283 lines
9.8 KiB
C
283 lines
9.8 KiB
C
|
// Copyright 2020 Espressif Systems (Shanghai) PTE LTD
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
|
|
||
|
#include "sys/param.h"
|
||
|
#include "esp_timer_impl.h"
|
||
|
#include "esp_timer.h"
|
||
|
#include "esp_err.h"
|
||
|
#include "esp_system.h"
|
||
|
#include "esp_task.h"
|
||
|
#include "esp_attr.h"
|
||
|
#include "esp_intr_alloc.h"
|
||
|
#include "esp_log.h"
|
||
|
#include "esp32/clk.h"
|
||
|
#include "driver/periph_ctrl.h"
|
||
|
#include "soc/soc.h"
|
||
|
#include "soc/timer_group_reg.h"
|
||
|
#include "soc/rtc.h"
|
||
|
#include "freertos/FreeRTOS.h"
|
||
|
|
||
|
/**
|
||
|
* @file esp_timer_lac.c
|
||
|
* @brief Implementation of chip-specific part of esp_timer
|
||
|
*
|
||
|
* This implementation uses TG0 LAC timer of the ESP32. This timer is
|
||
|
* a 64-bit up-counting timer, with a programmable compare value (called 'alarm'
|
||
|
* hereafter). When the timer reaches compare value, interrupt is raised.
|
||
|
* The timer can be configured to produce an edge or a level interrupt.
|
||
|
*/
|
||
|
|
||
|
/* Selects which Timer Group peripheral to use */
|
||
|
#define LACT_MODULE 0
|
||
|
|
||
|
#if LACT_MODULE == 0
|
||
|
#define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE
|
||
|
#define PERIPH_LACT PERIPH_TIMG0_MODULE
|
||
|
#elif LACT_MODULE == 1
|
||
|
#define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE
|
||
|
#define PERIPH_LACT PERIPH_TIMG1_MODULE
|
||
|
#else
|
||
|
#error "Incorrect the number of LACT module (only 0 or 1)"
|
||
|
#endif
|
||
|
|
||
|
/* Desired number of timer ticks per microsecond.
|
||
|
* This value should be small enough so that all possible APB frequencies
|
||
|
* could be divided by it without remainder.
|
||
|
* On the other hand, the smaller this value is, the longer we need to wait
|
||
|
* after setting UPDATE_REG before the timer value can be read.
|
||
|
* If TICKS_PER_US == 1, then we need to wait up to 1 microsecond, which
|
||
|
* makes esp_timer_impl_get_time function take too much time.
|
||
|
* The value TICKS_PER_US == 2 allows for most of the APB frequencies, and
|
||
|
* allows reading the counter quickly enough.
|
||
|
*/
|
||
|
#define TICKS_PER_US 2
|
||
|
|
||
|
/* Shorter register names, used in this file */
|
||
|
#define CONFIG_REG (TIMG_LACTCONFIG_REG(LACT_MODULE))
|
||
|
#define RTC_STEP_REG (TIMG_LACTRTC_REG(LACT_MODULE))
|
||
|
#define ALARM_LO_REG (TIMG_LACTALARMLO_REG(LACT_MODULE))
|
||
|
#define ALARM_HI_REG (TIMG_LACTALARMHI_REG(LACT_MODULE))
|
||
|
#define COUNT_LO_REG (TIMG_LACTLO_REG(LACT_MODULE))
|
||
|
#define COUNT_HI_REG (TIMG_LACTHI_REG(LACT_MODULE))
|
||
|
#define UPDATE_REG (TIMG_LACTUPDATE_REG(LACT_MODULE))
|
||
|
#define LOAD_REG (TIMG_LACTLOAD_REG(LACT_MODULE))
|
||
|
#define LOAD_LO_REG (TIMG_LACTLOADLO_REG(LACT_MODULE))
|
||
|
#define LOAD_HI_REG (TIMG_LACTLOADHI_REG(LACT_MODULE))
|
||
|
#define INT_ENA_REG (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE))
|
||
|
#define INT_ST_REG (TIMG_INT_ST_TIMERS_REG(LACT_MODULE))
|
||
|
#define INT_CLR_REG (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE))
|
||
|
|
||
|
/* Helper type to convert between a 64-bit value and a pair of 32-bit values without shifts and masks */
|
||
|
typedef struct {
|
||
|
union {
|
||
|
struct {
|
||
|
uint32_t lo;
|
||
|
uint32_t hi;
|
||
|
};
|
||
|
uint64_t val;
|
||
|
};
|
||
|
} timer_64b_reg_t;
|
||
|
|
||
|
static const char* TAG = "esp_timer_impl";
|
||
|
|
||
|
/* Interrupt handle returned by the interrupt allocator */
|
||
|
static intr_handle_t s_timer_interrupt_handle;
|
||
|
|
||
|
/* Function from the upper layer to be called when the interrupt happens.
