OVMS3-idf/components/freemodbus/modbus_controller/mbcontroller.c

493 lines
21 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// mbcontroller.c
// Implementation of the modbus controller
// The modbus controller is responsible for processing of modbus packet and transfer data
// into parameter instance.
#include <sys/time.h> // for calculation of time stamp in milliseconds
#include "esp_log.h" // for log_write
#include "freertos/FreeRTOS.h" // for task creation and queue access
#include "freertos/task.h" // for task api access
#include "freertos/event_groups.h" // for event groups
#include "freertos/queue.h" // for queue api access
#include "mb.h" // for mb types definition
#include "mbutils.h" // for mbutils functions definition for stack callback
#include "sdkconfig.h" // for KConfig values
#include "mbcontroller.h"
static const char* TAG = "MB_CONTROLLER";
#define MB_CHECK(a, ret_val, str, ...) \
if (!(a)) { \
ESP_LOGE(TAG, "%s(%u): " str, __FUNCTION__, __LINE__, ##__VA_ARGS__); \
return (ret_val); \
}
// The Macros below handle the endianness while transfer N byte data into buffer
#define _XFER_4_RD(dst, src) { \
*(uint8_t *)(dst)++ = *(uint8_t*)(src + 1); \
*(uint8_t *)(dst)++ = *(uint8_t*)(src + 0); \
*(uint8_t *)(dst)++ = *(uint8_t*)(src + 3); \
*(uint8_t *)(dst)++ = *(uint8_t*)(src + 2); \
(src) += 4; \
}
#define _XFER_2_RD(dst, src) { \
*(uint8_t *)(dst)++ = *(uint8_t *)(src + 1); \
*(uint8_t *)(dst)++ = *(uint8_t *)(src + 0); \
(src) += 2; \
}
#define _XFER_4_WR(dst, src) { \
*(uint8_t *)(dst + 1) = *(uint8_t *)(src)++; \
*(uint8_t *)(dst + 0) = *(uint8_t *)(src)++; \
*(uint8_t *)(dst + 3) = *(uint8_t *)(src)++; \
*(uint8_t *)(dst + 2) = *(uint8_t *)(src)++ ; \
}
#define _XFER_2_WR(dst, src) { \
*(uint8_t *)(dst + 1) = *(uint8_t *)(src)++; \
*(uint8_t *)(dst + 0) = *(uint8_t *)(src)++; \
}
#ifdef CONFIG_MB_CONTROLLER_SLAVE_ID_SUPPORT
#define MB_ID_BYTE0(id) ((uint8_t)(id))
#define MB_ID_BYTE1(id) ((uint8_t)(((uint16_t)(id) >> 8) & 0xFF))
#define MB_ID_BYTE2(id) ((uint8_t)(((uint32_t)(id) >> 16) & 0xFF))
#define MB_ID_BYTE3(id) ((uint8_t)(((uint32_t)(id) >> 24) & 0xFF))
#define MB_CONTROLLER_SLAVE_ID (CONFIG_MB_CONTROLLER_SLAVE_ID)
#define MB_SLAVE_ID_SHORT (MB_ID_BYTE3(MB_CONTROLLER_SLAVE_ID))
// Slave ID constant
static uint8_t mb_slave_id[] = { MB_ID_BYTE0(MB_CONTROLLER_SLAVE_ID),
MB_ID_BYTE1(MB_CONTROLLER_SLAVE_ID),
MB_ID_BYTE2(MB_CONTROLLER_SLAVE_ID) };
#endif
// Event group parameters
static TaskHandle_t mb_controller_task_handle = NULL;
static EventGroupHandle_t mb_controller_event_group = NULL;
static QueueHandle_t mb_controller_notification_queue_handle = NULL;
static uint8_t mb_type = 0;
static uint8_t mb_address = 0;
static uint8_t mb_port = 0;
static uint32_t mb_speed = 0;
static uint16_t mb_parity = 0;
// This is array of Modbus address area descriptors
static mb_register_area_descriptor_t mb_area_descriptors[MB_PARAM_COUNT] = { 0 };
// The helper function to get time stamp in microseconds
static uint64_t get_time_stamp()
{
uint64_t time_stamp = esp_timer_get_time();
return time_stamp;
}
// Helper function to send parameter information to application task
static esp_err_t send_param_info(mb_event_group_t par_type, uint16_t mb_offset,
uint8_t* par_address, uint16_t par_size)
{
esp_err_t error = ESP_FAIL;
mb_param_info_t par_info;
// Check if queue is not full the send parameter information
par_info.type = par_type;
par_info.size = par_size;
par_info.address = par_address;
par_info.time_stamp = get_time_stamp();
par_info.mb_offset = mb_offset;
