OVMS3-idf/components/esp32/app_trace.c

995 lines
41 KiB
C
Raw Normal View History

// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Hot It Works
// ************
// 1. Components Overview
// ======================
// Xtensa has useful feature: TRAX debug module. It allows recording program execution flow during run-time without disturbing CPU commands flow.
// Exectution flow data are written to configurable Trace RAM block. Besides accessing Trace RAM itself TRAX module also allows to read/write
// trace memory via its registers by means of JTAG, APB or ERI transactions.
// ESP32 has two Xtensa cores with separate TRAX modules on them and provides two special memory regions to be used as trace memory.
// ESP32 allows muxing access to trace memory blocks in such a way that while one block is accessed by CPUs another can be accessed via JTAG by host
// via reading/writing TRAX registers. Block muxing is configurable at run-time and allows switching trace memory blocks between
// accessors in round-robin fashion so they can read/write separate memory blocks without disturbing each other.
// This moduile implements application tracing feature based on above mechanisms. This feature allows to transfer arbitrary user data to
// host via JTAG with minimal impact on system performance. This module is implied to be used in the following tracing scheme.
// ------>------ ----- (host components) -----
// | | | |
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
// |apptrace user|-->|target tracing module|<--->|TRAX_MEM0 | TRAX_MEM1|---->|TRAX_DATA_REGS|<-->|JTAG|<--->|OpenOCD|-->|trace data file|
// --------------- ----------------------- ----------------------- ---------------- ------ --------- -----------------
// | | | |
// | ------<------ ---------------- |
// |<------------------------------------------->|TRAX_CTRL_REGS|<---->|
// ----------------
// In general tracing happens in the following way. User aplication requests tracing module to send some data by calling esp_apptrace_buffer_get(),
// moduile allocates necessary buffer in current input trace block. Then user fills received buffer with data and calls esp_apptrace_buffer_put().
// When current input trace block is filled with app data it is exposed to host and the second block becomes input one and buffer filling restarts.
// While target application fills one memory block host reads another block via JTAG.
// To control buffer switching and for other communication purposes this implementation uses some TRAX registers. It is safe since HW TRAX tracing
// can not be used along with application tracing feature so these registers are freely readable/writeable via JTAG from host and via ERI from ESP32 cores.
// So this implementation's target CPU overhead is produced only by calls to allocate/manage buffers and data copying.
// On host special OpenOCD command must be used to read trace data.
// 2.1.1.1 TRAX Registers layout
// =============================
// This module uses two TRAX HW registers to communicate with host SW (OpenOCD).
// - Control register uses TRAX_DELAYCNT as storage. Only lower 24 bits of TRAX_DELAYCNT are writable. Control register has the following bitfields:
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
// 14..0 bits - actual length of user data in trace memory block. Target updates it every time it fills memory block and exposes it to host.
// Host writes zero to this field when it finishes reading exposed block;
// 22..15 bits - trace memory block transfer ID. Block counter. It can overflow. Updated by target, host should not modify it. Actually can be 1-2 bits;
// 23 bit - 'host connected' flag. If zero then host is not connected and tracing module works in post-mortem mode, otherwise in streaming mode;
// - Status register uses TRAX_TRIGGERPC as storage. If this register is not zero then currentlly CPU is changing TRAX registers and
// this register holds address of the instruction which application will execute when it finishes with those registers modifications.
// See 'Targets Connection' setion for details.
// 3. Modes of operation
// =====================
// This module supports two modes of operation:
// - Post-mortem mode. This is the default mode. In this mode application tracing module does not check whether host has read all the data from block
// exposed to it and switches block in any case. The mode does not need host interaction for operation and so can be useful when only the latest
// trace data are necessary, e.g. for analyzing crashes. On panic the latest data from current input block are exposed to host and host can read them.
// There is menuconfig option CONFIG_ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TRAX_THRESH which control the threshold for flushing data on panic.
// - Streaming mode. Tracing module enters this mode when host connects to targets and sets respective bit in control register. In this mode tracing
// module waits for specified time until host read all the data from exposed block.
// On panic tracing module waits (timeout is configured via menuconfig via ESP32_APPTRACE_ONPANIC_HOST_FLUSH_TMO) for the host to read all data
// from the previously exposed block.
// 4. Communication Protocol
// =========================
// 4.1 Trace Memory Blocks
// ^^^^^^^^^^^^^^^^^^^^^^^^^
// Communication is controlled via special register. Host periodically polls control register on each core to find out if there are any data avalable.
// When current input trace memory block is filled tracing module exposes block to host and updates block_len and block_id fields in control register.
// Host reads new register value and according to it starts reading data from exposed block. Meanwhile target starts filling another trace block.
// When host finishes reading the block it clears block_len field in control register indicating to target that it is ready to accept the next block.
// 4.2 User Data Chunks Level
// --------------------------
// Since trace memory block is shared between user data chunks and data copying is performed on behalf of the API user (in its normal context) in
// multithreading environment it can happen that task/ISR which copies data is preempted by another high prio task/ISR. So it is possible situation
// that task/ISR will fail to complete filling its data chunk before the whole trace block is exposed to the host. To handle such conditions tracing
// module prepends all user data chunks with 4 bytes header which contains allocated buffer size and actual data length within it. OpenOCD command
// which reads application traces will report error when it will read incompleted user data block.
