OVMS3-idf/Kconfig

226 lines
8.9 KiB
Text
Raw Normal View History

2016-08-17 15:08:22 +00:00
#
# For a description of the syntax of this configuration file,
# see kconfig/kconfig-language.txt.
#
mainmenu "Espressif IoT Development Framework Configuration"
2016-08-17 15:08:22 +00:00
2018-12-06 14:08:18 +00:00
config IDF_CMAKE
bool
option env="IDF_CMAKE"
config IDF_TARGET_ENV
# A proxy to get environment variable $IDF_TARGET
string
option env="IDF_TARGET"
config IDF_TARGET
# This option records the IDF target when sdkconfig is generated the first time.
# It is not updated if environment variable $IDF_TARGET changes later, and
# the build system is responsible for detecting the mismatch between
# CONFIG_IDF_TARGET and $IDF_TARGET.
string
default "IDF_TARGET_NOT_SET" if IDF_TARGET_ENV=""
default IDF_TARGET_ENV
menu "SDK tool configuration"
config SDK_TOOLPREFIX
2018-12-06 14:08:18 +00:00
string "Compiler toolchain path/prefix"
default "xtensa-esp32-elf-"
help
The prefix/path that is used to call the toolchain. The default setting assumes
a crosstool-ng gcc setup that is in your PATH.
config SDK_PYTHON
2018-12-06 14:08:18 +00:00
string "Python 2 interpreter"
depends on !IDF_CMAKE
default "python"
help
The executable name/path that is used to run python. On some systems Python 2.x
may need to be invoked as python2.
(Note: This option is used with the GNU Make build system only, not idf.py
or CMake-based builds.)
config SDK_MAKE_WARN_UNDEFINED_VARIABLES
2018-12-06 14:08:18 +00:00
bool "'make' warns on undefined variables"
default "y"
help
Adds --warn-undefined-variables to MAKEFLAGS. This causes make to
print a warning any time an undefined variable is referenced.
This option helps find places where a variable reference is misspelled
or otherwise missing, but it can be unwanted if you have Makefiles which
depend on undefined variables expanding to an empty string.
endmenu # SDK tool configuration
source "$COMPONENT_KCONFIGS_PROJBUILD"
menu "Compiler options"
choice OPTIMIZATION_COMPILER
prompt "Optimization Level"
default OPTIMIZATION_LEVEL_DEBUG
help
This option sets compiler optimization level (gcc -O argument).
- for "Release" setting, -Os flag is added to CFLAGS.
- for "Debug" setting, -Og flag is added to CFLAGS.
"Release" with -Os produces smaller & faster compiled code but it
may be harder to correlated code addresses to source files when debugging.
To add custom optimization settings, set CFLAGS and/or CPPFLAGS
in project makefile, before including $(IDF_PATH)/make/project.mk. Note that
custom optimization levels may be unsupported.
config OPTIMIZATION_LEVEL_DEBUG
bool "Debug (-Og)"
config OPTIMIZATION_LEVEL_RELEASE
bool "Release (-Os)"
endchoice
choice OPTIMIZATION_ASSERTION_LEVEL
prompt "Assertion level"
default OPTIMIZATION_ASSERTIONS_ENABLED
help
Assertions can be:
- Enabled. Failure will print verbose assertion details. This is the default.
- Set to "silent" to save code size (failed assertions will abort() but user
needs to use the aborting address to find the line number with the failed assertion.)
- Disabled entirely (not recommended for most configurations.) -DNDEBUG is added
to CPPFLAGS in this case.
config OPTIMIZATION_ASSERTIONS_ENABLED
prompt "Enabled"
bool
help
Enable assertions. Assertion content and line number will be printed on failure.
config OPTIMIZATION_ASSERTIONS_SILENT
prompt "Silent (saves code size)"
bool
help
Enable silent assertions. Failed assertions will abort(), user needs to
use the aborting address to find the line number with the failed assertion.
config OPTIMIZATION_ASSERTIONS_DISABLED
prompt "Disabled (sets -DNDEBUG)"
bool
help
If assertions are disabled, -DNDEBUG is added to CPPFLAGS.
endchoice # assertions
menuconfig CXX_EXCEPTIONS
bool "Enable C++ exceptions"
default n
help
Enabling this option compiles all IDF C++ files with exception support enabled.
Disabling this option disables C++ exception support in all compiled files, and any libstdc++ code
which throws an exception will abort instead.
Enabling this option currently adds an additional ~500 bytes of heap overhead
when an exception is thrown in user code for the first time.
config CXX_EXCEPTIONS_EMG_POOL_SIZE
int "Emergency Pool Size"
default 0
depends on CXX_EXCEPTIONS
help
Size (in bytes) of the emergency memory pool for C++ exceptions. This pool will be used to allocate
memory for thrown exceptions when there is not enough memory on the heap.
choice STACK_CHECK_MODE
prompt "Stack smashing protection mode"
default STACK_CHECK_NONE
help
Stack smashing protection mode. Emit extra code to check for buffer overflows, such as stack
smashing attacks. This is done by adding a guard variable to functions with vulnerable objects.