BaseType_t status = xQueueSend(mb_controller_notification_queue_handle, &par_info, MB_PAR_INFO_TOUT);
if (pdTRUE == status) {
ESP_LOGD(TAG, "Queue send parameter info (type, address, size): %d, 0x%.4x, %d",
par_type, (uint32_t)par_address, par_size);
error = ESP_OK;
} else if (errQUEUE_FULL == status) {
ESP_LOGD(TAG, "Parameter queue is overflowed.");
}
return error;
}
static esp_err_t send_param_access_notification(mb_event_group_t event)
{
esp_err_t err = ESP_FAIL;
mb_event_group_t bits = (mb_event_group_t)xEventGroupSetBits(mb_controller_event_group, (EventBits_t)event);
if (bits & event) {
ESP_LOGD(TAG, "The MB_REG_CHANGE_EVENT = 0x%.2x is set.", (uint8_t)event);
err = ESP_OK;
}
return err;
}
// Modbus task function
static void modbus_task(void *pvParameters) {
// Main Modbus stack processing cycle
for (;;) {
BaseType_t status = xEventGroupWaitBits(mb_controller_event_group,
(BaseType_t)(MB_EVENT_STACK_STARTED),
pdFALSE, // do not clear bits
pdFALSE,
portMAX_DELAY);
// Check if stack started then poll for data
if (status & MB_EVENT_STACK_STARTED) {
(void)eMBPoll(); // allow stack to process data
(void)xMBPortSerialTxPoll(); // Send response buffer if ready
}
}
}
// Blocking function to get event on parameter group change for application task
mb_event_group_t mbcontroller_check_event(mb_event_group_t group)
{
assert(mb_controller_event_group != NULL);
BaseType_t status = xEventGroupWaitBits(mb_controller_event_group, (BaseType_t)group,
pdTRUE , pdFALSE, portMAX_DELAY);
return (mb_event_group_t)status;
}
esp_err_t mbcontroller_set_descriptor(const mb_register_area_descriptor_t descr_info)
{
MB_CHECK(((descr_info.type < MB_PARAM_COUNT) && (descr_info.type >= MB_PARAM_HOLDING)),
ESP_ERR_INVALID_ARG, "mb incorrect modbus instance type = (0x%x).",
(uint32_t)descr_info.type);
MB_CHECK((descr_info.address != NULL),
ESP_ERR_INVALID_ARG, "mb instance pointer is NULL.");
MB_CHECK((descr_info.size >= MB_INST_MIN_SIZE) && (descr_info.size < (MB_INST_MAX_SIZE)),
ESP_ERR_INVALID_ARG, "mb instance size is incorrect = (0x%x).",
(uint32_t)descr_info.size);
mb_area_descriptors[descr_info.type].type = descr_info.type;
mb_area_descriptors[descr_info.type].start_offset = descr_info.start_offset;
mb_area_descriptors[descr_info.type].address = (uint8_t*)descr_info.address;
mb_area_descriptors[descr_info.type].size = descr_info.size;
return ESP_OK;
}
// Initialization of Modbus controller
esp_err_t mbcontroller_init(void) {
mb_type = MB_MODE_RTU;
mb_address = MB_DEVICE_ADDRESS;
mb_port = MB_UART_PORT;
mb_speed = MB_DEVICE_SPEED;
mb_parity = MB_PARITY_NONE;
// Initialization of active context of the modbus controller
BaseType_t status = 0;
// Parameter change notification queue
mb_controller_event_group = xEventGroupCreate();
MB_CHECK((mb_controller_event_group != NULL),
ESP_ERR_NO_MEM, "mb event group error.");
// Parameter change notification queue
mb_controller_notification_queue_handle = xQueueCreate(
MB_CONTROLLER_NOTIFY_QUEUE_SIZE,
sizeof(mb_param_info_t));
MB_CHECK((mb_controller_notification_queue_handle != NULL),
ESP_ERR_NO_MEM, "mb notify queue creation error.");
// Create modbus controller task
status = xTaskCreate((void*)&modbus_task,
"modbus_task",
MB_CONTROLLER_STACK_SIZE,
NULL,
MB_CONTROLLER_PRIORITY,
&mb_controller_task_handle);
if (status != pdPASS) {
vTaskDelete(mb_controller_task_handle);
MB_CHECK((status == pdPASS), ESP_ERR_NO_MEM,
"mb controller task creation error, xTaskCreate() returns (0x%x).",
(uint32_t)status);
}
assert(mb_controller_task_handle != NULL); // The task is created but handle is incorrect