// 4.3 Targets Connection/Disconnection
// ------------------------------------
// When host is going to start tracing in streaming mode it needs to put both ESP32 cores into initial state when 'host connected' bit is set
// on both cores. To accomplish this host halts both cores and sets this bit in TRAX registers. But target code can be halted in state when it has read control
// register but has not updated its value. To handle such situations target code indicates to the host that it is updating control register by writing
// non-zero value to status register. Actually it writes address of the instruction which it will execute when it finishes with
// the registers update. When target is halted during control register update host sets breakpoint at the address from status register and resumes CPU.
// After target code finishes with register update it is halted on breakpoint, host detects it and safely sets 'host connected' bit. When both cores
// are set up they are resumed. Tracing starts without further intrusion into CPUs work.
// When host is going to stop tracing in streaming mode it needs to disconnect targets. Disconnection process is done using the same algorithm
// as for connecting, but 'host connected' bits are cleared on ESP32 cores.
// 5. Module Access Synchronization
// ================================
// Access to internal module's data is synchronized with custom mutex. Mutex is a wrapper for portMUX_TYPE and uses almost the same sync mechanism as in
// vPortCPUAcquireMutex/vPortCPUReleaseMutex. The mechanism uses S32C1I Xtensa instruction to implement exclusive access to module's data from tasks and
// ISRs running on both cores. Also custom mutex allows specifying timeout for locking operation. Locking routine checks underlaying mutex in cycle until
// it gets its ownership or timeout expires. The differences of application tracing module's mutex implementation from vPortCPUAcquireMutex/vPortCPUReleaseMutex are:
// - Support for timeouts.
// - Local IRQs for CPU which owns the mutex are disabled till the call to unlocking routine. This is made to avoid possible task's prio inversion.
// When low prio task takes mutex and enables local IRQs gets preempted by high prio task which in its turn can try to acquire mutex using infinite timeout.
// So no local task switch occurs when mutex is locked. But this does not apply to tasks on another CPU.
// WARNING: Priority inversion can happen when low prio task works on one CPU and medium and high prio tasks work on another.
// There are some differences how mutex behaves when it is used from task and ISR context when timeout is non-zero:
// - In task context when mutex can not be locked portYIELD() is called before check for timeout condition to alow othet tasks work on the same CPU.
// - In ISR context when mutex can not be locked nothing is done before expired time check.
// WARNING: Care must be taken when selecting timeout values for trace calls from ISRs. Tracing module does not care about watchdogs when waiting on internal locks
// and when waiting for host to complete previous block reading, so if wating timeout value exceedes watchdog's one it can lead to system reboot.
// 6. Timeouts
// ------------
// Timeout mechanism is based on xthal_get_ccount() routine and supports timeout values in micorseconds.
// There are two situations when task/ISR can be delayed by tracing API call. Timeout mechanism takes into account both conditions:
// - Trace data are locked by another task/ISR. When wating on trace data lock.
// - Current TRAX memory input block is full when working in streaming mode (host is connected). When waiting for host to complete previous block reading.
// When wating for any of above conditions xthal_get_ccount() is called periodically to calculate time elapsed from trace API routine entry. When elapsed
// time exceeds specified timeout value operation is canceled and ESP_ERR_TIMEOUT code is returned.
// ALSO SEE example usage of application tracing module in 'components/log/README.rst'
#include <string.h>
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "eri.h"
#include "trax.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "freertos/semphr.h"
#include "freertos/task.h"
#include "soc/timer_group_struct.h"
#include "soc/timer_group_reg.h"
#include "esp_app_trace.h"
#if CONFIG_ESP32_APPTRACE_ENABLE
#define ESP_APPTRACE_DEBUG_STATS_ENABLE 0
