OVMS3-idf/examples/bluetooth/esp_ble_mesh/ble_mesh_wifi_coexist/components/iperf/iperf.c

451 lines
12 KiB
C
Raw Normal View History

component/ble_mesh: ESP BLE Mesh release 1. BLE Mesh Core * Provisioning: Node Role * Advertising and GATT bearer * Authentication OOB * Provisioning: Provisioner Role * Advertising and GATT bearer * Authentication OOB * Networking * Relay * Segmentation and Reassembly * Key Refresh * IV Update * Proxy Support * Multiple Client Models Run Simultaneously * Support multiple client models send packets to different nodes simultaneously * No blocking between client model and server * NVS Storage * Store Provisioning Data of BLE Mesh Nodes in Flash 2. BLE Mesh Applications * BLE Mesh Node & Provisioner * Node Example * Provisioner Example * Node + Generic OnOff Client Example * Fast Provisioning * Vendor Fast Prov Server Model * Vendor Fast Prov Client Model * Examples * Wi-Fi & BLE Mesh Coexistence * Example * BLE Mesh Console Commands * Example 3. BLE Mesh Models * Foundation Models * Configuration Server Model * Configuration Client Model * Health Server Model * Health Client Model * Generic Client Models * Generic OnOff Client * Generic Level Client * Generic Location Client * Generic Default Transition Timer Client * Generic Power OnOff Client * Generic Power Level Client * Generic Battery Client * Generic Property Client * Generic Server Models * Generic OnOff Server (Example) * Lighting Client Models * Light Lightness Client * Light CTL Client * Light HSL Client * Light xyL Client * Light LC Client * Sensor Client Model * Sensor Client * Time and Scenes Client Models * Time Client * Scene Client * Scheduler Client
2019-01-07 07:16:47 +00:00
/* Iperf Example - iperf implementation
This example code is in the Public Domain (or CC0 licensed, at your option.)
Unless required by applicable law or agreed to in writing, this
software is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.
*/
#include <sys/socket.h>
#include <stdio.h>
#include <string.h>
#include "esp_log.h"
#include "iperf.h"
typedef struct {
iperf_cfg_t cfg;
bool finish;
uint32_t total_len;
uint32_t buffer_len;
uint8_t *buffer;
uint32_t sockfd;
} iperf_ctrl_t;
typedef struct {
int32_t id;
uint32_t sec;
uint32_t usec;
} iperf_udp_pkt_t;
static bool s_iperf_is_running = false;
static iperf_ctrl_t s_iperf_ctrl;
static const char *TAG = "iperf";
inline static bool iperf_is_udp_client(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_CLIENT) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_UDP));
}
inline static bool iperf_is_udp_server(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_UDP));
}
inline static bool iperf_is_tcp_client(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_CLIENT) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP));
}
inline static bool iperf_is_tcp_server(void)
{
return ((s_iperf_ctrl.cfg.flag & IPERF_FLAG_SERVER) && (s_iperf_ctrl.cfg.flag & IPERF_FLAG_TCP));
}
int iperf_get_socket_error_code(int sockfd)
{
2019-06-27 09:13:44 +00:00
return errno;
component/ble_mesh: ESP BLE Mesh release 1. BLE Mesh Core * Provisioning: Node Role * Advertising and GATT bearer * Authentication OOB * Provisioning: Provisioner Role * Advertising and GATT bearer * Authentication OOB * Networking * Relay * Segmentation and Reassembly * Key Refresh * IV Update * Proxy Support * Multiple Client Models Run Simultaneously * Support multiple client models send packets to different nodes simultaneously * No blocking between client model and server * NVS Storage * Store Provisioning Data of BLE Mesh Nodes in Flash 2. BLE Mesh Applications * BLE Mesh Node & Provisioner * Node Example * Provisioner Example * Node + Generic OnOff Client Example * Fast Provisioning * Vendor Fast Prov Server Model * Vendor Fast Prov Client Model * Examples * Wi-Fi & BLE