The guards are initialized when a function is entered and then checked when the function exits.
If a guard check fails, program is halted. Protection has the following modes:
- In NORMAL mode (GCC flag: -fstack-protector) only functions that call alloca, and functions with
buffers larger than 8 bytes are protected.
- STRONG mode (GCC flag: -fstack-protector-strong) is like NORMAL, but includes additional functions
to be protected -- those that have local array definitions, or have references to local frame
addresses.
- In OVERALL mode (GCC flag: -fstack-protector-all) all functions are protected.
Modes have the following impact on code performance and coverage:
- performance: NORMAL > STRONG > OVERALL
- coverage: NORMAL < STRONG < OVERALL
config STACK_CHECK_NONE
bool "None"
config STACK_CHECK_NORM
bool "Normal"
config STACK_CHECK_STRONG
bool "Strong"
config STACK_CHECK_ALL
bool "Overall"
endchoice
config STACK_CHECK
bool
default !STACK_CHECK_NONE
help
Stack smashing protection.
config WARN_WRITE_STRINGS
bool "Enable -Wwrite-strings warning flag"
default "n"
help
Adds -Wwrite-strings flag for the C/C++ compilers.
For C, this gives string constants the type ``const char[]`` so that
copying the address of one into a non-const ``char *`` pointer
produces a warning. This warning helps to find at compile time code
that tries to write into a string constant.
For C++, this warns about the deprecated conversion from string
literals to ``char *``.
config DISABLE_GCC8_WARNINGS
bool "Disable new warnings introduced in GCC 6 - 8"
default "n"
help
Enable this option if using GCC 6 or newer, and wanting to disable warnings which don't appear with
GCC 5.
endmenu # Compiler Options
menu "Component config"
source "$COMPONENT_KCONFIGS"
endmenu
global: move the soc component out of the common list This MR removes the common dependency from every IDF components to the SOC component. Currently, in the ``idf_functions.cmake`` script, we include the header path of SOC component by default for all components. But for better code organization (or maybe also benifits to the compiling speed), we may remove the dependency to SOC components for most components except the driver and kernel related components. In CMAKE, we have two kinds of header visibilities (set by include path visibility): (Assume component A --(depends on)--> B, B is the current component) 1. public (``COMPONENT_ADD_INCLUDEDIRS``): means this path is visible to other depending components (A) (visible to A and B) 2. private (``COMPONENT_PRIV_INCLUDEDIRS``): means this path is only visible to source files inside the component (visible to B only) and we have two kinds of depending ways: (Assume component A --(depends on)--> B --(depends on)--> C, B is the current component) 1. public (```COMPONENT_REQUIRES```): means B can access to public include path of C. All other components rely on you (A) will also be available for the public headers. (visible to A, B) 2. private (``COMPONENT_PRIV_REQUIRES``): means B can access to public include path of C, but don't propagate this relation to other components (A). (visible to B) 1. remove the common requirement in ``idf_functions.cmake``, this makes the SOC components invisible to all other components by default. 2. if a component (for example, DRIVER) really needs the dependency to SOC, add a private dependency to SOC for it. 3. some other components that don't really depends on the SOC may still meet some errors saying "can't find header soc/...", this is because it's depended component (DRIVER) incorrectly include the header of SOC in its public headers. Moving all this kind of #include into source files, or private headers 4. Fix the include requirements for some file which miss sufficient #include directives. (Previously they include some headers by the long long long header include link) This is a breaking change. Previous code may depends on the long include chain. You may need to include the following headers for some files after this commit: - soc/soc.h - soc/soc_memory_layout.h - driver/gpio.h - esp_sleep.h The major broken include chain includes: 1. esp_system.h no longer includes esp_sleep.h. The latter includes driver/gpio.h and driver/touch_pad.h. 2. ets_sys.h no longer includes soc/soc.h 3. freertos/portmacro.h no longer includes soc/soc_memory_layout.h some peripheral headers no longer includes their hw related headers, e.g. rom/gpio.h no longer includes soc/gpio_pins.h and soc/gpio_reg.h BREAKING CHANGE
2019-04-03 05:17:38 +00:00
menu "Compatibility options"
config LEGACY_INCLUDE_COMMON_HEADERS
bool "Include headers accross components as before IDF v4.0"
default n
help
Soc, esp32, and driver components, the most common
components. Some header of these components are included
implicitly by headers of other components before IDF v4.0.
It's not required for high-level components, but still
included through long header chain everywhere.
This is harmful to the modularity. So it's changed in IDF
v4.0.
You can still include these headers in a legacy way until it
is totally deprecated by enable this option.
endmenu #Compatibility options