#define ESP_APPTRACE_BUF_HISTORY_DEPTH (16*100)
#define ESP_APPTRACE_MAX_VPRINTF_ARGS 256
#define ESP_APPTRACE_PRINT_LOCK_NONE 0
#define ESP_APPTRACE_PRINT_LOCK_SEM 1
#define ESP_APPTRACE_PRINT_LOCK_MUX 2
#define ESP_APPTRACE_PRINT_LOCK ESP_APPTRACE_PRINT_LOCK_NONE//ESP_APPTRACE_PRINT_LOCK_SEM
#define ESP_APPTRACE_USE_LOCK_SEM 0 // 1 - semaphore (now may be broken), 0 - portMUX_TYPE
#define LOG_LOCAL_LEVEL ESP_LOG_VERBOSE
#include "esp_log.h"
const static char *TAG = "esp_apptrace";
#if ESP_APPTRACE_PRINT_LOCK != ESP_APPTRACE_PRINT_LOCK_NONE
#define ESP_APPTRACE_LOG( format, ... ) \
do { \
esp_apptrace_log_lock(); \
ets_printf(format, ##__VA_ARGS__); \
esp_apptrace_log_unlock(); \
} while(0)
#else
#define ESP_APPTRACE_LOG( format, ... ) \
do { \
ets_printf(format, ##__VA_ARGS__); \
} while(0)
#endif
#define ESP_APPTRACE_LOG_LEV( _L_, level, format, ... ) \
do { \
if (LOG_LOCAL_LEVEL >= level) { \
ESP_APPTRACE_LOG(LOG_FORMAT(_L_, format), esp_log_early_timestamp(), TAG, ##__VA_ARGS__); \
} \
} while(0)
#define ESP_APPTRACE_LOGE( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_ERROR, format, ##__VA_ARGS__)
#define ESP_APPTRACE_LOGW( format, ... ) ESP_APPTRACE_LOG_LEV(W, ESP_LOG_WARN, format, ##__VA_ARGS__)
#define ESP_APPTRACE_LOGI( format, ... ) ESP_APPTRACE_LOG_LEV(I, ESP_LOG_INFO, format, ##__VA_ARGS__)
#define ESP_APPTRACE_LOGD( format, ... ) ESP_APPTRACE_LOG_LEV(D, ESP_LOG_DEBUG, format, ##__VA_ARGS__)
#define ESP_APPTRACE_LOGV( format, ... ) ESP_APPTRACE_LOG_LEV(V, ESP_LOG_VERBOSE, format, ##__VA_ARGS__)
#define ESP_APPTRACE_LOGO( format, ... ) ESP_APPTRACE_LOG_LEV(E, ESP_LOG_NONE, format, ##__VA_ARGS__)
#define ESP_APPTRACE_CPUTICKS2US(_t_) ((_t_)/(XT_CLOCK_FREQ/1000000))
// TODO: move these (and same definitions in trax.c to dport_reg.h)
#define TRACEMEM_MUX_PROBLK0_APPBLK1 0
#define TRACEMEM_MUX_BLK0_ONLY 1
#define TRACEMEM_MUX_BLK1_ONLY 2
#define TRACEMEM_MUX_PROBLK1_APPBLK0 3
// TRAX is disabled, so we use its registers for our own purposes
// | 31..XXXXXX..24 | 23 .(host_connect). 23| 22..(block_id)..15 | 14..(block_len)..0 |
#define ESP_APPTRACE_TRAX_CTRL_REG ERI_TRAX_DELAYCNT
#define ESP_APPTRACE_TRAX_STAT_REG ERI_TRAX_TRIGGERPC
#define ESP_APPTRACE_TRAX_BLOCK_LEN_MSK 0x7FFFUL
#define ESP_APPTRACE_TRAX_BLOCK_LEN(_l_) ((_l_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
#define ESP_APPTRACE_TRAX_BLOCK_LEN_GET(_v_) ((_v_) & ESP_APPTRACE_TRAX_BLOCK_LEN_MSK)
#define ESP_APPTRACE_TRAX_BLOCK_ID_MSK 0xFFUL
#define ESP_APPTRACE_TRAX_BLOCK_ID(_id_) (((_id_) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK) << 15)
#define ESP_APPTRACE_TRAX_BLOCK_ID_GET(_v_) (((_v_) >> 15) & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)
#define ESP_APPTRACE_TRAX_HOST_CONNECT (1 << 23)
static volatile uint8_t *s_trax_blocks[] = {
(volatile uint8_t *) 0x3FFFC000,
(volatile uint8_t *) 0x3FFF8000
};
#define ESP_APPTRACE_TRAX_BLOCKS_NUM (sizeof(s_trax_blocks)/sizeof(s_trax_blocks[0]))
//#define ESP_APPTRACE_TRAX_BUFFER_SIZE (ESP_APPTRACE_TRAX_BLOCK_SIZE/4)
#define ESP_APPTRACE_TRAX_INBLOCK_START 0//(ESP_APPTRACE_TRAX_BLOCK_ID_MSK - 4)
#define ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET() (&s_trace_buf.trax.state.markers[s_trace_buf.trax.state.in_block % 2])
#define ESP_APPTRACE_TRAX_INBLOCK_GET() (&s_trace_buf.trax.blocks[s_trace_buf.trax.state.in_block % 2])
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
/** keeps info about apptrace API (write/get buffer) caller and internal module's data related to that call
* NOTE: used for module debug purposes, currently this functionality is partially broken,
* but can be useful in future
*/
typedef struct {
uint32_t hnd; // task/ISR handle
uint32_t ts; // timestamp
uint32_t stamp; // test (user) trace buffer stamp
uint32_t in_block; // TRAX input block ID
uint32_t eri_len[2]; // contents of ERI control register upon entry to / exit from API routine
uint32_t wr_err; // number of trace write errors
} esp_trace_buffer_wr_hitem_t;
/** apptrace API calls history. History is organized as ring buffer*/
typedef struct {
uint32_t hist_rd; // the first history entry index
uint32_t hist_wr; // the last history entry index
esp_trace_buffer_wr_hitem_t hist[ESP_APPTRACE_BUF_HISTORY_DEPTH]; // history data
} esp_trace_buffer_wr_stats_t;
/** trace module stats */
typedef struct {
esp_trace_buffer_wr_stats_t wr;
} esp_trace_buffer_stats_t;
#endif
/** Trace data header. Every user data chunk is prepended with this header.
