OVMS3-idf/components/driver/mcpwm.c

623 lines
24 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdio.h>
#include "esp_log.h"
#include "esp_err.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/xtensa_api.h"
#include "freertos/task.h"
#include "soc/gpio_periph.h"
#include "driver/mcpwm.h"
#include "driver/periph_ctrl.h"
#include "sdkconfig.h"
#include "hal/mcpwm_hal.h"
typedef struct {
mcpwm_hal_context_t hal;
portMUX_TYPE spinlock;
} mcpwm_context_t;
#define CONTEXT_INITIALIZER() { \
.spinlock = portMUX_INITIALIZER_UNLOCKED, \
.hal = { \
.prescale = MCPWM_CLK_PRESCL, \
}, \
}
static const char *MCPWM_TAG = "MCPWM";
#define MCPWM_CHECK(a, str, ret_val) if (!(a)) { \
ESP_LOGE(MCPWM_TAG,"%s:%d (%s):%s", __FILE__, __LINE__, __FUNCTION__, str); \
return (ret_val); \
}
#define MCPWM_DRIVER_INIT_ERROR "MCPWM DRIVER NOT INITIALIZED"
#define MCPWM_UNIT_NUM_ERROR "MCPWM UNIT NUM ERROR"
#define MCPWM_TIMER_ERROR "MCPWM TIMER NUM ERROR"
#define MCPWM_PARAM_ADDR_ERROR "MCPWM PARAM ADDR ERROR"
#define MCPWM_DUTY_TYPE_ERROR "MCPWM DUTY TYPE ERROR"
#define MCPWM_GPIO_ERROR "MCPWM GPIO NUM ERROR"
#define MCPWM_GEN_ERROR "MCPWM GENERATOR ERROR"
#define MCPWM_DB_ERROR "MCPWM DEADTIME TYPE ERROR"
#define MCPWM_CLK_PRESCL 15 //MCPWM clock prescale
#define TIMER_CLK_PRESCALE 9 //MCPWM timer prescales
#define MCPWM_CLK (MCPWM_BASE_CLK/(MCPWM_CLK_PRESCL +1))
#define MCPWM_PIN_IGNORE (-1)
#define OFFSET_FOR_GPIO_IDX_1 6
#define OFFSET_FOR_GPIO_IDX_2 75
_Static_assert(SOC_MCPWM_OP_NUM >= SOC_MCPWM_TIMER_NUM, "This driver assumes the timer num equals to the operator num.");
_Static_assert(SOC_MCPWM_COMPARATOR_NUM >= SOC_MCPWM_GENERATOR_NUM, "This driver assumes the generator num equals to the generator num.");
_Static_assert(SOC_MCPWM_GENERATOR_NUM == 2, "This driver assumes the generator num equals to 2.");
#define MCPWM_TIMER_ID_CHECK(mcpwm_num, timer_num) do {\
MCPWM_CHECK((mcpwm_num) < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG); \
MCPWM_CHECK((timer_num) < SOC_MCPWM_TIMER_NUM, MCPWM_TIMER_ERROR, ESP_ERR_INVALID_ARG); \
} while(0)
#define MCPWM_TIMER_CHECK(mcpwm_num, timer_num) do{\
MCPWM_TIMER_ID_CHECK(mcpwm_num, timer_num); \
MCPWM_CHECK(context[mcpwm_num].hal.dev != NULL, MCPWM_DRIVER_INIT_ERROR, ESP_ERR_INVALID_STATE); \
} while(0)
#define MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen) do{ \
MCPWM_TIMER_CHECK(mcpwm_num, timer_num); \
MCPWM_CHECK(gen < MCPWM_GEN_MAX, MCPWM_GEN_ERROR, ESP_ERR_INVALID_ARG); \
} while(0)
static mcpwm_context_t context[SOC_MCPWM_PERIPH_NUM] = {
CONTEXT_INITIALIZER(),
CONTEXT_INITIALIZER(),
};
static inline void mcpwm_critical_enter(mcpwm_unit_t mcpwm_num)
{
portENTER_CRITICAL(&context[mcpwm_num].spinlock);
}
static inline void mcpwm_critical_exit(mcpwm_unit_t mcpwm_num)
{
portEXIT_CRITICAL(&context[mcpwm_num].spinlock);
}
esp_err_t mcpwm_gpio_init(mcpwm_unit_t mcpwm_num, mcpwm_io_signals_t io_signal, int gpio_num)
{
if (gpio_num == MCPWM_PIN_IGNORE) {
//IGNORE
return ESP_OK;
}
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK((GPIO_IS_VALID_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG);
periph_module_enable(PERIPH_PWM0_MODULE + mcpwm_num);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], PIN_FUNC_GPIO);
bool mcpwm_gpio_sig = (io_signal <= MCPWM2B);
if (mcpwm_num == MCPWM_UNIT_0) {
if (mcpwm_gpio_sig) {
MCPWM_CHECK((GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, PWM0_OUT0A_IDX + io_signal, 0, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, PWM0_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_1, 0);
}
} else { //MCPWM_UNIT_1
if (mcpwm_gpio_sig) {
MCPWM_CHECK((GPIO_IS_VALID_OUTPUT_GPIO(gpio_num)), MCPWM_GPIO_ERROR, ESP_ERR_INVALID_ARG);
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
gpio_matrix_out(gpio_num, PWM1_OUT0A_IDX + io_signal, 0, 0);
} else if (io_signal >= MCPWM_SYNC_0 && io_signal <= MCPWM_FAULT_2) {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, PWM1_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_1, 0);
} else {
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
gpio_matrix_in(gpio_num, PWM1_SYNC0_IN_IDX + io_signal - OFFSET_FOR_GPIO_IDX_2, 0);
}
}
return ESP_OK;
}
esp_err_t mcpwm_set_pin(mcpwm_unit_t mcpwm_num, const mcpwm_pin_config_t *mcpwm_pin)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_gpio_init(mcpwm_num, MCPWM0A, mcpwm_pin->mcpwm0a_out_num); //MCPWM0A