Mesh Coexistence * Example * BLE Mesh Console Commands * Example 3. BLE Mesh Models * Foundation Models * Configuration Server Model * Configuration Client Model * Health Server Model * Health Client Model * Generic Client Models * Generic OnOff Client * Generic Level Client * Generic Location Client * Generic Default Transition Timer Client * Generic Power OnOff Client * Generic Power Level Client * Generic Battery Client * Generic Property Client * Generic Server Models * Generic OnOff Server (Example) * Lighting Client Models * Light Lightness Client * Light CTL Client * Light HSL Client * Light xyL Client * Light LC Client * Sensor Client Model * Sensor Client * Time and Scenes Client Models * Time Client * Scene Client * Scheduler Client
2019-01-07 07:16:47 +00:00
}
int iperf_show_socket_error_reason(const char *str, int sockfd)
{
2019-06-27 09:13:44 +00:00
int err = errno;
component/ble_mesh: ESP BLE Mesh release 1. BLE Mesh Core * Provisioning: Node Role * Advertising and GATT bearer * Authentication OOB * Provisioning: Provisioner Role * Advertising and GATT bearer * Authentication OOB * Networking * Relay * Segmentation and Reassembly * Key Refresh * IV Update * Proxy Support * Multiple Client Models Run Simultaneously * Support multiple client models send packets to different nodes simultaneously * No blocking between client model and server * NVS Storage * Store Provisioning Data of BLE Mesh Nodes in Flash 2. BLE Mesh Applications * BLE Mesh Node & Provisioner * Node Example * Provisioner Example * Node + Generic OnOff Client Example * Fast Provisioning * Vendor Fast Prov Server Model * Vendor Fast Prov Client Model * Examples * Wi-Fi & BLE Mesh Coexistence * Example * BLE Mesh Console Commands * Example 3. BLE Mesh Models * Foundation Models * Configuration Server Model * Configuration Client Model * Health Server Model * Health Client Model * Generic Client Models * Generic OnOff Client * Generic Level Client * Generic Location Client * Generic Default Transition Timer Client * Generic Power OnOff Client * Generic Power Level Client * Generic Battery Client * Generic Property Client * Generic Server Models * Generic OnOff Server (Example) * Lighting Client Models * Light Lightness Client * Light CTL Client * Light HSL Client * Light xyL Client * Light LC Client * Sensor Client Model * Sensor Client * Time and Scenes Client Models * Time Client * Scene Client * Scheduler Client
2019-01-07 07:16:47 +00:00
if (err != 0) {
ESP_LOGW(TAG, "%s error, error code: %d, reason: %s", str, err, strerror(err));
}
return err;
}
void iperf_report_task(void *arg)
{
TickType_t delay_interval = (s_iperf_ctrl.cfg.interval * 1000) / portTICK_RATE_MS;
uint32_t interval = s_iperf_ctrl.cfg.interval;
uint32_t time = s_iperf_ctrl.cfg.time;
uint32_t last_len = 0;
uint32_t cur = 0;
printf("\n%16s %s\n", "Interval", "Bandwidth");
while (!s_iperf_ctrl.finish) {
vTaskDelay(delay_interval);
printf("%4d-%4d sec %.2f Mbits/sec\n", cur, cur + interval, (double)((s_iperf_ctrl.total_len - last_len) * 8) / interval / 1e6);
cur += interval;
last_len = s_iperf_ctrl.total_len;
if (cur == time) {
break;
}
}
if (cur != 0) {
printf("%4d-%4d sec %.2f Mbits/sec\n", 0, time, (double)(s_iperf_ctrl.total_len * 8) / cur / 1e6);
}
s_iperf_ctrl.finish = true;
vTaskDelete(NULL);
}
esp_err_t iperf_start_report(void)
{
int ret;
ret = xTaskCreatePinnedToCore(iperf_report_task, IPERF_REPORT_TASK_NAME, IPERF_REPORT_TASK_STACK, NULL, IPERF_REPORT_TASK_PRIORITY, NULL, portNUM_PROCESSORS - 1);
if (ret != pdPASS) {
ESP_LOGE(TAG, "create task %s failed", IPERF_REPORT_TASK_NAME);
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t iperf_run_tcp_server(void)
{
socklen_t addr_len = sizeof(struct sockaddr);
struct sockaddr_in remote_addr;
struct sockaddr_in addr;
int actual_recv = 0;
int want_recv = 0;