return ESP_OK;
}
// Function to get notification about parameter change from application task
esp_err_t mbcontroller_get_param_info(mb_param_info_t* reg_info, uint32_t timeout)
{
esp_err_t err = ESP_ERR_TIMEOUT;
MB_CHECK((mb_controller_notification_queue_handle != NULL),
ESP_ERR_INVALID_ARG, "mb queue handle is invalid.");
MB_CHECK((reg_info != NULL), ESP_ERR_INVALID_ARG, "mb register information is invalid.");
BaseType_t status = xQueueReceive(mb_controller_notification_queue_handle,
reg_info, pdMS_TO_TICKS(timeout));
if (status == pdTRUE) {
err = ESP_OK;
}
return err;
}
// Start Modbus controller start function
esp_err_t mbcontroller_start(void)
{
eMBErrorCode status = MB_EIO;
// Initialize Modbus stack using mbcontroller parameters
status = eMBInit((eMBMode)mb_type, (UCHAR)mb_address, (UCHAR)mb_port,
(ULONG)mb_speed, (eMBParity)mb_parity);
MB_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack initialization failure, eMBInit() returns (0x%x).", status);
#ifdef CONFIG_MB_CONTROLLER_SLAVE_ID_SUPPORT
status = eMBSetSlaveID(MB_SLAVE_ID_SHORT, TRUE, (UCHAR*)mb_slave_id, sizeof(mb_slave_id));
MB_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb stack set slave ID failure.");
#endif
status = eMBEnable();
MB_CHECK((status == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack set slave ID failure, eMBEnable() returned (0x%x).", (uint32_t)status);
// Set the mbcontroller start flag
EventBits_t flag = xEventGroupSetBits(mb_controller_event_group,
(EventBits_t)MB_EVENT_STACK_STARTED);
MB_CHECK((flag & MB_EVENT_STACK_STARTED),
ESP_ERR_INVALID_STATE, "mb stack start event set error.");
return ESP_OK;
}
// Modbus controller destroy function
esp_err_t mbcontroller_destroy(void)
{
eMBErrorCode mb_error = MB_ENOERR;
// Stop polling by clearing correspondent bit in the event group
EventBits_t flag = xEventGroupClearBits(mb_controller_event_group,
(EventBits_t)MB_EVENT_STACK_STARTED);
MB_CHECK((flag & MB_EVENT_STACK_STARTED),
ESP_ERR_INVALID_STATE, "mb stack stop event failure.");
// Desable and then destroy the Modbus stack
mb_error = eMBDisable();
MB_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE, "mb stack disable failure.");
(void)vTaskDelete(mb_controller_task_handle);
(void)vQueueDelete(mb_controller_notification_queue_handle);
(void)vEventGroupDelete(mb_controller_event_group);
mb_error = eMBClose();
MB_CHECK((mb_error == MB_ENOERR), ESP_ERR_INVALID_STATE,
"mb stack close failure returned (0x%x).", (uint32_t)mb_error);
return ESP_OK;
}
// Setup modbus controller parameters
esp_err_t mbcontroller_setup(const mb_communication_info_t comm_info)
{
MB_CHECK(((comm_info.mode == MB_MODE_RTU) || (comm_info.mode == MB_MODE_ASCII)),
ESP_ERR_INVALID_ARG, "mb incorrect mode = (0x%x).",
(uint32_t)comm_info.mode);
MB_CHECK((comm_info.slave_addr <= MB_ADDRESS_MAX),
ESP_ERR_INVALID_ARG, "mb wrong slave address = (0x%x).",
(uint32_t)comm_info.slave_addr);
MB_CHECK((comm_info.port <= UART_NUM_2), ESP_ERR_INVALID_ARG,
"mb wrong port to set = (0x%x).", (uint32_t)comm_info.port);
MB_CHECK((comm_info.parity <= UART_PARITY_EVEN), ESP_ERR_INVALID_ARG,
"mb wrong parity option = (0x%x).", (uint32_t)comm_info.parity);
mb_type = (uint8_t)comm_info.mode;
mb_address = (uint8_t)comm_info.slave_addr;
mb_port = (uint8_t)comm_info.port;
mb_speed = (uint32_t)comm_info.baudrate;
mb_parity = (uint8_t)comm_info.parity;
return ESP_OK;
}
/* ----------------------- Callback functions for Modbus stack ---------------------------------*/
// These are executed by modbus stack to read appropriate type of registers.
