OVMS3-idf/components/xtensa/trax/traceparse.py

340 lines
12 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# coding=utf-8
#
# This script decodes Xtensa CPU trace dumps. It allows tracing the program
# execution at instruction level.
#
# Some trivia about the Xtensa CPU trace (TRAX):
# TRAX format mostly follows the IEEE-ISTO 5001-2003 (Nexus) standard.
# The following Nexus Program Trace messages are implemented by TRAX:
# - Indirect Branch Message
# - Syncronization Message
# - Indirect Branch with Synchronization Message
# - Correlation Message
# TRAX outputs compressed traces with 2 MSEO bits (LSB) and 6 MDO bits (MSB),
# packed into a byte. MSEO bits are used to split the stream into packets and messages,
# and MDO bits carry the actual data of the messages. Each message may contain multiple packets.
#
# This script can be used standalone, or loaded into GDB.
# When used standalone, it dumps the list of trace messages to stdout.
# When used from GDB, it also invokes GDB command to dump the list of assembly
# instructions corresponding to each of the messages.
#
# Standalone usage:
# traceparse.py <dump_file>
#
# Usage from GDB:
# xtensa-esp32-elf-gdb -n --batch program.elf -x gdbinit
# with the following gdbinit script:
# set pagination off
# set confirm off
# add-symbol-file rom.elf <address of ROM .text section>
# source traceparse.py
# python parse_and_dump("/path/to/dump_file")
#
# Loading the ROM code is optional; if not loaded, disassembly for ROM sections of code
# will be missing.
#
###
# Copyright 2020 Espressif Systems (Shanghai) PTE LTD
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
# Check if loaded into GDB
try:
assert gdb.__name__ == "gdb"
WITH_GDB = True
except NameError:
WITH_GDB = False
# MSEO bit masks:
MSEO_PKTEND = 1 << 0 # bit 0: indicates the last byte of a packet
MSEO_MSGEND = 1 << 1 # bit 1: indicates the last byte of the message
# Message types. The type is stored in the first 6 MDO bits or the first packet.
TVAL_INDBR = 4 # Indirect branch
TVAL_INDBRSYNC = 12 # Indirect branch w/ synchronisation
TVAL_SYNC = 9 # Synchronisation msg
TVAL_CORR = 33 # Correlation message
class TraxPacket(object):
def __init__(self, data, truncated=False):
self.data = data
self.size_bytes = len(data)
self.truncated = truncated
def get_bits(self, start, count=0):
"""
Extract data bits from the packet
:param start: offset, in bits, of the part to be extracted
:param count: number of bits to extract; if omitted or zero,
extracts until the end of the packet
:return: integer containing the extracted bits
"""
start_byte = start // 6
if count <= 0:
# all remaining bits
count = len(self.data) * 6 - start
bits_remaining = count
result = 0
shift = 0
for i, b in enumerate(self.data[start_byte:]):
# which bit in the byte is the starting bit
if i == 0:
# at start_byte: take the offset into account
start_bit = 2 + (start % 6)
else:
# every other byte: start after MSEO bits
start_bit = 2
# how many bits do we need to copy from this byte
cnt_bits = min(bits_remaining, 8 - start_bit)
mask = (2 ** cnt_bits) - 1
# take this many bits after the start_bit
bits = (b >> start_bit) & mask
# add these bits to the result
result |= bits << shift
# update the remaining bit count
shift += cnt_bits
bits_remaining -= cnt_bits
if bits_remaining == 0:
break
return result
def __str__(self):
return "%d byte packet%s" % (self.size_bytes, " (truncated)" if self.truncated else "")
class TraxMessage(object):
def __init__(self, packets, truncated=False):
"""
Create and parse a TRAX message from packets
:param packets: list of TraxPacket objects, must not be empty
:param truncated: whether the message was truncated in the stream
"""
assert len(packets) > 0
self.packets = packets
self.truncated = truncated
if truncated:
self.msg_type = None
else:
self.msg_type = self._get_type()
# Start and end of the instruction range corresponding to this message
self.pc_start = 0 # inclusive
self.pc_end = 0 # not inclusive
self.pc_target = 0 # PC of the next range
self.is_exception = False # whether the message indicates an exception
self.is_correlation = False # whether this is a correlation message
# message-specific fields
self.icnt = 0
self.uaddr = 0
self.dcont = 0
# decode the fields
if not truncated:
self._decode()
def _get_type(self):
"""
:return: Message type, one of TVAL_XXX values
"""
return self.packets[0].get_bits(0, 6)
def _decode(self):
""" Parse the packets and fill in the message-specific fields """
if self.msg_type == TVAL_INDBR:
self.icnt = self.packets[0].get_bits(7, -1)
self.btype = self.packets[0].get_bits(6, 1)
self.uaddr = self.packets[1].get_bits(0)
self.is_exception = self.btype > 0
elif self.msg_type == TVAL_INDBRSYNC:
self.icnt = self.packets[0].get_bits(8, -1)
self.btype = self.packets[0].get_bits(7, 1)
self.pc_target = self.packets[1].get_bits(0)
self.dcont = self.packets[0].get_bits(6, 1)
self.is_exception = self.btype > 0
elif self.msg_type == TVAL_SYNC:
self.icnt = self.packets[0].get_bits(7, -1)
self.dcont = self.packets[0].get_bits(6, 1)
self.pc_target = self.packets[1].get_bits(0)
elif self.msg_type == TVAL_CORR:
self.icnt = self.packets[0].get_bits(12, -1)
self.is_correlation = True
else:
raise NotImplementedError("Unknown message type (%d)" % self.msg_type)
def process_forward(self, cur_pc):
"""
Given the target PC known from the previous message, determine
the PC range corresponding to the current message.
