OVMS3-idf/components/bt/bluedroid/bta/av/bta_av_sbc.c

615 lines
22 KiB
C
Raw Normal View History

/******************************************************************************
*
* Copyright (C) 2004-2012 Broadcom Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/******************************************************************************
*
* This module contains utility functions for dealing with SBC data frames
* and codec capabilities.
*
******************************************************************************/
#include "bt_target.h"
#include "a2d_api.h"
#include "a2d_sbc.h"
#include "bta_av_sbc.h"
#include "utl.h"
#include "bt_utils.h"
#if defined(BTA_AV_INCLUDED) && (BTA_AV_INCLUDED == TRUE)
typedef int (tBTA_AV_SBC_ACT)(void *p_src, void *p_dst,
UINT32 src_samples, UINT32 dst_samples,
UINT32 *p_ret);
typedef struct {
INT32 cur_pos; /* current position */
UINT32 src_sps; /* samples per second (source audio data) */
UINT32 dst_sps; /* samples per second (converted audio data) */
tBTA_AV_SBC_ACT *p_act; /* the action function to do the conversion */
UINT16 bits; /* number of bits per pcm sample */
UINT16 n_channels; /* number of channels (i.e. mono(1), stereo(2)...) */
INT16 worker1;
INT16 worker2;
UINT8 div;
} tBTA_AV_SBC_UPS_CB;
tBTA_AV_SBC_UPS_CB bta_av_sbc_ups_cb;
/*******************************************************************************
**
** Function bta_av_sbc_init_up_sample
**
** Description initialize the up sample
**
** src_sps: samples per second (source audio data)
** dst_sps: samples per second (converted audio data)
** bits: number of bits per pcm sample
** n_channels: number of channels (i.e. mono(1), stereo(2)...)
**
** Returns none
**
*******************************************************************************/
void bta_av_sbc_init_up_sample (UINT32 src_sps, UINT32 dst_sps, UINT16 bits, UINT16 n_channels)
{
bta_av_sbc_ups_cb.cur_pos = -1;
bta_av_sbc_ups_cb.src_sps = src_sps;
bta_av_sbc_ups_cb.dst_sps = dst_sps;
bta_av_sbc_ups_cb.bits = bits;
bta_av_sbc_ups_cb.n_channels = n_channels;
if (n_channels == 1) {
/* mono */
if (bits == 8) {
bta_av_sbc_ups_cb.p_act = bta_av_sbc_up_sample_8m;
bta_av_sbc_ups_cb.div = 1;
} else {
bta_av_sbc_ups_cb.p_act = bta_av_sbc_up_sample_16m;
bta_av_sbc_ups_cb.div = 2;
}
} else {
/* stereo */
if (bits == 8) {
bta_av_sbc_ups_cb.p_act = bta_av_sbc_up_sample_8s;
bta_av_sbc_ups_cb.div = 2;
} else {
bta_av_sbc_ups_cb.p_act = bta_av_sbc_up_sample_16s;
bta_av_sbc_ups_cb.div = 4;
