391 lines
15 KiB
C
391 lines
15 KiB
C
|
/*
|
||
|
FreeRTOS V8.2.0 - Copyright (C) 2015 Real Time Engineers Ltd.
|
||
|
All rights reserved
|
||
|
|
||
|
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||
|
|
||
|
This file is part of the FreeRTOS distribution.
|
||
|
|
||
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||
|
the terms of the GNU General Public License (version 2) as published by the
|
||
|
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
||
|
|
||
|
***************************************************************************
|
||
|
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
||
|
>>! distribute a combined work that includes FreeRTOS without being !<<
|
||
|
>>! obliged to provide the source code for proprietary components !<<
|
||
|
>>! outside of the FreeRTOS kernel. !<<
|
||
|
***************************************************************************
|
||
|
|
||
|
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
FOR A PARTICULAR PURPOSE. Full license text is available on the following
|
||
|
link: http://www.freertos.org/a00114.html
|
||
|
|
||
|
***************************************************************************
|
||
|
* *
|
||
|
* FreeRTOS provides completely free yet professionally developed, *
|
||
|
* robust, strictly quality controlled, supported, and cross *
|
||
|
* platform software that is more than just the market leader, it *
|
||
|
* is the industry's de facto standard. *
|
||
|
* *
|
||
|
* Help yourself get started quickly while simultaneously helping *
|
||
|
* to support the FreeRTOS project by purchasing a FreeRTOS *
|
||
|
* tutorial book, reference manual, or both: *
|
||
|
* http://www.FreeRTOS.org/Documentation *
|
||
|
* *
|
||
|
***************************************************************************
|
||
|
|
||
|
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
|
||
|
the FAQ page "My application does not run, what could be wrong?". Have you
|
||
|
defined configASSERT()?
|
||
|
|
||
|
http://www.FreeRTOS.org/support - In return for receiving this top quality
|
||
|
embedded software for free we request you assist our global community by
|
||
|
participating in the support forum.
|
||
|
|
||
|
http://www.FreeRTOS.org/training - Investing in training allows your team to
|
||
|
be as productive as possible as early as possible. Now you can receive
|
||
|
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
|
||
|
Ltd, and the world's leading authority on the world's leading RTOS.
|
||
|
|
||
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||
|
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
||
|
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
||
|
|
||
|
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
|
||
|
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
|
||
|
|
||
|
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
|
||
|
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
|
||
|
licenses offer ticketed support, indemnification and commercial middleware.
|
||
|
|
||
|
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
||
|
engineered and independently SIL3 certified version for use in safety and
|
||
|
mission critical applications that require provable dependability.
|
||
|
|
||
|
1 tab == 4 spaces!
|
||
|
*/
|
||
|
|
||
|
#include "FreeRTOS.h"
|
||
|
#include "task.h"
|
||
|
#include "croutine.h"
|
||
|
|
||
|
/*
|
||
|
* Some kernel aware debuggers require data to be viewed to be global, rather
|
||
|
* than file scope.
|
||
|
*/
|
||
|
#ifdef portREMOVE_STATIC_QUALIFIER
|
||
|
#define static
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/* Lists for ready and blocked co-routines. --------------------*/
|
||
|
static List_t pxReadyCoRoutineLists[ configMAX_CO_ROUTINE_PRIORITIES ]; /*< Prioritised ready co-routines. */
|
||
|
static List_t xDelayedCoRoutineList1; /*< Delayed co-routines. */
|
||
|
static List_t xDelayedCoRoutineList2; /*< Delayed co-routines (two lists are used - one for delays that have overflowed the current tick count. */
|
||
|
static List_t * pxDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used. */
|
||
|
static List_t * pxOverflowDelayedCoRoutineList; /*< Points to the delayed co-routine list currently being used to hold co-routines that have overflowed the current tick count. */
|
||
|
static List_t xPendingReadyCoRoutineList; /*< Holds co-routines that have been readied by an external event. They cannot be added directly to the ready lists as the ready lists cannot be accessed by interrupts. */
|
||
|
|
||
|
/* Other file private variables. --------------------------------*/
|
||
|
CRCB_t * pxCurrentCoRoutine = NULL;
|
||
|
static UBaseType_t uxTopCoRoutineReadyPriority = 0;
|
||
|
static TickType_t xCoRoutineTickCount = 0, xLastTickCount = 0, xPassedTicks = 0;
|
||
|
|
||
|
/* The initial state of the co-routine when it is created. */
|
||
|
#define corINITIAL_STATE ( 0 )
|
||
|
|
||
|
/*
|
||
|
* Place the co-routine represented by pxCRCB into the appropriate ready queue
|
||
|
* for the priority. It is inserted at the end of the list.
