2017-05-03 08:03:28 +00:00
|
|
|
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
#include <stdbool.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <assert.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include "esp_attr.h"
|
|
|
|
#include "esp_heap_caps.h"
|
|
|
|
#include "multi_heap.h"
|
|
|
|
#include "esp_log.h"
|
|
|
|
#include "heap_private.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
This file, combined with a region allocator that supports multiple heaps, solves the problem that the ESP32 has RAM
|
|
|
|
that's slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
|
|
|
|
some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible memory
|
|
|
|
allocation possible, this code makes it possible to request memory that has certain capabilities. The code will then use
|
|
|
|
its knowledge of how the memory is configured along with a priority scheme to allocate that memory in the most sane way
|
|
|
|
possible. This should optimize the amount of RAM accessible to the code without hardwiring addresses.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
This takes a memory chunk in a region that can be addressed as both DRAM as well as IRAM. It will convert it to
|
|
|
|
IRAM in such a way that it can be later freed. It assumes both the address as wel as the length to be word-aligned.
|
|
|
|
It returns a region that's 1 word smaller than the region given because it stores the original Dram address there.
|
|
|
|
|
|
|
|
In theory, we can also make this work by prepending a struct that looks similar to the block link struct used by the
|
|
|
|
heap allocator itself, which will allow inspection tools relying on any block returned from any sort of malloc to
|
|
|
|
have such a block in front of it, work. We may do this later, if/when there is demand for it. For now, a simple
|
|
|
|
pointer is used.
|
|
|
|
*/
|
|
|
|
IRAM_ATTR static void *dram_alloc_to_iram_addr(void *addr, size_t len)
|
|
|
|
{
|
|
|
|
uint32_t dstart = (int)addr; //First word
|
|
|
|
uint32_t dend = ((int)addr) + len - 4; //Last word
|
|
|
|
assert(dstart >= SOC_DIRAM_DRAM_LOW);
|
|
|
|
assert(dend <= SOC_DIRAM_DRAM_HIGH);
|
|
|
|
assert((dstart & 3) == 0);
|
|
|
|
assert((dend & 3) == 0);
|
|
|
|
uint32_t istart = SOC_DIRAM_IRAM_LOW + (SOC_DIRAM_DRAM_HIGH - dend);
|
|
|
|
uint32_t *iptr = (uint32_t *)istart;
|
|
|
|
*iptr = dstart;
|
|
|
|
return (void *)(iptr + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* return all possible capabilities (across all priorities) for a given heap */
|
|
|
|
inline static uint32_t get_all_caps(const heap_t *heap)
|
|
|
|
{
|
|
|
|
if (heap->heap == NULL) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
uint32_t all_caps = 0;
|
2017-07-04 04:46:39 +00:00
|
|
|
for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) {
|
2017-05-03 08:03:28 +00:00
|
|
|
all_caps |= heap->caps[prio];
|
|
|
|
}
|
|
|
|
return all_caps;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
|
|
|
|
*/
|
|
|
|
IRAM_ATTR void *heap_caps_malloc( size_t size, uint32_t caps )
|
|
|
|
{
|
|
|
|
void *ret = NULL;
|
|
|
|
uint32_t remCaps;
|
|
|
|
|
|
|
|
if (caps & MALLOC_CAP_EXEC) {
|
|
|
|
//MALLOC_CAP_EXEC forces an alloc from IRAM. There is a region which has both this as well as the following
|
|
|
|
//caps, but the following caps are not possible for IRAM. Thus, the combination is impossible and we return
|
|
|
|
//NULL directly, even although our heap capabilities (based on soc_memory_tags & soc_memory_regions) would
|
|
|
|
//indicate there is a tag for this.
|
|
|
|
if ((caps & MALLOC_CAP_8BIT) || (caps & MALLOC_CAP_DMA)) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
//If any, EXEC memory should be 32-bit aligned, so round up to the next multiple of 4.
|
|
|
|
size = (size + 3) & (~3);
|
|
|
|
}
|
2017-07-04 04:46:39 +00:00
|
|
|
for (int prio = 0; prio < SOC_MEMORY_TYPE_NO_PRIOS; prio++) {
|
2017-05-03 08:03:28 +00:00
|
|
|
//Iterate over heaps and check capabilities at this priority
|
|
|
|
for (int heap_idx = 0; heap_idx < num_registered_heaps; heap_idx++) {
|
|
|
|
heap_t *heap = ®istered_heaps[heap_idx];
|
|
|
|
if ((heap->caps[prio] & caps) != 0) {
|
|
|
|
//Heap has at least one of the caps requested. If caps has other bits set that this prio
|
|
|
|
//doesn't cover, see if they're available in other prios.