* User allocates block with esp_apptrace_buffer_get and then fills it with data,
* in multithreading environment it can happen that tasks gets buffer and then gets interrupted,
* so it is possible that user data are incomplete when TRAX memory block is exposed to the host.
* In this case host SW will see that wr_sz < block_sz and will report error.
*/
typedef struct {
uint16_t block_sz; // size of allocated block for user data
uint16_t wr_sz; // size of actually written data
} esp_tracedata_hdr_t;
/** TRAX HW transport state */
typedef struct {
uint32_t in_block; // input block ID
uint32_t markers[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // block filling level markers
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
esp_trace_buffer_stats_t stats; // stats
#endif
} esp_apptrace_trax_state_t;
/** memory block parameters */
typedef struct {
uint8_t *start; // start address
uint32_t sz; // size
} esp_apptrace_mem_block_t;
/** TRAX HW transport data */
typedef struct {
volatile esp_apptrace_trax_state_t state; // state
esp_apptrace_mem_block_t blocks[ESP_APPTRACE_TRAX_BLOCKS_NUM]; // memory blocks
} esp_apptrace_trax_data_t;
/** tracing module synchronization lock */
typedef struct {
volatile unsigned int irq_stat; // local (on 1 CPU) IRQ state
portMUX_TYPE portmux; // mux for synchronization
} esp_apptrace_lock_t;
#define ESP_APPTRACE_MUX_GET(_m_) (&(_m_)->portmux)
/** tracing module internal data */
typedef struct {
#if ESP_APPTRACE_USE_LOCK_SEM == 1
SemaphoreHandle_t lock;
#else
esp_apptrace_lock_t lock; // sync lock
#endif
uint8_t inited; // module initialization state flag
esp_apptrace_trax_data_t trax; // TRAX HW transport data
} esp_apptrace_buffer_t;
/** waiting timeout data */
typedef struct {
uint32_t start; // waiting start (in ticks)
uint32_t tmo; // timeout (in us)
} esp_apptrace_tmo_t;
static esp_apptrace_buffer_t s_trace_buf;
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
static SemaphoreHandle_t s_log_lock;
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
static esp_apptrace_lock_t s_log_lock;
#endif
static inline void esp_apptrace_tmo_init(esp_apptrace_tmo_t *tmo, uint32_t user_tmo)
{
tmo->start = xthal_get_ccount();
tmo->tmo = user_tmo;
}
static esp_err_t esp_apptrace_tmo_check(esp_apptrace_tmo_t *tmo)
{
unsigned cur, elapsed;
if (tmo->tmo != ESP_APPTRACE_TMO_INFINITE) {
cur = xthal_get_ccount();
if (tmo->start <= cur) {
elapsed = cur - tmo->start;
} else {
elapsed = 0xFFFFFFFF - tmo->start + cur;
}
if (ESP_APPTRACE_CPUTICKS2US(elapsed) >= tmo->tmo) {
return ESP_ERR_TIMEOUT;
}
}
return ESP_OK;
}
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX || ESP_APPTRACE_USE_LOCK_SEM == 0
static inline void esp_apptrace_mux_init(esp_apptrace_lock_t *mux)
{
ESP_APPTRACE_MUX_GET(mux)->mux = portMUX_FREE_VAL;
mux->irq_stat = 0;
}
static esp_err_t esp_apptrace_lock_take(esp_apptrace_lock_t *mux, uint32_t tmo)
{
uint32_t res = ~portMUX_FREE_VAL;
esp_apptrace_tmo_t sleeping_tmo;
esp_apptrace_tmo_init(&sleeping_tmo, tmo);
while (1) {
res = (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL;
// first disable IRQs on this CPU, this will prevent current task from been
// preempted by higher prio tasks, otherwise deadlock can happen:
// when lower prio task took mux and then preempted by higher prio one which also tries to
// get mux with INFINITE timeout
unsigned int irq_stat = portENTER_CRITICAL_NESTED();
// Now try to lock mux
uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, portMUX_FREE_VAL, &res);
if (res == portMUX_FREE_VAL) {
// do not enable IRQs, we will held them disabled until mux is unlocked
// we do not need to flush cache region for mux->irq_stat because it is used
// to hold and restore IRQ state only for CPU which took mux, other CPUs will not use this value
mux->irq_stat = irq_stat;
break;
}
// if mux is locked by other task/ISR enable IRQs and let other guys work
portEXIT_CRITICAL_NESTED(irq_stat);
if (!xPortInIsrContext()) {
portYIELD();
}
int err = esp_apptrace_tmo_check(&sleeping_tmo);
if (err != ESP_OK) {
return err;
}
}
return ESP_OK;
}
esp_err_t esp_apptrace_mux_give(esp_apptrace_lock_t *mux)
{
esp_err_t ret = ESP_OK;
uint32_t res = 0;
unsigned int irq_stat;