// This is required to suppress warning when register start address is zero
#pragma GCC diagnostic ignored "-Wtype-limits"
// Callback function for reading of MB Input Registers
eMBErrorCode eMBRegInputCB(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs)
{
assert(pucRegBuffer != NULL);
USHORT usRegInputNregs = (USHORT)(mb_area_descriptors[MB_PARAM_INPUT].size >> 1); // Number of input registers
USHORT usInputRegStart = (USHORT)mb_area_descriptors[MB_PARAM_INPUT].start_offset; // Get Modbus start address
UCHAR* pucInputBuffer = (UCHAR*)mb_area_descriptors[MB_PARAM_INPUT].address; // Get instance address
USHORT usRegs = usNRegs;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
// If input or configuration parameters are incorrect then return an error to stack layer
if ((usAddress >= usInputRegStart)
&& (pucInputBuffer != NULL)
&& (usNRegs >= 1)
&& ((usAddress + usRegs) <= (usInputRegStart + usRegInputNregs + 1))
&& (usRegInputNregs >= 1)) {
iRegIndex = (USHORT)(usAddress - usInputRegStart - 1);
iRegIndex <<= 1; // register Address to byte address
pucInputBuffer += iRegIndex;
UCHAR* pucBufferStart = pucInputBuffer;
while (usRegs > 0) {
_XFER_2_RD(pucRegBuffer, pucInputBuffer);
iRegIndex += 2;
usRegs -= 1;
}
// Send access notification
(void)send_param_access_notification(MB_EVENT_INPUT_REG_RD);
// Send parameter info to application task
(void)send_param_info(MB_EVENT_INPUT_REG_RD, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Holding Registers
// Executed by stack when request to read/write holding registers is received
eMBErrorCode eMBRegHoldingCB(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNRegs, eMBRegisterMode eMode)
{
assert(pucRegBuffer != NULL);
USHORT usRegHoldingNregs = (USHORT)(mb_area_descriptors[MB_PARAM_HOLDING].size >> 1);
USHORT usRegHoldingStart = (USHORT)mb_area_descriptors[MB_PARAM_HOLDING].start_offset;
UCHAR* pucHoldingBuffer = (UCHAR*)mb_area_descriptors[MB_PARAM_HOLDING].address;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
USHORT usRegs = usNRegs;
// Check input and configuration parameters for correctness
if ((usAddress >= usRegHoldingStart)
&& (pucHoldingBuffer != NULL)
&& ((usAddress + usRegs) <= (usRegHoldingStart + usRegHoldingNregs + 1))
&& (usRegHoldingNregs >= 1)
&& (usNRegs >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegHoldingStart - 1);
iRegIndex <<= 1; // register Address to byte address
pucHoldingBuffer += iRegIndex;
UCHAR* pucBufferStart = pucHoldingBuffer;
switch (eMode) {
case MB_REG_READ:
while (usRegs > 0) {
_XFER_2_RD(pucRegBuffer, pucHoldingBuffer);
iRegIndex += 2;
usRegs -= 1;
};
// Send access notification
(void)send_param_access_notification(MB_EVENT_HOLDING_REG_RD);
// Send parameter info
(void)send_param_info(MB_EVENT_HOLDING_REG_RD, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
break;
case MB_REG_WRITE:
while (usRegs > 0) {
_XFER_2_WR(pucHoldingBuffer, pucRegBuffer);
pucHoldingBuffer += 2;
iRegIndex += 2;
usRegs -= 1;
};
// Send access notification
(void)send_param_access_notification(MB_EVENT_HOLDING_REG_WR);
// Send parameter info
(void)send_param_info(MB_EVENT_HOLDING_REG_WR, (uint16_t)usAddress,
(uint8_t*)pucBufferStart, (uint16_t)usNRegs);
break;
}
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Coils Registers
eMBErrorCode eMBRegCoilsCB(UCHAR* pucRegBuffer, USHORT usAddress,
USHORT usNCoils, eMBRegisterMode eMode)
{
assert(NULL != pucRegBuffer);
USHORT usRegCoilNregs = (USHORT)(mb_area_descriptors[MB_PARAM_COIL].size >> 1); // number of registers in storage area