|
|
|
|
remCaps = caps & (~heap->caps[prio]); //Remaining caps to be fulfilled
|
|
|
|
int j = prio + 1;
|
2017-07-04 04:46:39 +00:00
|
|
|
while (remCaps != 0 && j < SOC_MEMORY_TYPE_NO_PRIOS) {
|
2017-05-03 08:03:28 +00:00
|
|
|
remCaps = remCaps & (~heap->caps[j]);
|
|
|
|
j++;
|
|
|
|
}
|
|
|
|
if (remCaps == 0) {
|
|
|
|
//This heap can satisfy all the requested capabilities. See if we can grab some memory using it.
|
|
|
|
if ((caps & MALLOC_CAP_EXEC) && heap->start >= SOC_DIRAM_DRAM_LOW && heap->start < SOC_DIRAM_DRAM_HIGH) {
|
|
|
|
//This is special, insofar that what we're going to get back is a DRAM address. If so,
|
|
|
|
//we need to 'invert' it (lowest address in DRAM == highest address in IRAM and vice-versa) and
|
|
|
|
//add a pointer to the DRAM equivalent before the address we're going to return.
|
|
|
|
ret = multi_heap_malloc(heap->heap, size + 4);
|
|
|
|
if (ret != NULL) {
|
|
|
|
return dram_alloc_to_iram_addr(ret, size + 4);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//Just try to alloc, nothing special.
|
|
|
|
ret = multi_heap_malloc(heap->heap, size);
|
|
|
|
if (ret != NULL) {
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//Nothing usable found.
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find the heap which belongs to ptr, or return NULL if it's
|
|
|
|
not in any heap.
|
|
|
|
|
|
|
|
(This confirms if ptr is inside the heap's region, doesn't confirm if 'ptr'
|
|
|
|
is an allocated block or is some other random address inside the heap.)
|
|
|
|
*/
|
|
|
|
IRAM_ATTR static heap_t *find_containing_heap(void *ptr )
|
|
|
|
{
|
|
|
|
intptr_t p = (intptr_t)ptr;
|
|
|
|
for (size_t i = 0; i < num_registered_heaps; i++) {
|
|
|
|
heap_t *heap = ®istered_heaps[i];
|
|
|
|
if (p >= heap->start && p < heap->end) {
|
|
|
|
return heap;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
IRAM_ATTR void heap_caps_free( void *ptr)
|
|
|
|
{
|
|
|
|
intptr_t p = (intptr_t)ptr;
|
|
|
|
|
|
|
|
if (ptr == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((p >= SOC_DIRAM_IRAM_LOW) && (p <= SOC_DIRAM_IRAM_HIGH)) {
|
|
|
|
//Memory allocated here is actually allocated in the DRAM alias region and
|
|
|
|
//cannot be de-allocated as usual. dram_alloc_to_iram_addr stores a pointer to
|
|
|
|
//the equivalent DRAM address, though; free that.
|
|
|
|
uint32_t *dramAddrPtr = (uint32_t *)ptr;
|
|
|
|
ptr = (void *)dramAddrPtr[-1];
|
|
|
|
}
|
|
|
|
|
|
|
|
heap_t *heap = find_containing_heap(ptr);
|
|
|
|
assert(heap != NULL && "free() target pointer is outside heap areas");
|
|
|
|
multi_heap_free(heap->heap, ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
IRAM_ATTR void *heap_caps_realloc( void *ptr, size_t size, int caps)
|
|
|
|
{
|
|
|
|
if (ptr == NULL) {
|
|
|
|
return heap_caps_malloc(size, caps);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size == 0) {
|
|
|
|
heap_caps_free(ptr);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
heap_t *heap = find_containing_heap(ptr);
|
|
|
|
|
|
|
|
assert(heap != NULL && "realloc() pointer is outside heap areas");
|
|
|
|
|
|
|
|
// are the existing heap's capabilities compatible with the
|
|
|
|
// requested ones?
|
|
|
|
bool compatible_caps = (caps & get_all_caps(heap)) == caps;
|
|
|
|
|
|
|
|
if (compatible_caps) {
|
|
|
|
// try to reallocate this memory within the same heap
|
|
|
|
// (which will resize the block if it can)
|
|
|
|
void *r = multi_heap_realloc(heap->heap, ptr, size);
|
|
|
|
if (r != NULL) {
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// if we couldn't do that, try to see if we can reallocate
|
|
|
|
// in a different heap with requested capabilities.