uint8_t *buffer;
int listen_socket;
struct timeval t;
int sockfd;
int opt;
listen_socket = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (listen_socket < 0) {
iperf_show_socket_error_reason("tcp server create", listen_socket);
return ESP_FAIL;
}
setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
addr.sin_family = AF_INET;
addr.sin_port = htons(s_iperf_ctrl.cfg.sport);
addr.sin_addr.s_addr = s_iperf_ctrl.cfg.sip;
if (bind(listen_socket, (struct sockaddr *)&addr, sizeof(addr)) != 0) {
iperf_show_socket_error_reason("tcp server bind", listen_socket);
close(listen_socket);
return ESP_FAIL;
}
if (listen(listen_socket, 5) < 0) {
iperf_show_socket_error_reason("tcp server listen", listen_socket);
close(listen_socket);
return ESP_FAIL;
}
iperf_start_report();
buffer = s_iperf_ctrl.buffer;
want_recv = s_iperf_ctrl.buffer_len;
while (!s_iperf_ctrl.finish) {
/*TODO need to change to non-block mode */
sockfd = accept(listen_socket, (struct sockaddr *)&remote_addr, &addr_len);
if (sockfd < 0) {
iperf_show_socket_error_reason("tcp server listen", listen_socket);
close(listen_socket);
return ESP_FAIL;
} else {
printf("accept: %s,%d\n", inet_ntoa(remote_addr.sin_addr), htons(remote_addr.sin_port));
t.tv_sec = IPERF_SOCKET_RX_TIMEOUT;
setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, &t, sizeof(t));
}
while (!s_iperf_ctrl.finish) {
actual_recv = recv(sockfd, buffer, want_recv, 0);
if (actual_recv < 0) {
iperf_show_socket_error_reason("tcp server recv", listen_socket);
break;
} else {
s_iperf_ctrl.total_len += actual_recv;
}
}
close(sockfd);
}
s_iperf_ctrl.finish = true;
close(listen_socket);
return ESP_OK;
}
esp_err_t IRAM_ATTR iperf_run_udp_server(void)
{
socklen_t addr_len = sizeof(struct sockaddr_in);
struct sockaddr_in addr;
int actual_recv = 0;
struct timeval t;
int want_recv = 0;
uint8_t *buffer;
int sockfd;
int opt;
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
iperf_show_socket_error_reason("udp server create", sockfd);
return ESP_FAIL;
}
setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
addr.sin_family = AF_INET;
addr.sin_port = htons(s_iperf_ctrl.cfg.sport);
addr.sin_addr.s_addr = s_iperf_ctrl.cfg.sip;
if (bind(sockfd, (struct sockaddr *)&addr, sizeof(addr)) != 0) {
iperf_show_socket_error_reason("udp server bind", sockfd);
return ESP_FAIL;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(s_iperf_ctrl.cfg.sport);
addr.sin_addr.s_addr = s_iperf_ctrl.cfg.sip;
iperf_start_report();
buffer = s_iperf_ctrl.buffer;
want_recv = s_iperf_ctrl.buffer_len;
ESP_LOGI(TAG, "want recv=%d", want_recv);
t.tv_sec = IPERF_SOCKET_RX_TIMEOUT;
setsockopt(sockfd, SOL_SOCKET, SO_RCVTIMEO, &t, sizeof(t));
while (!s_iperf_ctrl.finish) {
actual_recv = recvfrom(sockfd, buffer, want_recv, 0, (struct sockaddr *)&addr, &addr_len);
if (actual_recv < 0) {
iperf_show_socket_error_reason("udp server recv", sockfd);
} else {
s_iperf_ctrl.total_len += actual_recv;
}
}
s_iperf_ctrl.finish = true;
close(sockfd);
return ESP_OK;
}
esp_err_t iperf_run_udp_client(void)
{
struct sockaddr_in addr;
iperf_udp_pkt_t *udp;
int actual_send = 0;
bool retry = false;
uint32_t delay = 1;
int want_send = 0;
uint8_t *buffer;
int sockfd;
int opt;
int err;
int id;
sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
if (sockfd < 0) {
iperf_show_socket_error_reason("udp server create", sockfd);
return ESP_FAIL;
}
setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
addr.sin_family = AF_INET;
addr.sin_port = 0;
addr.sin_addr.s_addr = s_iperf_ctrl.cfg.sip;
if (bind(sockfd, (struct sockaddr *)&addr, sizeof(addr)) != 0) {
iperf_show_socket_error_reason("udp server bind", sockfd);
return ESP_FAIL;
}
addr.sin_family = AF_INET;
addr.sin_port = htons(s_iperf_ctrl.cfg.dport);
addr.sin_addr.s_addr = s_iperf_ctrl.cfg.dip;
iperf_start_report();
buffer = s_iperf_ctrl.buffer;