USHORT usRegCoilsStart = (USHORT)mb_area_descriptors[MB_PARAM_COIL].start_offset; // MB offset of coils registers
UCHAR* pucRegCoilsBuf = (UCHAR*)mb_area_descriptors[MB_PARAM_COIL].address;
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex;
USHORT usCoils = usNCoils;
usAddress--; // The address is already +1
if ((usAddress >= usRegCoilsStart)
&& (usRegCoilNregs >= 1)
&& ((usAddress + usCoils) <= (usRegCoilsStart + (usRegCoilNregs << 4) + 1))
&& (pucRegCoilsBuf != NULL)
&& (usNCoils >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegCoilsStart);
CHAR* pucCoilsDataBuf = (CHAR*)(pucRegCoilsBuf + (iRegIndex >> 3));
switch (eMode) {
case MB_REG_READ:
while (usCoils > 0) {
UCHAR ucResult = xMBUtilGetBits((UCHAR*)pucRegCoilsBuf, iRegIndex, 1);
xMBUtilSetBits(pucRegBuffer, iRegIndex - (usAddress - usRegCoilsStart), 1, ucResult);
iRegIndex++;
usCoils--;
}
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_COILS_RD);
(void)send_param_info(MB_EVENT_COILS_RD, (uint16_t)usAddress,
(uint8_t*)(pucCoilsDataBuf), (uint16_t)usNCoils);
break;
case MB_REG_WRITE:
while (usCoils > 0) {
UCHAR ucResult = xMBUtilGetBits(pucRegBuffer,
iRegIndex - (usAddress - usRegCoilsStart), 1);
xMBUtilSetBits((uint8_t*)pucRegCoilsBuf, iRegIndex, 1, ucResult);
iRegIndex++;
usCoils--;
}
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_COILS_WR);
(void)send_param_info(MB_EVENT_COILS_WR, (uint16_t)usAddress,
(uint8_t*)pucCoilsDataBuf, (uint16_t)usNCoils);
break;
} // switch ( eMode )
} else {
// If the configuration or input parameters are incorrect then return error to stack
eStatus = MB_ENOREG;
}
return eStatus;
}
// Callback function for reading of MB Discrete Input Registers
eMBErrorCode eMBRegDiscreteCB(UCHAR * pucRegBuffer, USHORT usAddress,
USHORT usNDiscrete)
{
assert(pucRegBuffer != NULL);
USHORT usRegDiscreteNregs = (USHORT)(mb_area_descriptors[MB_PARAM_DISCRETE].size >> 1); // number of registers in storage area
USHORT usRegDiscreteStart = (USHORT)mb_area_descriptors[MB_PARAM_DISCRETE].start_offset; // MB offset of registers
UCHAR* pucRegDiscreteBuf = (UCHAR*)mb_area_descriptors[MB_PARAM_DISCRETE].address; // the storage address
eMBErrorCode eStatus = MB_ENOERR;
USHORT iRegIndex, iRegBitIndex, iNReg;
UCHAR* pucDiscreteInputBuf;
iNReg = usNDiscrete / 8 + 1;
pucDiscreteInputBuf = (UCHAR*) pucRegDiscreteBuf;
// It already plus one in modbus function method.
usAddress--;
if ((usAddress >= usRegDiscreteStart)
&& (usRegDiscreteNregs >= 1)
&& (pucRegDiscreteBuf != NULL)
&& ((usAddress + usNDiscrete) <= (usRegDiscreteStart + (usRegDiscreteNregs * 16)))
&& (usNDiscrete >= 1)) {
iRegIndex = (USHORT) (usAddress - usRegDiscreteStart) / 8; // Get register index in the buffer for bit number
iRegBitIndex = (USHORT)(usAddress - usRegDiscreteStart) % 8; // Get bit index
UCHAR* pucTempBuf = &pucDiscreteInputBuf[iRegIndex];
while (iNReg > 0) {
*pucRegBuffer++ = xMBUtilGetBits(&pucDiscreteInputBuf[iRegIndex++], iRegBitIndex, 8);
iNReg--;
}
pucRegBuffer--;
// Last discrete
usNDiscrete = usNDiscrete % 8;
// Filling zero to high bit
*pucRegBuffer = *pucRegBuffer << (8 - usNDiscrete);
*pucRegBuffer = *pucRegBuffer >> (8 - usNDiscrete);
// Send an event to notify application task about event
(void)send_param_access_notification(MB_EVENT_DISCRETE_RD);
(void)send_param_info(MB_EVENT_DISCRETE_RD, (uint16_t)usAddress,
(uint8_t*)pucTempBuf, (uint16_t)usNDiscrete);
} else {
eStatus = MB_ENOREG;
}
return eStatus;
}
#pragma GCC diagnostic pop // require GCC