mcpwm_gpio_init(mcpwm_num, MCPWM0B, mcpwm_pin->mcpwm0b_out_num); //MCPWM0B
mcpwm_gpio_init(mcpwm_num, MCPWM1A, mcpwm_pin->mcpwm1a_out_num); //MCPWM1A
mcpwm_gpio_init(mcpwm_num, MCPWM1B, mcpwm_pin->mcpwm1b_out_num); //MCPWM1B
mcpwm_gpio_init(mcpwm_num, MCPWM2A, mcpwm_pin->mcpwm2a_out_num); //MCPWM2A
mcpwm_gpio_init(mcpwm_num, MCPWM2B, mcpwm_pin->mcpwm2b_out_num); //MCPWM2B
mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_0, mcpwm_pin->mcpwm_sync0_in_num); //SYNC0
mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_1, mcpwm_pin->mcpwm_sync1_in_num); //SYNC1
mcpwm_gpio_init(mcpwm_num, MCPWM_SYNC_2, mcpwm_pin->mcpwm_sync2_in_num); //SYNC2
mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_0, mcpwm_pin->mcpwm_fault0_in_num); //FAULT0
mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_1, mcpwm_pin->mcpwm_fault1_in_num); //FAULT1
mcpwm_gpio_init(mcpwm_num, MCPWM_FAULT_2, mcpwm_pin->mcpwm_fault2_in_num); //FAULT2
mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_0, mcpwm_pin->mcpwm_cap0_in_num); //CAP0
mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_1, mcpwm_pin->mcpwm_cap1_in_num); //CAP1
mcpwm_gpio_init(mcpwm_num, MCPWM_CAP_2, mcpwm_pin->mcpwm_cap2_in_num); //CAP2
return ESP_OK;
}
esp_err_t mcpwm_start(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_timer_start(&context[mcpwm_num].hal, timer_num);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_stop(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_timer_stop(&context[mcpwm_num].hal, timer_num);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_set_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint32_t frequency)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
hal->timer[timer_num].freq = frequency;
mcpwm_hal_timer_update_basic(hal, timer_num);
//update the operator to update the duty
mcpwm_hal_operator_update_basic(hal, op);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_set_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, float duty)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
//the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output
const int cmp = gen;
MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
hal->op[op].duty[cmp] = duty;
mcpwm_hal_operator_update_comparator(hal, op, gen);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_set_duty_in_us(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen, uint32_t duty_in_us)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
//the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output
const int cmp = gen;
MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
hal->op[op].duty[cmp] = (100 * duty_in_us * hal->timer[timer_num].freq) / (1000 * 1000.);
mcpwm_hal_operator_update_comparator(hal, op, gen);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_set_duty_type(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen,
mcpwm_duty_type_t duty_type)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen);
MCPWM_CHECK(duty_type < MCPWM_DUTY_MODE_MAX, MCPWM_DUTY_TYPE_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_hal_context_t* hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) {
.comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output
.duty_type = duty_type,
};
mcpwm_hal_operator_update_generator(hal, op, gen);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_config_t *mcpwm_conf)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_ID_CHECK(mcpwm_num, op);
periph_module_enable(PERIPH_PWM0_MODULE + mcpwm_num);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_init_config_t init_config = {
.host_id = mcpwm_num,
};
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_init(hal, &init_config);
mcpwm_hal_hw_init(hal);
hal->timer[timer_num].timer_prescale = TIMER_CLK_PRESCALE;
hal->timer[timer_num].freq = mcpwm_conf->frequency;
hal->timer[timer_num].count_mode = mcpwm_conf->counter_mode;
//the driver currently always use the timer x for operator x
hal->op[op].timer = timer_num;
hal->op[op].duty[0] = mcpwm_conf->cmpr_a;
hal->op[op].duty[1] = mcpwm_conf->cmpr_b;
mcpwm_hal_timer_update_basic(hal, timer_num);
//update the comparer to keep the same duty rate
mcpwm_hal_operator_update_basic(hal, op);
for (int gen = 0; gen < SOC_MCPWM_GENERATOR_NUM; gen++) {
hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) {
.comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output
.duty_type = mcpwm_conf->duty_mode,
};
mcpwm_hal_operator_update_generator(hal, op, gen);
}
mcpwm_hal_timer_start(hal, timer_num);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
uint32_t mcpwm_get_frequency(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
return context[mcpwm_num].hal.timer[timer_num].freq;
}
float mcpwm_get_duty(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen);
return context[mcpwm_num].hal.op[op].duty[gen];
}
STATIC_HAL_REG_CHECK(MCPWM, MCPWM_GEN_A, 0);
STATIC_HAL_REG_CHECK(MCPWM, MCPWM_GEN_B, 1);
esp_err_t mcpwm_set_signal_high(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) {
.comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output
.duty_type = MCPWM_HAL_GENERATOR_MODE_FORCE_HIGH,
};
mcpwm_hal_operator_update_generator(hal, op, gen);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_set_signal_low(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_generator_t gen)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_GEN_CHECK(mcpwm_num, timer_num, gen);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
hal->op[op].gen[gen] = (mcpwm_hal_generator_config_t) {
.comparator = gen, //the driver currently always use the comparator A for PWMxA output, and comparator B for PWMxB output
.duty_type = MCPWM_HAL_GENERATOR_MODE_FORCE_LOW,
};
mcpwm_hal_operator_update_generator(hal, op, gen);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_ll_carrier_enable(context[mcpwm_num].hal.dev, op, true);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_ll_carrier_enable(context[mcpwm_num].hal.dev, op, false);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_set_period(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_period)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_ll_carrier_set_prescale(context[mcpwm_num].hal.dev, op, carrier_period);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_set_duty_cycle(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t carrier_duty)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_ll_carrier_set_duty(context[mcpwm_num].hal.dev, op, carrier_duty);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_oneshot_mode_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, uint8_t pulse_width)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_ll_carrier_set_oneshot_width(context[mcpwm_num].hal.dev, op, pulse_width);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_oneshot_mode_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
return mcpwm_carrier_oneshot_mode_enable(mcpwm_num, timer_num, 0);
}
esp_err_t mcpwm_carrier_output_invert(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num,
mcpwm_carrier_out_ivt_t carrier_ivt_mode)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_ll_carrier_out_invert(context[mcpwm_num].hal.dev, op, carrier_ivt_mode);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_carrier_init(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, const mcpwm_carrier_config_t *carrier_conf)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_carrier_conf_t carrier = {
.period = carrier_conf->carrier_period,
.duty = carrier_conf->carrier_duty,
.inverted = carrier_conf->carrier_ivt_mode,
};
if (carrier_conf->carrier_os_mode == MCPWM_ONESHOT_MODE_EN) {
carrier.oneshot_pulse_width = carrier_conf->pulse_width_in_os;
} else {
carrier.oneshot_pulse_width = 0;
}
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_operator_enable_carrier(hal, op, &carrier);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_deadtime_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_deadtime_type_t dt_mode,
uint32_t red, uint32_t fed)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
MCPWM_CHECK(dt_mode < MCPWM_DEADTIME_TYPE_MAX, MCPWM_DB_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_deadzone_conf_t deadzone = {
.red = red,
.fed = fed,
.mode = dt_mode,
};
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_operator_update_deadzone(hal, op, &deadzone);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_deadtime_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_deadzone_conf_t deadzone = { .mode = MCPWM_DEADTIME_BYPASS };