:param cur_pc: previous known PC
:return: target PC after the current message
"""
assert not self.truncated
next_pc = cur_pc
if self.msg_type == TVAL_INDBR:
next_pc = cur_pc ^ self.uaddr
self.pc_target = next_pc
self.pc_start = cur_pc
self.pc_end = self.pc_start + self.icnt + 1
if self.msg_type == TVAL_INDBRSYNC:
next_pc = self.pc_target
self.pc_start = cur_pc
self.pc_end = cur_pc + self.icnt + 1
if self.msg_type == TVAL_SYNC:
next_pc = self.pc_target
self.pc_start = next_pc - self.icnt
self.pc_end = next_pc + 1
if self.msg_type == TVAL_CORR:
pass
return next_pc
def process_backward(self, cur_pc):
"""
Given the address of the PC known from the _next_ message, determine
the PC range corresponding to the current message.
:param cur_pc: next known PC
:return: target PC of the _previous_ message
"""
assert not self.truncated
# Backward pass is only used to resolve addresses of messages
# up to the first SYNC/INDBRSYNC message.
# SYNC/INDBRSYNC messages are only handled in the forward pass.
assert self.msg_type != TVAL_INDBRSYNC
assert self.msg_type != TVAL_SYNC
prev_pc = cur_pc
self.pc_target = cur_pc
if self.msg_type == TVAL_INDBR:
prev_pc ^= self.uaddr
self.pc_start = prev_pc
self.pc_end = prev_pc + self.icnt + 1
if self.msg_type == TVAL_CORR:
pass
return prev_pc
def __str__(self):
desc = "Unknown (%d)" % self.msg_type
extra = ""
if self.truncated:
desc = "Truncated"
if self.msg_type == TVAL_INDBR:
desc = "Indirect branch"
extra = ", icnt=%d, uaddr=0x%x, exc=%d" % (self.icnt, self.uaddr, self.is_exception)
if self.msg_type == TVAL_INDBRSYNC:
desc = "Indirect branch w/sync"
extra = ", icnt=%d, dcont=%d, exc=%d" % (self.icnt, self.dcont, self.is_exception)
if self.msg_type == TVAL_SYNC:
desc = "Synchronization"
extra = ", icnt=%d, dcont=%d" % (self.icnt, self.dcont)
if self.msg_type == TVAL_CORR:
desc = "Correlation"
extra = ", icnt=%d" % self.icnt
return "%s message, %d packets, PC range 0x%08x - 0x%08x, target PC 0x%08x" % (
desc, len(self.packets), self.pc_start, self.pc_end, self.pc_target) + extra
def load_messages(data):
"""
Decodes TRAX data and resolves PC ranges.
:param data: input data, bytes
:return: list of TraxMessage objects
"""
messages = []
packets = []
packet_start = 0
msg_cnt = 0
pkt_cnt = 0
# Iterate over the input data, splitting bytes into packets and messages
for i, b in enumerate(data):
if (b & MSEO_MSGEND) and not (b & MSEO_PKTEND):
raise AssertionError("Invalid MSEO bits in b=0x%x. Not a TRAX dump?" % b)
if b & MSEO_PKTEND:
pkt_cnt += 1
packets.append(TraxPacket(data[packet_start:i + 1], packet_start == 0))
packet_start = i + 1
if b & MSEO_MSGEND:
msg_cnt += 1
try:
messages.append(TraxMessage(packets, len(messages) == 0))
except NotImplementedError as e:
sys.stderr.write("Failed to parse message #%03d (at %d bytes): %s\n" % (msg_cnt, i, str(e)))
packets = []
# Resolve PC ranges of messages.
# Forward pass: skip messages until a message with known PC,
# i.e. a SYNC/INDBRSYNC message. Process all messages following it.
pc = 0
first_sync_index = -1
for i, m in enumerate(messages):
if pc == 0 and m.pc_target == 0:
continue
if first_sync_index < 0:
first_sync_index = i
pc = m.process_forward(pc)
# Now process the skipped messages in the reverse direction,
# starting from the first message with known PC.
pc = messages[first_sync_index].pc_start
for m in reversed(messages[0:first_sync_index]):
if m.truncated:
break
pc = m.process_backward(pc)
return messages
def parse_and_dump(filename, disassemble=WITH_GDB):
"""
Decode TRAX data from a file, print out the messages.
:param filename: file to load the dump from
:param disassemble: if True, print disassembly of PC ranges
"""
with open(filename, 'rb') as f:
data = f.read()
messages = load_messages(data)
sys.stderr.write("Loaded %d messages in %d bytes\n" % (len(messages), len(data)))
for i, m in enumerate(messages):
if m.truncated:
continue
print("%04d: %s" % (i, str(m)))
if m.is_exception:
print("*** Exception occurred ***")
if disassemble and WITH_GDB:
try:
gdb.execute("disassemble 0x%08x, 0x%08x" % (m.pc_start, m.pc_end)) # noqa: F821
except gdb.MemoryError: # noqa: F821
print("Failed to disassemble from 0x%08x to 0x%08x" % (m.pc_start, m.pc_end))
def main():
if len(sys.argv) < 2:
sys.stderr.write("Usage: %s <dump_file>\n")
raise SystemExit(1)
parse_and_dump(sys.argv[1])
if __name__ == "__main__" and not WITH_GDB:
main()