OVMS3-idf/components/soc/esp32/soc_memory_layout.c

173 lines
9.2 KiB
C
Raw Normal View History

// Copyright 2010-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef BOOTLOADER_BUILD
#include <stdlib.h>
#include <stdint.h>
#include "soc/soc.h"
#include "soc/soc_memory_layout.h"
#include "esp_heap_caps.h"
#include "sdkconfig.h"
/* Memory layout for ESP32 SoC */
/*
Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory
map consist of one or more regions in the address space.
Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier
ones can't fulfill the memory request.
The prioritised capabilities work roughly like this:
- For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
finally eat into the application memory.
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
- Most other malloc caps only fit in one region anyway.
*/
const soc_memory_type_desc_t soc_memory_types[] = {
//Type 0: Plain ole D-port RAM
{ "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, false},
//Type 1: Plain ole D-port RAM which has an alias on the I-port
//(This DRAM is also the region used by ROM during startup)
{ "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true, true},
//Type 2: IRAM
{ "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL, 0, 0 }, false, false},
//Type 3-8: PID 2-7 IRAM
{ "PID2IRAM", { MALLOC_CAP_PID2|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
{ "PID3IRAM", { MALLOC_CAP_PID3|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
{ "PID4IRAM", { MALLOC_CAP_PID4|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
{ "PID5IRAM", { MALLOC_CAP_PID5|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
{ "PID6IRAM", { MALLOC_CAP_PID6|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
{ "PID7IRAM", { MALLOC_CAP_PID7|MALLOC_CAP_INTERNAL, 0, MALLOC_CAP_EXEC|MALLOC_CAP_32BIT }, false, false},
//Type 9-14: PID 2-7 DRAM
{ "PID2DRAM", { MALLOC_CAP_PID2|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
{ "PID3DRAM", { MALLOC_CAP_PID3|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
{ "PID4DRAM", { MALLOC_CAP_PID4|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
{ "PID5DRAM", { MALLOC_CAP_PID5|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
{ "PID6DRAM", { MALLOC_CAP_PID6|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
{ "PID7DRAM", { MALLOC_CAP_PID7|MALLOC_CAP_INTERNAL, MALLOC_CAP_8BIT, MALLOC_CAP_32BIT|MALLOC_CAP_DEFAULT }, false, false},
//Type 15: SPI SRAM data
{ "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false, false},
};
const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t);
/*
Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted
from low to high start address.
*/
const soc_memory_region_t soc_memory_regions[] = {
{ 0x3F800000, 0x400000, 15, 0}, //SPI SRAM, if available
{ 0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
{ 0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- if BT is enabled, used as BT HW shared memory
{ 0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
{ 0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
{ 0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
{ 0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
{ 0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
{ 0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
{ 0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
{ 0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
{ 0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
{ 0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
{ 0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
{ 0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
{ 0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
{ 0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
{ 0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
{ 0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
{ 0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
{ 0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
{ 0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
{ 0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
{ 0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
{ 0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
{ 0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
{ 0x40070000, 0x8000, 2, 0}, //pool 0
{ 0x40078000, 0x8000, 2, 0}, //pool 1
{ 0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
{ 0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
{ 0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
{ 0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
{ 0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
{ 0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
{ 0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
{ 0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
{ 0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
{ 0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
{ 0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
{ 0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
{ 0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
{ 0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
{ 0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
{ 0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
};
const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t);
/* Reserved memory regions
These are removed from the soc_memory_regions array when heaps are created.
*/
const soc_reserved_region_t soc_reserved_regions[] = {
{ 0x40070000, 0x40078000 }, //CPU0 cache region
{ 0x40078000, 0x40080000 }, //CPU1 cache region
/* Warning: The ROM stack is located in the 0x3ffe0000 area. We do not specifically disable that area here because
after the scheduler has started, the ROM stack is not used anymore by anything. We handle it instead by not allowing
any mallocs memory regions with the startup_stack flag set (these are the IRAM/DRAM region) until the
scheduler has started.
The 0x3ffe0000 region also contains static RAM for various ROM functions. The following lines
reserve the regions for UART and ETSC, so these functions are usable. Libraries like xtos, which are
not usable in FreeRTOS anyway, are commented out in the linker script so they cannot be used; we
do not disable their memory regions here and they will be used as general purpose heap memory.
Enabling the heap allocator for this region but disabling allocation here until FreeRTOS is started up
is a somewhat risky action in theory, because on initializing the allocator, the multi_heap implementation
will go and write metadata at the start and end of all regions. For the ESP32, these linked
list entries happen to end up in a region that is not touched by the stack; they can be placed safely there.
*/
{ 0x3ffe0000, 0x3ffe0440 }, //Reserve ROM PRO data region
{ 0x3ffe4000, 0x3ffe4350 }, //Reserve ROM APP data region
#if CONFIG_BT_ENABLED
{ 0x3ffb0000, 0x3ffc0000 }, //Reserve BT hardware shared memory & BT data region
{ 0x3ffae000, 0x3ffaff10 }, //Reserve ROM data region, inc region needed for BT ROM routines
#else
{ 0x3ffae000, 0x3ffae6e0 }, //Reserve ROM data region
#endif
#if CONFIG_MEMMAP_TRACEMEM
#if CONFIG_MEMMAP_TRACEMEM_TWOBANKS
{ 0x3fff8000, 0x40000000 }, //Reserve trace mem region
#else
{ 0x3fff8000, 0x3fffc000 }, //Reserve trace mem region
#endif
#endif
{ 0x3f800000, 0x3fC00000 }, //SPI RAM gets added later if needed, in spiram.c; reserve it for now
};
const size_t soc_reserved_region_count = sizeof(soc_reserved_regions)/sizeof(soc_reserved_region_t);
#endif