|
||
|
*
|
||
|
* This macro accesses the co-routine ready lists and therefore must not be
|
||
|
* used from within an ISR.
|
||
|
*/
|
||
|
#define prvAddCoRoutineToReadyQueue( pxCRCB ) \
|
||
|
{ \
|
||
|
if( pxCRCB->uxPriority > uxTopCoRoutineReadyPriority ) \
|
||
|
{ \
|
||
|
uxTopCoRoutineReadyPriority = pxCRCB->uxPriority; \
|
||
|
} \
|
||
|
vListInsertEnd( ( List_t * ) &( pxReadyCoRoutineLists[ pxCRCB->uxPriority ] ), &( pxCRCB->xGenericListItem ) ); \
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Utility to ready all the lists used by the scheduler. This is called
|
||
|
* automatically upon the creation of the first co-routine.
|
||
|
*/
|
||
|
static void prvInitialiseCoRoutineLists( void );
|
||
|
|
||
|
/*
|
||
|
* Co-routines that are readied by an interrupt cannot be placed directly into
|
||
|
* the ready lists (there is no mutual exclusion). Instead they are placed in
|
||
|
* in the pending ready list in order that they can later be moved to the ready
|
||
|
* list by the co-routine scheduler.
|
||
|
*/
|
||
|
static void prvCheckPendingReadyList( void );
|
||
|
|
||
|
/*
|
||
|
* Macro that looks at the list of co-routines that are currently delayed to
|
||
|
* see if any require waking.
|
||
|
*
|
||
|
* Co-routines are stored in the queue in the order of their wake time -
|
||
|
* meaning once one co-routine has been found whose timer has not expired
|
||
|
* we need not look any further down the list.
|
||
|
*/
|
||
|
static void prvCheckDelayedList( void );
|
||
|
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xCoRoutineCreate( crCOROUTINE_CODE pxCoRoutineCode, UBaseType_t uxPriority, UBaseType_t uxIndex )
|
||
|
{
|
||
|
BaseType_t xReturn;
|
||
|
CRCB_t *pxCoRoutine;
|
||
|
|
||
|
/* Allocate the memory that will store the co-routine control block. */
|
||
|
pxCoRoutine = ( CRCB_t * ) pvPortMalloc( sizeof( CRCB_t ) );
|
||
|
if( pxCoRoutine )
|
||
|
{
|
||
|
/* If pxCurrentCoRoutine is NULL then this is the first co-routine to
|
||
|
be created and the co-routine data structures need initialising. */
|
||
|
if( pxCurrentCoRoutine == NULL )
|
||
|
{
|
||
|
pxCurrentCoRoutine = pxCoRoutine;
|
||
|
prvInitialiseCoRoutineLists();
|
||
|
}
|
||
|
|
||
|
/* Check the priority is within limits. */
|
||
|
if( uxPriority >= configMAX_CO_ROUTINE_PRIORITIES )
|
||
|
{
|
||
|
uxPriority = configMAX_CO_ROUTINE_PRIORITIES - 1;
|
||
|
}
|
||
|
|
||
|
/* Fill out the co-routine control block from the function parameters. */
|
||
|
pxCoRoutine->uxState = corINITIAL_STATE;
|
||
|
pxCoRoutine->uxPriority = uxPriority;
|
||
|
pxCoRoutine->uxIndex = uxIndex;
|
||
|
pxCoRoutine->pxCoRoutineFunction = pxCoRoutineCode;
|
||
|
|
||
|
/* Initialise all the other co-routine control block parameters. */
|
||
|
vListInitialiseItem( &( pxCoRoutine->xGenericListItem ) );
|
||
|
vListInitialiseItem( &( pxCoRoutine->xEventListItem ) );
|
||
|
|
||
|
/* Set the co-routine control block as a link back from the ListItem_t.