udp = (iperf_udp_pkt_t *)buffer;
want_send = s_iperf_ctrl.buffer_len;
id = 0;
while (!s_iperf_ctrl.finish) {
if (false == retry) {
id ++;
udp->id = htonl(id);
delay = 1;
}
retry = false;
actual_send = sendto(sockfd, buffer, want_send, 0, (struct sockaddr *)&addr, sizeof(addr));
if (actual_send != want_send) {
err = iperf_get_socket_error_code(sockfd);
if (err == ENOMEM) {
vTaskDelay(delay);
if (delay < IPERF_MAX_DELAY) {
delay <<= 1;
}
retry = true;
continue;
} else {
ESP_LOGE(TAG, "udp client send abort: err=%d", err);
break;
}
} else {
s_iperf_ctrl.total_len += actual_send;
}
}
s_iperf_ctrl.finish = true;
close(sockfd);
return ESP_OK;
}
esp_err_t iperf_run_tcp_client(void)
{
struct sockaddr_in local_addr;
struct sockaddr_in remote_addr;
int actual_send = 0;
int want_send = 0;
uint8_t *buffer;
int sockfd;
int opt;
sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sockfd < 0) {
iperf_show_socket_error_reason("tcp client create", sockfd);
return ESP_FAIL;
}
setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));
memset(&local_addr, 0, sizeof(local_addr));
local_addr.sin_family = AF_INET;
local_addr.sin_port = 0;
local_addr.sin_addr.s_addr = s_iperf_ctrl.cfg.sip;
if (bind(sockfd, (struct sockaddr *)&local_addr, sizeof(local_addr)) != 0) {
iperf_show_socket_error_reason("tcp client bind", sockfd);
return ESP_FAIL;
}
memset(&remote_addr, 0, sizeof(remote_addr));
remote_addr.sin_family = AF_INET;
remote_addr.sin_port = htons(s_iperf_ctrl.cfg.dport);
remote_addr.sin_addr.s_addr = s_iperf_ctrl.cfg.dip;
if (connect(sockfd, (struct sockaddr *)&remote_addr, sizeof(remote_addr)) < 0) {
iperf_show_socket_error_reason("tcp client connect", sockfd);
return ESP_FAIL;
}
iperf_start_report();
buffer = s_iperf_ctrl.buffer;
want_send = s_iperf_ctrl.buffer_len;
while (!s_iperf_ctrl.finish) {
actual_send = send(sockfd, buffer, want_send, 0);
if (actual_send <= 0) {
iperf_show_socket_error_reason("tcp client send", sockfd);
break;
} else {
s_iperf_ctrl.total_len += actual_send;
}
}
close(sockfd);
return ESP_OK;
}
void iperf_task_traffic(void *arg)
{
if (iperf_is_udp_client()) {
iperf_run_udp_client();
} else if (iperf_is_udp_server()) {
iperf_run_udp_server();
} else if (iperf_is_tcp_client()) {
iperf_run_tcp_client();
} else {
iperf_run_tcp_server();
}
if (s_iperf_ctrl.buffer) {
free(s_iperf_ctrl.buffer);
s_iperf_ctrl.buffer = 0;
}
ESP_LOGI(TAG, "iperf exit");
s_iperf_is_running = false;
vTaskDelete(NULL);
}
uint32_t iperf_get_buffer_len(void)
{
if (iperf_is_udp_client()) {
return IPERF_UDP_TX_LEN;
} else if (iperf_is_udp_server()) {
return IPERF_UDP_RX_LEN;
} else if (iperf_is_tcp_client()) {
return IPERF_TCP_TX_LEN;
} else {
return IPERF_TCP_RX_LEN;
}
return 0;
}
esp_err_t iperf_start(iperf_cfg_t *cfg)
{
int ret;
if (!cfg) {
return ESP_FAIL;
}
if (s_iperf_is_running) {
ESP_LOGW(TAG, "iperf is running");
return ESP_FAIL;
}
memset(&s_iperf_ctrl, 0, sizeof(s_iperf_ctrl));
memcpy(&s_iperf_ctrl.cfg, cfg, sizeof(*cfg));
s_iperf_is_running = true;
s_iperf_ctrl.finish = false;
s_iperf_ctrl.buffer_len = iperf_get_buffer_len();
s_iperf_ctrl.buffer = (uint8_t *)malloc(s_iperf_ctrl.buffer_len);
if (!s_iperf_ctrl.buffer) {
ESP_LOGE(TAG, "create buffer: out of memory");
return ESP_FAIL;
}
memset(s_iperf_ctrl.buffer, 0, s_iperf_ctrl.buffer_len);
ret = xTaskCreatePinnedToCore(iperf_task_traffic, IPERF_TRAFFIC_TASK_NAME, IPERF_TRAFFIC_TASK_STACK, NULL, IPERF_TRAFFIC_TASK_PRIORITY, NULL, portNUM_PROCESSORS - 1);
if (ret != pdPASS) {
ESP_LOGE(TAG, "create task %s failed", IPERF_TRAFFIC_TASK_NAME);
free(s_iperf_ctrl.buffer);
s_iperf_ctrl.buffer = 0;
return ESP_FAIL;
}
return ESP_OK;
}
esp_err_t iperf_stop(void)
{
if (s_iperf_is_running) {
s_iperf_ctrl.finish = true;
}
while (s_iperf_is_running) {
ESP_LOGI(TAG, "wait current iperf to stop ...");
vTaskDelay(300 / portTICK_RATE_MS);
}
return ESP_OK;
}