPI_DMA_RST);
dmaworkaround_waiting_for_chan=0;
//Call callback
dmaworkaround_cb(dmaworkaround_cb_arg);
}
portEXIT_CRITICAL(&dmaworkaround_mux);
}
void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan) {
portENTER_CRITICAL(&dmaworkaround_mux);
dmaworkaround_channels_busy[dmachan]=1;
portEXIT_CRITICAL(&dmaworkaround_mux);
}