|
||
|
* Registered in esp_timer_impl_init.
|
||
|
*/
|
||
|
static intr_handler_t s_alarm_handler;
|
||
|
|
||
|
/* Spinlock used to protect access to the hardware registers. */
|
||
|
portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
|
||
|
|
||
|
|
||
|
void esp_timer_impl_lock(void)
|
||
|
{
|
||
|
portENTER_CRITICAL(&s_time_update_lock);
|
||
|
}
|
||
|
|
||
|
void esp_timer_impl_unlock(void)
|
||
|
{
|
||
|
portEXIT_CRITICAL(&s_time_update_lock);
|
||
|
}
|
||
|
|
||
|
uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void)
|
||
|
{
|
||
|
uint32_t lo, hi;
|
||
|
uint32_t lo_start = REG_READ(COUNT_LO_REG);
|
||
|
uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER);
|
||
|
/* The peripheral doesn't have a bit to indicate that the update is done, so we poll the
|
||
|
* lower 32 bit part of the counter until it changes, or a timeout expires.
|
||
|
*/
|
||
|
REG_WRITE(UPDATE_REG, 1);
|
||
|
do {
|
||
|
lo = REG_READ(COUNT_LO_REG);
|
||
|
} while (lo == lo_start && div-- > 0);
|
||
|
|
||
|
/* Since this function is called without a critical section, verify that LO and HI
|
||
|
* registers are consistent. That is, if an interrupt happens between reading LO and
|
||
|
* HI registers, and esp_timer_impl_get_time is called from an ISR, then try to
|
||
|
* detect this by the change in LO register value, and re-read both registers.
|
||
|
*/
|
||
|
do {
|
||
|
lo_start = lo;
|
||
|
hi = REG_READ(COUNT_HI_REG);
|
||
|
lo = REG_READ(COUNT_LO_REG);
|
||
|
} while (lo != lo_start);
|
||
|
|
||
|
timer_64b_reg_t result = {
|
||
|
.lo = lo,
|
||
|
.hi = hi
|
||
|
};
|
||
|
return result.val;
|
||
|
}
|
||
|
|
||
|
uint64_t IRAM_ATTR esp_timer_impl_get_time(void)
|
||
|
{
|
||
|
return esp_timer_impl_get_counter_reg() / TICKS_PER_US;
|
||
|
}
|
||
|
|
||
|
void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
|
||
|
{
|
||
|
portENTER_CRITICAL_SAFE(&s_time_update_lock);
|
||
|
int64_t offset = TICKS_PER_US * 2;
|
||
|
uint64_t now_time = esp_timer_impl_get_counter_reg();
|
||
|
timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) };
|
||
|
do {
|
||
|
REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
|
||
|
REG_WRITE(ALARM_LO_REG, alarm.lo);
|
||
|
REG_WRITE(ALARM_HI_REG, alarm.hi);
|
||
|
REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN);
|
||
|
now_time = esp_timer_impl_get_counter_reg();
|
||
|
int64_t delta = (int64_t)alarm.val - (int64_t)now_time;
|
||
|
if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) {
|
||
|
// new alarm is less than the counter and the interrupt flag is not set
|
||
|
offset += abs((int)delta) + TICKS_PER_US * 2;
|
||
|
alarm.val = now_time + offset;
|
||
|
} else {
|
||
|
// finish if either (alarm > counter) or the interrupt flag is already set.