|
|
|
|
void *new_p = heap_caps_malloc(size, caps);
|
|
|
|
if (new_p != NULL) {
|
|
|
|
size_t old_size = multi_heap_get_allocated_size(heap->heap, ptr);
|
|
|
|
assert(old_size > 0);
|
|
|
|
memcpy(new_p, ptr, old_size);
|
|
|
|
heap_caps_free(ptr);
|
|
|
|
return new_p;
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t heap_caps_get_free_size( uint32_t caps )
|
|
|
|
{
|
|
|
|
size_t ret = 0;
|
|
|
|
for (int i = 0; i < num_registered_heaps; i++) {
|
|
|
|
heap_t *heap = ®istered_heaps[i];
|
|
|
|
if ((get_all_caps(heap) & caps) == caps) {
|
|
|
|
ret += multi_heap_free_size(heap->heap);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t heap_caps_get_minimum_free_size( uint32_t caps )
|
|
|
|
{
|
|
|
|
size_t ret = 0;
|
|
|
|
for (int i = 0; i < num_registered_heaps; i++) {
|
|
|
|
heap_t *heap = ®istered_heaps[i];
|
|
|
|
if ((get_all_caps(heap) & caps) == caps) {
|
|
|
|
ret += multi_heap_minimum_free_size(heap->heap);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t heap_caps_get_largest_free_block( uint32_t caps )
|
|
|
|
{
|
|
|
|
multi_heap_info_t info;
|
|
|
|
heap_caps_get_info(&info, caps);
|
|
|
|
return info.largest_free_block;
|
|
|
|
}
|
|
|
|
|
|
|
|
void heap_caps_get_info( multi_heap_info_t *info, uint32_t caps )
|
|
|
|
{
|
|
|
|
bzero(info, sizeof(multi_heap_info_t));
|
|
|
|
|
|
|
|
for (int i = 0; i < num_registered_heaps; i++) {
|
|
|
|
heap_t *heap = ®istered_heaps[i];
|
|
|
|
if ((get_all_caps(heap) & caps) == caps) {
|
|
|
|
multi_heap_info_t hinfo;
|
|
|
|
multi_heap_get_info(heap->heap, &hinfo);
|
|
|
|
|
|
|
|
info->total_free_bytes += hinfo.total_free_bytes;
|
|
|
|
info->total_allocated_bytes += hinfo.total_allocated_bytes;
|
|
|
|
info->largest_free_block = MAX(info->largest_free_block,
|
|
|
|
hinfo.largest_free_block);
|
|
|
|
info->minimum_free_bytes += hinfo.minimum_free_bytes;
|
|
|
|
info->allocated_blocks += hinfo.allocated_blocks;
|
|
|
|
info->free_blocks += hinfo.free_blocks;
|
|
|
|
info->total_blocks += hinfo.total_blocks;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void heap_caps_print_heap_info( uint32_t caps )
|
|
|
|
{
|
|
|
|
multi_heap_info_t info;
|
|
|
|
printf("Heap summary for capabilities 0x%08X:\n", caps);
|
|
|
|
for (int i = 0; i < num_registered_heaps; i++) {
|
|
|
|
heap_t *heap = ®istered_heaps[i];
|
|
|
|
if ((get_all_caps(heap) & caps) == caps) {
|
|
|
|
multi_heap_get_info(heap->heap, &info);
|
|
|
|
|
|
|
|
printf(" At 0x%08x len %d free %d allocated %d min_free %d\n",
|
|
|
|
heap->start, heap->end - heap->start, info.total_free_bytes, info.total_allocated_bytes, info.minimum_free_bytes);
|
|
|
|
printf(" largest_free_block %d alloc_blocks %d free_blocks %d total_blocks %d\n",
|
|
|
|
info.largest_free_block, info.allocated_blocks,
|
|
|
|
info.free_blocks, info.total_blocks);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
printf(" Totals:\n");
|
|
|
|
heap_caps_get_info(&info, caps);
|
|
|
|
|
|
|
|
printf(" free %d allocated %d min_free %d largest_free_block %d\n", info.total_free_bytes, info.total_allocated_bytes, info.minimum_free_bytes, info.largest_free_block);
|
|
|
|
}
|
|
|
|
|