res = portMUX_FREE_VAL;
// first of all save a copy of IRQ status for this locker because uxPortCompareSet will unlock mux and tasks/ISRs
// from other core can overwrite mux->irq_stat
irq_stat = mux->irq_stat;
uxPortCompareSet(&ESP_APPTRACE_MUX_GET(mux)->mux, (xPortGetCoreID() << portMUX_VAL_SHIFT) | portMUX_MAGIC_VAL, &res);
// enable local interrupts
portEXIT_CRITICAL_NESTED(irq_stat);
if ( ((res & portMUX_VAL_MASK) >> portMUX_VAL_SHIFT) == xPortGetCoreID() ) {
// nothing to do
} else if ( res == portMUX_FREE_VAL ) {
ret = ESP_FAIL; // should never get here
} else {
ret = ESP_FAIL; // should never get here
}
return ret;
}
#endif
static inline esp_err_t esp_apptrace_log_init()
{
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
s_log_lock = xSemaphoreCreateBinary();
if (!s_log_lock) {
ets_printf("%s: Failed to create print lock sem!", TAG);
return ESP_FAIL;
}
xSemaphoreGive(s_log_lock);
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
esp_apptrace_mux_init(&s_log_lock);
#endif
return ESP_OK;
}
static inline void esp_apptrace_log_cleanup()
{
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
vSemaphoreDelete(s_log_lock);
#endif
}
static inline int esp_apptrace_log_lock()
{
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
BaseType_t ret;
if (xPortInIsrContext()) {
ret = xSemaphoreTakeFromISR(s_print_lock, NULL);
} else {
ret = xSemaphoreTake(s_print_lock, portMAX_DELAY);
}
return ret;
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
int ret = esp_apptrace_lock_take(&s_log_lock, ESP_APPTRACE_TMO_INFINITE);
return ret;
#endif
return 0;
}
static inline void esp_apptrace_log_unlock()
{
#if ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_SEM
if (xPortInIsrContext()) {
xSemaphoreGiveFromISR(s_log_lock, NULL);
} else {
xSemaphoreGive(s_log_lock);
}
#elif ESP_APPTRACE_PRINT_LOCK == ESP_APPTRACE_PRINT_LOCK_MUX
esp_apptrace_mux_give(&s_log_lock);
#endif
}
esp_err_t esp_apptrace_lock_init()
{
#if ESP_APPTRACE_USE_LOCK_SEM == 1
s_trace_buf.lock = xSemaphoreCreateBinary();
if (!s_trace_buf.lock) {
ESP_APPTRACE_LOGE("Failed to create lock!");
return ESP_FAIL;
}
xSemaphoreGive(s_trace_buf.lock);
#else
esp_apptrace_mux_init(&s_trace_buf.lock);
#endif
return ESP_OK;
}
esp_err_t esp_apptrace_lock_cleanup()
{
#if ESP_APPTRACE_USE_LOCK_SEM == 1
vSemaphoreDelete(s_trace_buf.lock);
#endif
return ESP_OK;
}
esp_err_t esp_apptrace_lock(uint32_t *tmo)
{
unsigned cur, elapsed, start = xthal_get_ccount();
#if ESP_APPTRACE_USE_LOCK_SEM == 1
BaseType_t ret;
if (xPortInIsrContext()) {
ret = xSemaphoreTakeFromISR(s_trace_buf.lock, NULL);
} else {
ret = xSemaphoreTake(s_trace_buf.lock, portTICK_PERIOD_MS * (*tmo) / 1000);
}
if (ret != pdTRUE) {
return ESP_FAIL;
}
#else
esp_err_t ret = esp_apptrace_lock_take(&s_trace_buf.lock, *tmo);
if (ret != ESP_OK) {
return ESP_FAIL;
}
#endif
// decrease tmo by actual waiting time
cur = xthal_get_ccount();
if (start <= cur) {
elapsed = cur - start;
} else {
elapsed = ULONG_MAX - start + cur;
}
if (ESP_APPTRACE_CPUTICKS2US(elapsed) > *tmo) {
*tmo = 0;
} else {
*tmo -= ESP_APPTRACE_CPUTICKS2US(elapsed);
}
return ESP_OK;
}
esp_err_t esp_apptrace_unlock()
{
esp_err_t ret = ESP_OK;
#if ESP_APPTRACE_USE_LOCK_SEM == 1
if (xPortInIsrContext()) {
xSemaphoreGiveFromISR(s_trace_buf.lock, NULL);
} else {
xSemaphoreGive(s_trace_buf.lock);
}
#else
ret = esp_apptrace_mux_give(&s_trace_buf.lock);
#endif
return ret;
}
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
static void esp_apptrace_trax_init()
{
// Stop trace, if any (on the current CPU)
eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TRSTP);
eri_write(ERI_TRAX_TRAXCTRL, TRAXCTRL_TMEN);
eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(ESP_APPTRACE_TRAX_INBLOCK_START));
eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0);
ESP_APPTRACE_LOGI("Initialized TRAX on CPU%d", xPortGetCoreID());
}
// assumed to be protected by caller from multi-core/thread access
static esp_err_t esp_apptrace_trax_block_switch()
{
int prev_block_num = s_trace_buf.trax.state.in_block % 2;
int new_block_num = prev_block_num ? (0) : (1);
int res = ESP_OK;
extern uint32_t __esp_apptrace_trax_eri_updated;
// indicate to host that we are about to update.