|
||
|
This is so we can get back to the containing CRCB from a generic item
|
||
|
in a list. */
|
||
|
listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xGenericListItem ), pxCoRoutine );
|
||
|
listSET_LIST_ITEM_OWNER( &( pxCoRoutine->xEventListItem ), pxCoRoutine );
|
||
|
|
||
|
/* Event lists are always in priority order. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxCoRoutine->xEventListItem ), ( ( TickType_t ) configMAX_CO_ROUTINE_PRIORITIES - ( TickType_t ) uxPriority ) );
|
||
|
|
||
|
/* Now the co-routine has been initialised it can be added to the ready
|
||
|
list at the correct priority. */
|
||
|
prvAddCoRoutineToReadyQueue( pxCoRoutine );
|
||
|
|
||
|
xReturn = pdPASS;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vCoRoutineAddToDelayedList( TickType_t xTicksToDelay, List_t *pxEventList )
|
||
|
{
|
||
|
TickType_t xTimeToWake;
|
||
|
|
||
|
/* Calculate the time to wake - this may overflow but this is
|
||
|
not a problem. */
|
||
|
xTimeToWake = xCoRoutineTickCount + xTicksToDelay;
|
||
|
|
||
|
/* We must remove ourselves from the ready list before adding
|
||
|
ourselves to the blocked list as the same list item is used for
|
||
|
both lists. */
|
||
|
( void ) uxListRemove( ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
|
||
|
|
||
|
/* The list item will be inserted in wake time order. */
|
||
|
listSET_LIST_ITEM_VALUE( &( pxCurrentCoRoutine->xGenericListItem ), xTimeToWake );
|
||
|
|
||
|
if( xTimeToWake < xCoRoutineTickCount )
|
||
|
{
|
||
|
/* Wake time has overflowed. Place this item in the
|
||
|
overflow list. */
|
||
|
vListInsert( ( List_t * ) pxOverflowDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* The wake time has not overflowed, so we can use the
|
||
|
current block list. */
|
||
|
vListInsert( ( List_t * ) pxDelayedCoRoutineList, ( ListItem_t * ) &( pxCurrentCoRoutine->xGenericListItem ) );
|
||
|
}
|
||
|
|
||
|
if( pxEventList )
|
||
|
{
|
||
|
/* Also add the co-routine to an event list. If this is done then the
|
||
|
function must be called with interrupts disabled. */
|
||
|
vListInsert( pxEventList, &( pxCurrentCoRoutine->xEventListItem ) );
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvCheckPendingReadyList( void )
|
||
|
{
|
||
|
/* Are there any co-routines waiting to get moved to the ready list? These
|
||
|
are co-routines that have been readied by an ISR. The ISR cannot access
|
||
|
the ready lists itself. */
|
||
|
while( listLIST_IS_EMPTY( &xPendingReadyCoRoutineList ) == pdFALSE )
|
||
|
{
|
||
|
CRCB_t *pxUnblockedCRCB;
|
||
|
|
||
|
/* The pending ready list can be accessed by an ISR. */
|
||
|
portDISABLE_INTERRUPTS();
|
||
|
{
|
||
|
pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( (&xPendingReadyCoRoutineList) );
|
||
|
( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) );
|
||
|
}
|
||
|
portENABLE_INTERRUPTS();
|
||
|
|
||
|
( void ) uxListRemove( &( pxUnblockedCRCB->xGenericListItem ) );
|
||
|
prvAddCoRoutineToReadyQueue( pxUnblockedCRCB );
|
||
|
}
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvCheckDelayedList( void )
|
||
|
{
|
||
|
CRCB_t *pxCRCB;
|
||
|
|
||
|
xPassedTicks = xTaskGetTickCount() - xLastTickCount;
|
||
|
while( xPassedTicks )
|
||
|
{
|
||
|
xCoRoutineTickCount++;
|
||
|
xPassedTicks--;
|
||
|
|
||
|
/* If the tick count has overflowed we need to swap the ready lists. */
|
||
|
if( xCoRoutineTickCount == 0 )
|
||
|
{
|
||
|
List_t * pxTemp;
|
||
|
|
||
|
/* Tick count has overflowed so we need to swap the delay lists. If there are
|
||
|
any items in pxDelayedCoRoutineList here then there is an error! */
|
||
|
pxTemp = pxDelayedCoRoutineList;
|
||
|
pxDelayedCoRoutineList = pxOverflowDelayedCoRoutineList;
|
||
|
pxOverflowDelayedCoRoutineList = pxTemp;
|
||
|
}
|
||
|
|
||
|
/* See if this tick has made a timeout expire. */
|
||
|
while( listLIST_IS_EMPTY( pxDelayedCoRoutineList ) == pdFALSE )
|
||
|
{
|
||
|
pxCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxDelayedCoRoutineList );
|
||
|
|
||
|
if( xCoRoutineTickCount < listGET_LIST_ITEM_VALUE( &( pxCRCB->xGenericListItem ) ) )
|
||
|
{
|
||
|
/* Timeout not yet expired. */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
portDISABLE_INTERRUPTS();
|
||
|
{
|
||
|
/* The event could have occurred just before this critical
|
||
|
section. If this is the case then the generic list item will
|
||
|
have been moved to the pending ready list and the following
|
||
|
line is still valid. Also the pvContainer parameter will have
|
||
|
been set to NULL so the following lines are also valid. */
|
||
|
( void ) uxListRemove( &( pxCRCB->xGenericListItem ) );
|
||
|
|
||
|
/* Is the co-routine waiting on an event also? */
|
||
|
if( pxCRCB->xEventListItem.pvContainer )
|
||
|
{
|
||
|
( void ) uxListRemove( &( pxCRCB->xEventListItem ) );
|
||
|
}
|
||
|
}
|
||
|
portENABLE_INTERRUPTS();
|
||
|
|
||
|
prvAddCoRoutineToReadyQueue( pxCRCB );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
xLastTickCount = xCoRoutineTickCount;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
void vCoRoutineSchedule( void )
|
||
|
{
|
||
|
/* See if any co-routines readied by events need moving to the ready lists. */
|
||
|
prvCheckPendingReadyList();
|
||
|
|
||
|
/* See if any delayed co-routines have timed out. */
|
||
|
prvCheckDelayedList();
|
||
|
|
||
|
/* Find the highest priority queue that contains ready co-routines. */
|
||
|
while( listLIST_IS_EMPTY( &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) ) )
|
||
|
{
|
||
|
if( uxTopCoRoutineReadyPriority == 0 )
|
||
|
{
|
||
|
/* No more co-routines to check. */
|
||
|
return;
|
||
|
}
|
||
|
--uxTopCoRoutineReadyPriority;
|
||
|
}
|
||
|
|
||
|
/* listGET_OWNER_OF_NEXT_ENTRY walks through the list, so the co-routines
|
||
|
of the same priority get an equal share of the processor time. */
|
||
|
listGET_OWNER_OF_NEXT_ENTRY( pxCurrentCoRoutine, &( pxReadyCoRoutineLists[ uxTopCoRoutineReadyPriority ] ) );
|
||
|
|
||
|
/* Call the co-routine. */
|
||
|
( pxCurrentCoRoutine->pxCoRoutineFunction )( pxCurrentCoRoutine, pxCurrentCoRoutine->uxIndex );
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
static void prvInitialiseCoRoutineLists( void )
|
||
|
{
|
||
|
UBaseType_t uxPriority;
|
||
|
|
||
|
for( uxPriority = 0; uxPriority < configMAX_CO_ROUTINE_PRIORITIES; uxPriority++ )
|
||
|
{
|
||
|
vListInitialise( ( List_t * ) &( pxReadyCoRoutineLists[ uxPriority ] ) );
|
||
|
}
|
||
|
|
||
|
vListInitialise( ( List_t * ) &xDelayedCoRoutineList1 );
|
||
|
vListInitialise( ( List_t * ) &xDelayedCoRoutineList2 );
|
||
|
vListInitialise( ( List_t * ) &xPendingReadyCoRoutineList );
|
||
|
|
||
|
/* Start with pxDelayedCoRoutineList using list1 and the
|
||
|
pxOverflowDelayedCoRoutineList using list2. */
|
||
|
pxDelayedCoRoutineList = &xDelayedCoRoutineList1;
|
||
|
pxOverflowDelayedCoRoutineList = &xDelayedCoRoutineList2;
|
||
|
}
|
||
|
/*-----------------------------------------------------------*/
|
||
|
|
||
|
BaseType_t xCoRoutineRemoveFromEventList( const List_t *pxEventList )
|
||
|
{
|
||
|
CRCB_t *pxUnblockedCRCB;
|
||
|
BaseType_t xReturn;
|
||
|
|
||
|
/* This function is called from within an interrupt. It can only access
|
||
|
event lists and the pending ready list. This function assumes that a
|
||
|
check has already been made to ensure pxEventList is not empty. */
|
||
|
pxUnblockedCRCB = ( CRCB_t * ) listGET_OWNER_OF_HEAD_ENTRY( pxEventList );
|
||
|
( void ) uxListRemove( &( pxUnblockedCRCB->xEventListItem ) );
|
||
|
vListInsertEnd( ( List_t * ) &( xPendingReadyCoRoutineList ), &( pxUnblockedCRCB->xEventListItem ) );
|
||
|
|
||
|
if( pxUnblockedCRCB->uxPriority >= pxCurrentCoRoutine->uxPriority )
|
||
|
{
|
||
|
xReturn = pdTRUE;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
xReturn = pdFALSE;
|
||
|
}
|
||
|
|
||
|
return xReturn;
|
||
|
}
|
||
|
|