OVMS3-idf/components/spi_flash/spi_flash_os_func_app.c

200 lines
5.9 KiB
C
Raw Normal View History

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdarg.h>
#include "esp_attr.h"
#include "esp_spi_flash.h" //for ``g_flash_guard_default_ops``
#include "esp_flash.h"
#include "esp_flash_partitions.h"
#include "hal/spi_types.h"
2019-12-26 07:25:24 +00:00
#if CONFIG_IDF_TARGET_ESP32
2019-08-09 05:26:49 +00:00
#include "esp32/rom/ets_sys.h"
2020-01-17 03:47:08 +00:00
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/ets_sys.h"
2019-08-09 05:26:49 +00:00
#endif
#include "driver/spi_common_internal.h"
/*
* OS functions providing delay service and arbitration among chips, and with the cache.
*
* The cache needs to be disabled when chips on the SPI1 bus is under operation, hence these functions need to be put
* into the IRAM,and their data should be put into the DRAM.
*/
typedef struct {
spi_bus_lock_dev_handle_t dev_lock;
} app_func_arg_t;
typedef struct {
app_func_arg_t common_arg; //shared args, must be the first item
bool no_protect; //to decide whether to check protected region (for the main chip) or not.
} spi1_app_func_arg_t;
// in the future we will have arbitration among devices, including flash on the same flash bus
static IRAM_ATTR esp_err_t spi_bus_acquire(spi_bus_lock_dev_handle_t dev_lock)
{
// was in BG operation (cache). Disable it and schedule
esp_err_t ret = spi_bus_lock_acquire_start(dev_lock, portMAX_DELAY);
if (ret != ESP_OK) {
return ret;
}
return ESP_OK;
}
static IRAM_ATTR esp_err_t spi_bus_release(spi_bus_lock_dev_handle_t dev_lock)
{
return spi_bus_lock_acquire_end(dev_lock);
}
//for SPI1, we have to disable the cache and interrupts before using the SPI bus
static IRAM_ATTR esp_err_t spi_start(void *arg)
{
spi_bus_lock_dev_handle_t dev_lock = ((app_func_arg_t *)arg)->dev_lock;
spi_bus_acquire(dev_lock);
spi_bus_lock_touch(dev_lock);
return ESP_OK;
}
static IRAM_ATTR esp_err_t spi_end(void *arg)
{
spi_bus_release(((app_func_arg_t *)arg)->dev_lock);
return ESP_OK;
}
static IRAM_ATTR esp_err_t delay_ms(void *arg, unsigned ms)
{
ets_delay_us(1000 * ms);
return ESP_OK;
}
static IRAM_ATTR esp_err_t main_flash_region_protected(void* arg, size_t start_addr, size_t size)
{
if (((spi1_app_func_arg_t*)arg)->no_protect || esp_partition_main_flash_region_safe(start_addr, size)) {
//ESP_OK = 0, also means protected==0
return ESP_OK;
} else {
return ESP_ERR_NOT_SUPPORTED;
}
}
static DRAM_ATTR spi1_app_func_arg_t main_flash_arg = {};
//for SPI1, we have to disable the cache and interrupts before using the SPI bus
const DRAM_ATTR esp_flash_os_functions_t esp_flash_spi1_default_os_functions = {
.start = spi_start,
.end = spi_end,
.delay_ms = delay_ms,
.region_protected = main_flash_region_protected,
};
const esp_flash_os_functions_t esp_flash_spi23_default_os_functions = {
.start = spi_start,
.end = spi_end,
.delay_ms = delay_ms,
};
esp_err_t esp_flash_init_os_functions(esp_flash_t *chip, int host_id, int* out_dev_id)
{
spi_bus_lock_handle_t lock = spi_bus_lock_get_by_id(host_id);
spi_bus_lock_dev_handle_t dev_handle;
spi_bus_lock_dev_config_t config = {.flags = SPI_BUS_LOCK_DEV_FLAG_CS_REQUIRED};
esp_err_t err = spi_bus_lock_register_dev(lock, &config, &dev_handle);
if (err != ESP_OK) {
return err;
}
if (host_id == SPI1_HOST) {
//SPI1
chip->os_func = &esp_flash_spi1_default_os_functions;
chip->os_func_data = heap_caps_malloc(sizeof(spi1_app_func_arg_t),
MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
if (chip->os_func_data == NULL) {
return ESP_ERR_NO_MEM;
}
*(spi1_app_func_arg_t*) chip->os_func_data = (spi1_app_func_arg_t) {
.common_arg = {
.dev_lock = dev_handle,
},
.no_protect = true,
};
} else if (host_id == SPI2_HOST || host_id == SPI3_HOST) {
//SPI2, SPI3
chip->os_func = &esp_flash_spi23_default_os_functions;
chip->os_func_data = heap_caps_malloc(sizeof(app_func_arg_t),
MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
if (chip->os_func_data == NULL) {
return ESP_ERR_NO_MEM;
}
*(app_func_arg_t*) chip->os_func_data = (app_func_arg_t) {
.dev_lock = dev_handle,
};
} else {
return ESP_ERR_INVALID_ARG;
}
*out_dev_id = spi_bus_lock_get_dev_id(dev_handle);
return ESP_OK;
}
esp_err_t esp_flash_deinit_os_functions(esp_flash_t* chip)
{
if (chip->os_func_data) {
spi_bus_lock_unregister_dev(((app_func_arg_t*)chip->os_func_data)->dev_lock);
free(chip->os_func_data);
}
chip->os_func = NULL;
chip->os_func_data = NULL;
return ESP_OK;
}
IRAM_ATTR static void cache_enable(void* arg)
{
g_flash_guard_default_ops.end();
}
IRAM_ATTR static void cache_disable(void* arg)
{
g_flash_guard_default_ops.start();
}
esp_err_t esp_flash_app_init_os_functions(esp_flash_t* chip)
{
esp_err_t err = spi_bus_lock_init_main_dev();
if (err != ESP_OK) {
return err;
}
spi_bus_lock_set_bg_control(g_main_spi_bus_lock,
cache_enable, cache_disable, NULL);
chip->os_func = &esp_flash_spi1_default_os_functions;
chip->os_func_data = &main_flash_arg;
main_flash_arg = (spi1_app_func_arg_t) {
.common_arg = {
.dev_lock = g_spi_lock_main_flash_dev, //for SPI1,
},
.no_protect = false,
};
return ESP_OK;
}