// this is used only to place CPU into streaming mode at tracing startup
// before starting streaming host can halt us after we read ESP_APPTRACE_TRAX_CTRL_REG and before we updated it
// HACK: in this case host will set breakpoint just after ESP_APPTRACE_TRAX_CTRL_REG update,
// here we set address to set bp at
// enter ERI update critical section
eri_write(ESP_APPTRACE_TRAX_STAT_REG, (uint32_t)&__esp_apptrace_trax_eri_updated);
uint32_t ctrl_reg = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr - 1];
hi->eri_len[1] = ctrl_reg;
}
#endif
uint32_t host_connected = ESP_APPTRACE_TRAX_HOST_CONNECT & ctrl_reg;
if (host_connected) {
uint32_t acked_block = ESP_APPTRACE_TRAX_BLOCK_ID_GET(ctrl_reg);
uint32_t host_to_read = ESP_APPTRACE_TRAX_BLOCK_LEN_GET(ctrl_reg);
if (host_to_read != 0 || acked_block != (s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK)) {
// ESP_APPTRACE_LOGE("HC[%d]: Can not switch %x %d %x %x/%lx", xPortGetCoreID(), ctrl_reg, host_to_read, acked_block,
// s_trace_buf.trax.state.in_block & ESP_APPTRACE_TRAX_BLOCK_ID_MSK, s_trace_buf.trax.state.in_block);
res = ESP_ERR_NO_MEM;
goto _on_func_exit;
}
}
s_trace_buf.trax.state.markers[new_block_num] = 0;
// switch to new block
s_trace_buf.trax.state.in_block++;
DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, new_block_num ? TRACEMEM_MUX_BLK0_ONLY : TRACEMEM_MUX_BLK1_ONLY);
eri_write(ESP_APPTRACE_TRAX_CTRL_REG, ESP_APPTRACE_TRAX_BLOCK_ID(s_trace_buf.trax.state.in_block) |
host_connected | ESP_APPTRACE_TRAX_BLOCK_LEN(s_trace_buf.trax.state.markers[prev_block_num]));
_on_func_exit:
// exit ERI update critical section
eri_write(ESP_APPTRACE_TRAX_STAT_REG, 0x0);
asm volatile (
" .global __esp_apptrace_trax_eri_updated\n"
"__esp_apptrace_trax_eri_updated:\n"); // host will set bp here to resolve collision at streaming start
return res;
}
static esp_err_t esp_apptrace_trax_block_switch_waitus(uint32_t tmo)
{
int res;
esp_apptrace_tmo_t sleeping_tmo;
esp_apptrace_tmo_init(&sleeping_tmo, tmo);
while ((res = esp_apptrace_trax_block_switch()) != ESP_OK) {
res = esp_apptrace_tmo_check(&sleeping_tmo);
if (res != ESP_OK) {
break;
}
}
return res;
}
static uint8_t *esp_apptrace_trax_get_buffer(size_t size, uint32_t *tmo)
{
uint8_t *buf_ptr = NULL;
volatile uint32_t *cur_block_marker;
esp_apptrace_mem_block_t *cur_block;
int res = esp_apptrace_lock(tmo);
if (res != ESP_OK) {
return NULL;
}
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
esp_trace_buffer_wr_hitem_t *hi = NULL;
if (s_trace_buf.state.stats.wr.hist_wr < ESP_APPTRACE_BUF_HISTORY_DEPTH) {
hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[s_trace_buf.state.stats.wr.hist_wr++];
hi->hnd = *(uint32_t *)(buf + 0);
hi->ts = *(uint32_t *)(buf + sizeof(uint32_t));
hi->stamp = *(buf + 2 * sizeof(uint32_t));
hi->in_block = s_trace_buf.state.in_block;
hi->wr_err = 0;
hi->eri_len[0] = eri_read(ESP_APPTRACE_TRAX_CTRL_REG);
if (s_trace_buf.state.stats.wr.hist_wr == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
s_trace_buf.state.stats.wr.hist_wr = 0;
}
if (s_trace_buf.state.stats.wr.hist_wr == s_trace_buf.state.stats.wr.hist_rd) {
s_trace_buf.state.stats.wr.hist_rd++;
if (s_trace_buf.state.stats.wr.hist_rd == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
s_trace_buf.state.stats.wr.hist_rd = 0;
}
}
}
#endif
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
if (*cur_block_marker + size + sizeof(esp_tracedata_hdr_t) >= cur_block->sz) {
// flush data, we can not unlock apptrace until we have buffer for all user data
// otherwise other tasks/ISRs can get control and write their data between chunks of this data
res = esp_apptrace_trax_block_switch_waitus(/*size + sizeof(esp_tracedata_hdr_t),*/*tmo);
if (res != ESP_OK) {
if (esp_apptrace_unlock() != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
// there is a bug, should never get here
}
return NULL;
}
// we switched to new block, update TRAX block pointers
cur_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
cur_block = ESP_APPTRACE_TRAX_INBLOCK_GET();
}
buf_ptr = cur_block->start + *cur_block_marker;
((esp_tracedata_hdr_t *)buf_ptr)->block_sz = size;
((esp_tracedata_hdr_t *)buf_ptr)->wr_sz = 0;
*cur_block_marker += size + sizeof(esp_tracedata_hdr_t);