|
||
|
break;
|
||
|
}
|
||
|
} while(1);
|
||
|
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
|
||
|
}
|
||
|
|
||
|
static void IRAM_ATTR timer_alarm_isr(void *arg)
|
||
|
{
|
||
|
/* Clear interrupt status */
|
||
|
REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
||
|
/* Call the upper layer handler */
|
||
|
(*s_alarm_handler)(arg);
|
||
|
}
|
||
|
|
||
|
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
|
||
|
{
|
||
|
portENTER_CRITICAL(&s_time_update_lock);
|
||
|
assert(apb_ticks_per_us >= 3 && "divider value too low");
|
||
|
assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US");
|
||
|
REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US);
|
||
|
portEXIT_CRITICAL(&s_time_update_lock);
|
||
|
}
|
||
|
|
||
|
void esp_timer_impl_advance(int64_t time_diff_us)
|
||
|
{
|
||
|
portENTER_CRITICAL(&s_time_update_lock);
|
||
|
uint64_t now = esp_timer_impl_get_time();
|
||
|
timer_64b_reg_t dst = { .val = (now + time_diff_us) * TICKS_PER_US };
|
||
|
REG_WRITE(LOAD_LO_REG, dst.lo);
|
||
|
REG_WRITE(LOAD_HI_REG, dst.hi);
|
||
|
REG_WRITE(LOAD_REG, 1);
|
||
|
portEXIT_CRITICAL(&s_time_update_lock);
|
||
|
}
|
||
|
|
||
|
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
|
||
|
{
|
||
|
s_alarm_handler = alarm_handler;
|
||
|
|
||
|
periph_module_enable(PERIPH_LACT);
|
||
|
|
||
|
/* Reset the state */
|
||
|
REG_WRITE(CONFIG_REG, 0);
|
||
|
REG_WRITE(LOAD_LO_REG, 0);
|
||
|
REG_WRITE(LOAD_HI_REG, 0);
|
||
|
REG_WRITE(ALARM_LO_REG, UINT32_MAX);
|
||
|
REG_WRITE(ALARM_HI_REG, UINT32_MAX);
|
||
|
REG_WRITE(LOAD_REG, 1);
|
||
|
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
||
|
|
||
|
esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT,
|
||
|
ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
|
||
|
&timer_alarm_isr, NULL, &s_timer_interrupt_handle);
|
||
|
|
||
|
if (err != ESP_OK) {
|
||
|
ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
/* In theory, this needs a shared spinlock with the timer group driver.
|
||
|
* However since esp_timer_impl_init is called early at startup, this
|
||
|
* will not cause issues in practice.
|
||
|
*/
|
||
|
REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA);
|
||
|
|
||
|
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
|
||
|
|
||
|
REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE |
|
||
|
TIMG_LACT_LEVEL_INT_EN |
|
||
|
TIMG_LACT_EN);
|
||
|
|
||
|
// Set the step for the sleep mode when the timer will work
|
||
|
// from a slow_clk frequency instead of the APB frequency.
|
||
|
uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US;
|
||
|
REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us);
|
||
|
|
||
|
ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
|
||
|
|
||
|
return ESP_OK;
|
||
|
}
|
||
|
|
||
|
void esp_timer_impl_deinit(void)
|
||
|
{
|
||
|
REG_WRITE(CONFIG_REG, 0);
|
||
|
REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR);
|
||
|
/* TODO: also clear TIMG_LACT_INT_ENA; however see the note in esp_timer_impl_init. */
|
||
|
|
||
|
esp_intr_disable(s_timer_interrupt_handle);
|
||
|
esp_intr_free(s_timer_interrupt_handle);
|
||
|
s_timer_interrupt_handle = NULL;
|
||
|
}
|
||
|
|
||
|
/* FIXME: This value is safe for 80MHz APB frequency, should be modified to depend on clock frequency. */
|
||
|
uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us(void)
|
||
|
{
|
||
|
return 50;
|
||
|
}
|
||
|
|
||
|
uint64_t esp_timer_impl_get_alarm_reg(void)
|
||
|
{
|
||
|
portENTER_CRITICAL_SAFE(&s_time_update_lock);
|
||
|
timer_64b_reg_t alarm = {
|
||
|
.lo = REG_READ(ALARM_LO_REG),
|
||
|
.hi = REG_READ(ALARM_HI_REG)
|
||
|
};
|
||
|
portEXIT_CRITICAL_SAFE(&s_time_update_lock);
|
||
|
return alarm.val;
|
||
|
}
|
||
|
|
||
|
void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq")));
|
||
|
void esp_timer_private_advance(int64_t time_us) __attribute__((alias("esp_timer_impl_advance")));
|
||
|
void esp_timer_private_lock(void) __attribute__((alias("esp_timer_impl_lock")));
|
||
|
void esp_timer_private_unlock(void) __attribute__((alias("esp_timer_impl_unlock")));
|