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_operator_update_deadzone(hal, op, &deadzone);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_fault_init(mcpwm_unit_t mcpwm_num, mcpwm_fault_input_level_t intput_level, mcpwm_fault_signal_t fault_sig)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_fault_init(&context[mcpwm_num].hal, fault_sig, intput_level);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_fault_deinit(mcpwm_unit_t mcpwm_num, mcpwm_fault_signal_t fault_sig)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_fault_disable(&context[mcpwm_num].hal, fault_sig);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_fault_set_cyc_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig,
mcpwm_output_action_t action_on_pwmxa, mcpwm_output_action_t action_on_pwmxb)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, op);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_fault_conf_t fault_conf = {
.cbc_enabled_mask = BIT(fault_sig),
.ost_enabled_mask = 0,
.action_on_fault[0] = action_on_pwmxa,
.action_on_fault[1] = action_on_pwmxb,
};
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_operator_update_fault(hal, op, &fault_conf);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_fault_set_oneshot_mode(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_fault_signal_t fault_sig,
mcpwm_action_on_pwmxa_t action_on_pwmxa, mcpwm_action_on_pwmxb_t action_on_pwmxb)
{
//the driver currently always use the timer x for operator x
const int op = timer_num;
MCPWM_TIMER_CHECK(mcpwm_num, op);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_fault_conf_t fault_conf = {
.cbc_enabled_mask = 0,
.ost_enabled_mask = BIT(fault_sig),
.action_on_fault[0] = action_on_pwmxa,
.action_on_fault[1] = action_on_pwmxb,
};
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_fault_oneshot_clear(hal, op);
mcpwm_hal_operator_update_fault(hal, op, &fault_conf);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_capture_enable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig, mcpwm_capture_on_edge_t cap_edge,
uint32_t num_of_pulse)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_hal_init_config_t init_config = {
.host_id = mcpwm_num,
};
mcpwm_hal_capture_config_t cap_conf = {
.cap_edge = cap_edge,
.prescale = num_of_pulse,
};
mcpwm_hal_context_t* hal = &context[mcpwm_num].hal;
mcpwm_critical_enter(mcpwm_num);
//We have to do this here, since there is no standalone init function
//without enabling any PWM channels.
mcpwm_hal_init(hal, &init_config);
mcpwm_hal_hw_init(hal);
mcpwm_hal_capture_enable(hal, cap_sig, &cap_conf);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_capture_disable(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_capture_disable(&context[mcpwm_num].hal, cap_sig);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
uint32_t mcpwm_capture_signal_get_value(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
uint32_t captured_value;
mcpwm_hal_capture_get_result(&context[mcpwm_num].hal, cap_sig, &captured_value, NULL);
return captured_value;
}
uint32_t mcpwm_capture_signal_get_edge(mcpwm_unit_t mcpwm_num, mcpwm_capture_signal_t cap_sig)
{
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
mcpwm_capture_on_edge_t edge;
mcpwm_hal_capture_get_result(&context[mcpwm_num].hal, cap_sig, NULL, &edge);
return (edge == MCPWM_NEG_EDGE? 2: 1);
}
esp_err_t mcpwm_sync_enable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num, mcpwm_sync_signal_t sync_sig,
uint32_t phase_val)
{
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_hal_context_t *hal = &context[mcpwm_num].hal;
mcpwm_hal_sync_config_t sync_config = {
.reload_permillage = phase_val,
.sync_sig = sync_sig,
};
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_timer_enable_sync(hal, timer_num, &sync_config);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_sync_disable(mcpwm_unit_t mcpwm_num, mcpwm_timer_t timer_num)
{
MCPWM_TIMER_CHECK(mcpwm_num, timer_num);
mcpwm_critical_enter(mcpwm_num);
mcpwm_hal_timer_disable_sync(&context[mcpwm_num].hal, timer_num);
mcpwm_critical_exit(mcpwm_num);
return ESP_OK;
}
esp_err_t mcpwm_isr_register(mcpwm_unit_t mcpwm_num, void (*fn)(void *), void *arg, int intr_alloc_flags, intr_handle_t *handle)
{
esp_err_t ret;
MCPWM_CHECK(mcpwm_num < SOC_MCPWM_PERIPH_NUM, MCPWM_UNIT_NUM_ERROR, ESP_ERR_INVALID_ARG);
MCPWM_CHECK(fn != NULL, MCPWM_PARAM_ADDR_ERROR, ESP_ERR_INVALID_ARG);
ret = esp_intr_alloc((ETS_PWM0_INTR_SOURCE + mcpwm_num), intr_alloc_flags, fn, arg, handle);
return ret;
}