// now we can safely unlock apptrace to allow other tasks/ISRs to get other buffers and write their data
if (esp_apptrace_unlock() != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to unlock apptrace data!");
// there is a bug, should never get here
}
return buf_ptr + sizeof(esp_tracedata_hdr_t);
}
static esp_err_t esp_apptrace_trax_put_buffer(uint8_t *ptr, uint32_t *tmo)
{
int res = ESP_OK;
esp_tracedata_hdr_t *hdr = (esp_tracedata_hdr_t *)(ptr - sizeof(esp_tracedata_hdr_t));
// update written size
hdr->wr_sz = hdr->block_sz;
// TODO: mark block as busy in order not to re-use it for other tracing calls until it is completely written
// TODO: avoid potential situation when all memory is consumed by low prio tasks which can not complete writing due to
// higher prio tasks and the latter can not allocate buffers at all
// this is abnormal situation can be detected on host which will receive only uncompleted buffers
// workaround: use own memcpy which will kick-off dead tracing calls
return res;
}
static esp_err_t esp_apptrace_trax_flush(uint32_t min_sz, uint32_t tmo)
{
volatile uint32_t *in_block_marker;
int res = ESP_OK;
in_block_marker = ESP_APPTRACE_TRAX_INBLOCK_MARKER_PTR_GET();
if (*in_block_marker > min_sz) {
ESP_APPTRACE_LOGD("Wait until block switch for %u us", tmo);
res = esp_apptrace_trax_block_switch_waitus(/*0 query any size,*/tmo);
if (res != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to switch to another block");
return res;
}
ESP_APPTRACE_LOGD("Flushed last block %u bytes", *in_block_marker);
*in_block_marker = 0;
}
return res;
}
static esp_err_t esp_apptrace_trax_dest_init()
{
for (int i = 0; i < ESP_APPTRACE_TRAX_BLOCKS_NUM; i++) {
s_trace_buf.trax.blocks[i].start = (uint8_t *)s_trax_blocks[i];
s_trace_buf.trax.blocks[i].sz = ESP_APPTRACE_TRAX_BLOCK_SIZE;
s_trace_buf.trax.state.markers[i] = 0;
}
s_trace_buf.trax.state.in_block = ESP_APPTRACE_TRAX_INBLOCK_START;
DPORT_WRITE_PERI_REG(DPORT_PRO_TRACEMEM_ENA_REG, DPORT_PRO_TRACEMEM_ENA_M);
#if CONFIG_FREERTOS_UNICORE == 0
DPORT_WRITE_PERI_REG(DPORT_APP_TRACEMEM_ENA_REG, DPORT_APP_TRACEMEM_ENA_M);
#endif
// Expose block 1 to host, block 0 is current trace input buffer
DPORT_WRITE_PERI_REG(DPORT_TRACEMEM_MUX_MODE_REG, TRACEMEM_MUX_BLK1_ONLY);
return ESP_OK;
}
#endif
esp_err_t esp_apptrace_init()
{
int res;
if (!s_trace_buf.inited) {
res = esp_apptrace_log_init();
if (res != ESP_OK) {
ets_printf("%s: Failed to init log lock (%d)!", TAG, res);
return res;
}
//memset(&s_trace_buf, 0, sizeof(s_trace_buf));
res = esp_apptrace_lock_init(&s_trace_buf.lock);
if (res != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to init log lock (%d)!", res);
esp_apptrace_log_cleanup();
return res;
}
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
res = esp_apptrace_trax_dest_init();
if (res != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to init TRAX dest data (%d)!", res);
esp_apptrace_lock_cleanup();
esp_apptrace_log_cleanup();
return res;
}
#endif
}
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
// init TRAX on this CPU
esp_apptrace_trax_init();
#endif
s_trace_buf.inited |= 1 << xPortGetCoreID(); // global and this CPU-specific data are inited
return ESP_OK;
}
esp_err_t esp_apptrace_write(esp_apptrace_dest_t dest, void *data, size_t size, uint32_t user_tmo)
{
uint8_t *ptr = NULL;
uint32_t tmo = user_tmo;
//TODO: use ptr to HW transport iface struct
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
if (dest == ESP_APPTRACE_DEST_TRAX) {
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
#else
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
return ESP_ERR_NOT_SUPPORTED;
#endif
} else {
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
return ESP_ERR_NOT_SUPPORTED;
}
ptr = apptrace_get_buffer(size, &tmo);
if (ptr == NULL) {
//ESP_APPTRACE_LOGE("Failed to get buffer!");
return ESP_ERR_NO_MEM;
}
// actually can be suspended here by higher prio tasks/ISRs
//TODO: use own memcpy with dead trace calls kick-off algo, and tmo expiration check
memcpy(ptr, data, size);
// now indicate that this buffer is ready to be sent off to host
return apptrace_put_buffer(ptr, &tmo);
}
int esp_apptrace_vprintf_to(esp_apptrace_dest_t dest, uint32_t user_tmo, const char *fmt, va_list ap)
{
uint16_t nargs = 0;
uint8_t *pout, *p = (uint8_t *)fmt;
uint32_t tmo = user_tmo;
//TODO: use ptr to HW transport iface struct
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
if (dest == ESP_APPTRACE_DEST_TRAX) {
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
#else
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
return ESP_ERR_NOT_SUPPORTED;
#endif
} else {
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
return ESP_ERR_NOT_SUPPORTED;
}
// ESP_APPTRACE_LOGI("fmt %x", fmt);
while ((p = (uint8_t *)strchr((char *)p, '%')) && nargs < ESP_APPTRACE_MAX_VPRINTF_ARGS) {
p++;
if (*p != '%' && *p != 0) {
nargs++;
}
}
// ESP_APPTRACE_LOGI("nargs = %d", nargs);
if (p) {
ESP_APPTRACE_LOGE("Failed to store all printf args!");
}
pout = apptrace_get_buffer(1 + sizeof(char *) + nargs * sizeof(uint32_t), &tmo);
if (pout == NULL) {
ESP_APPTRACE_LOGE("Failed to get buffer!");
return -1;
}
p = pout;
*pout = nargs;
pout++;
*(const char **)pout = fmt;
pout += sizeof(char *);
while (nargs-- > 0) {
uint32_t arg = va_arg(ap, uint32_t);
*(uint32_t *)pout = arg;
pout += sizeof(uint32_t);
// ESP_APPTRACE_LOGI("arg %x", arg);
}
int ret = apptrace_put_buffer(p, &tmo);
if (ret != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to put printf buf (%d)!", ret);
return -1;
}
return (pout - p);
}
int esp_apptrace_vprintf(const char *fmt, va_list ap)
{
return esp_apptrace_vprintf_to(ESP_APPTRACE_DEST_TRAX, /*ESP_APPTRACE_TMO_INFINITE*/0, fmt, ap);
}
uint8_t *esp_apptrace_buffer_get(esp_apptrace_dest_t dest, size_t size, uint32_t user_tmo)
{
uint32_t tmo = user_tmo;
//TODO: use ptr to HW transport iface struct
uint8_t *(*apptrace_get_buffer)(size_t, uint32_t *);
if (dest == ESP_APPTRACE_DEST_TRAX) {
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_get_buffer = esp_apptrace_trax_get_buffer;
#else
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
return NULL;
#endif
} else {
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
return NULL;
}
return apptrace_get_buffer(size, &tmo);
}
esp_err_t esp_apptrace_buffer_put(esp_apptrace_dest_t dest, uint8_t *ptr, uint32_t user_tmo)
{
uint32_t tmo = user_tmo;
//TODO: use ptr to HW transport iface struct
esp_err_t (*apptrace_put_buffer)(uint8_t *, uint32_t *);
if (dest == ESP_APPTRACE_DEST_TRAX) {
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_put_buffer = esp_apptrace_trax_put_buffer;
#else
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
return ESP_ERR_NOT_SUPPORTED;
#endif
} else {
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
return ESP_ERR_NOT_SUPPORTED;
}
return apptrace_put_buffer(ptr, &tmo);
}
esp_err_t esp_apptrace_flush_nolock(esp_apptrace_dest_t dest, uint32_t min_sz, uint32_t tmo)
{
//TODO: use ptr to HW transport iface struct
esp_err_t (*apptrace_flush)(uint32_t, uint32_t);
if (dest == ESP_APPTRACE_DEST_TRAX) {
#if CONFIG_ESP32_APPTRACE_DEST_TRAX
apptrace_flush = esp_apptrace_trax_flush;
#else
ESP_APPTRACE_LOGE("Application tracing via TRAX is disabled in menuconfig!");
return ESP_ERR_NOT_SUPPORTED;
#endif
} else {
ESP_APPTRACE_LOGE("Trace destinations other then TRAX are not supported yet!");
return ESP_ERR_NOT_SUPPORTED;
}
return apptrace_flush(min_sz, tmo);
}
esp_err_t esp_apptrace_flush(esp_apptrace_dest_t dest, uint32_t tmo)
{
int res;
res = esp_apptrace_lock(&tmo);
if (res != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to lock apptrace data (%d)!", res);
return res;
}
res = esp_apptrace_flush_nolock(dest, 0, tmo);
if (res != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to fluch apptrace data (%d)!", res);
}
if (esp_apptrace_unlock() != ESP_OK) {
ESP_APPTRACE_LOGE("Failed to unlock apptrace data (%d)!", res);
}
return res;
}
#if ESP_APPTRACE_DEBUG_STATS_ENABLE == 1
void esp_apptrace_print_stats()
{
uint32_t i;
uint32_t tmo = ESP_APPTRACE_TMO_INFINITE;
esp_apptrace_lock(&tmo);
for (i = s_trace_buf.state.stats.wr.hist_rd; (i < s_trace_buf.state.stats.wr.hist_wr) && (i < ESP_APPTRACE_BUF_HISTORY_DEPTH); i++) {
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
}
if (i == ESP_APPTRACE_BUF_HISTORY_DEPTH) {
for (i = 0; i < s_trace_buf.state.stats.wr.hist_wr; i++) {
esp_trace_buffer_wr_hitem_t *hi = (esp_trace_buffer_wr_hitem_t *)&s_trace_buf.state.stats.wr.hist[i];
ESP_APPTRACE_LOGO("hist[%u] = {%x, %x}", i, hi->hnd, hi->ts);
}
}
esp_apptrace_unlock();
}
#endif
#endif