}
}
}
/*******************************************************************************
**
** Function bta_av_sbc_up_sample
**
** Description Given the source (p_src) audio data and
** source speed (src_sps, samples per second),
** This function converts it to audio data in the desired format
**
** p_src: the data buffer that holds the source audio data
** p_dst: the data buffer to hold the converted audio data
** src_samples: The number of source samples (number of bytes)
** dst_samples: The size of p_dst (number of bytes)
**
** Note: An AE reported an issue with this function.
** When called with bta_av_sbc_up_sample(src, uint8_array_dst..)
** the byte before uint8_array_dst may get overwritten.
** Using uint16_array_dst avoids the problem.
** This issue is related to endian-ness and is hard to resolve
** in a generic manner.
** **************** Please use uint16 array as dst.
**
** Returns The number of bytes used in p_dst
** The number of bytes used in p_src (in *p_ret)
**
*******************************************************************************/
int bta_av_sbc_up_sample (void *p_src, void *p_dst,
UINT32 src_samples, UINT32 dst_samples,
UINT32 *p_ret)
{
UINT32 src;
UINT32 dst;
if (bta_av_sbc_ups_cb.p_act) {
src = src_samples / bta_av_sbc_ups_cb.div;
dst = dst_samples / bta_av_sbc_ups_cb.div;
return (*bta_av_sbc_ups_cb.p_act)(p_src, p_dst, src, dst, p_ret);
} else {
*p_ret = 0;
return 0;
}
}
/*******************************************************************************
**
** Function bta_av_sbc_up_sample_16s (16bits-stereo)
**
** Description Given the source (p_src) audio data and
** source speed (src_sps, samples per second),
** This function converts it to audio data in the desired format
**
** p_src: the data buffer that holds the source audio data
** p_dst: the data buffer to hold the converted audio data
** src_samples: The number of source samples (in uint of 4 bytes)
** dst_samples: The size of p_dst (in uint of 4 bytes)
**
** Returns The number of bytes used in p_dst
** The number of bytes used in p_src (in *p_ret)
**
*******************************************************************************/
int bta_av_sbc_up_sample_16s (void *p_src, void *p_dst,
UINT32 src_samples, UINT32 dst_samples,
UINT32 *p_ret)
{
INT16 *p_src_tmp = (INT16 *)p_src;
INT16 *p_dst_tmp = (INT16 *)p_dst;
INT16 *p_worker1 = &bta_av_sbc_ups_cb.worker1;
INT16 *p_worker2 = &bta_av_sbc_ups_cb.worker2;
UINT32 src_sps = bta_av_sbc_ups_cb.src_sps;
UINT32 dst_sps = bta_av_sbc_ups_cb.dst_sps;
while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples) {
*p_dst_tmp++ = *p_worker1;
*p_dst_tmp++ = *p_worker2;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples--;
}
bta_av_sbc_ups_cb.cur_pos = dst_sps;
while (src_samples-- && dst_samples) {
*p_worker1 = *p_src_tmp++;
*p_worker2 = *p_src_tmp++;
do {
*p_dst_tmp++ = *p_worker1;
*p_dst_tmp++ = *p_worker2;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples--;
} while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples);
bta_av_sbc_ups_cb.cur_pos += dst_sps;
}
if (bta_av_sbc_ups_cb.cur_pos == (INT32)dst_sps) {
bta_av_sbc_ups_cb.cur_pos = 0;
}
*p_ret = ((char *)p_src_tmp - (char *)p_src);
return ((char *)p_dst_tmp - (char *)p_dst);
}
/*******************************************************************************
**
** Function bta_av_sbc_up_sample_16m (16bits-mono)
**
** Description Given the source (p_src) audio data and
** source speed (src_sps, samples per second),
** This function converts it to audio data in the desired format
**
** p_src: the data buffer that holds the source audio data
** p_dst: the data buffer to hold the converted audio data
** src_samples: The number of source samples (in uint of 2 bytes)
** dst_samples: The size of p_dst (in uint of 2 bytes)
**
** Returns The number of bytes used in p_dst
** The number of bytes used in p_src (in *p_ret)
**
*******************************************************************************/
int bta_av_sbc_up_sample_16m (void *p_src, void *p_dst,
UINT32 src_samples, UINT32 dst_samples,
UINT32 *p_ret)
{
INT16 *p_src_tmp = (INT16 *)p_src;
INT16 *p_dst_tmp = (INT16 *)p_dst;
INT16 *p_worker = &bta_av_sbc_ups_cb.worker1;
UINT32 src_sps = bta_av_sbc_ups_cb.src_sps;
UINT32 dst_sps = bta_av_sbc_ups_cb.dst_sps;
while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples) {
*p_dst_tmp++ = *p_worker;
*p_dst_tmp++ = *p_worker;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples--;
dst_samples--;
}
bta_av_sbc_ups_cb.cur_pos = dst_sps;
while (src_samples-- && dst_samples) {
*p_worker = *p_src_tmp++;
do {
*p_dst_tmp++ = *p_worker;
*p_dst_tmp++ = *p_worker;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples--;
dst_samples--;
} while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples);
bta_av_sbc_ups_cb.cur_pos += dst_sps;
}
if (bta_av_sbc_ups_cb.cur_pos == (INT32)dst_sps) {
bta_av_sbc_ups_cb.cur_pos = 0;
}
*p_ret = ((char *)p_src_tmp - (char *)p_src);
return ((char *)p_dst_tmp - (char *)p_dst);
}
/*******************************************************************************
**
** Function bta_av_sbc_up_sample_8s (8bits-stereo)
**
** Description Given the source (p_src) audio data and
** source speed (src_sps, samples per second),
** This function converts it to audio data in the desired format
**
** p_src: the data buffer that holds the source audio data
** p_dst: the data buffer to hold the converted audio data
** src_samples: The number of source samples (in uint of 2 bytes)
** dst_samples: The size of p_dst (in uint of 2 bytes)
**
** Returns The number of bytes used in p_dst
** The number of bytes used in p_src (in *p_ret)
**
*******************************************************************************/
int bta_av_sbc_up_sample_8s (void *p_src, void *p_dst,
UINT32 src_samples, UINT32 dst_samples,
UINT32 *p_ret)
{
UINT8 *p_src_tmp = (UINT8 *)p_src;
INT16 *p_dst_tmp = (INT16 *)p_dst;
INT16 *p_worker1 = &bta_av_sbc_ups_cb.worker1;
INT16 *p_worker2 = &bta_av_sbc_ups_cb.worker2;
UINT32 src_sps = bta_av_sbc_ups_cb.src_sps;
UINT32 dst_sps = bta_av_sbc_ups_cb.dst_sps;
while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples) {
*p_dst_tmp++ = *p_worker1;
*p_dst_tmp++ = *p_worker2;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples--;
dst_samples--;
}
bta_av_sbc_ups_cb.cur_pos = dst_sps;
while (src_samples -- && dst_samples) {
*p_worker1 = *(UINT8 *)p_src_tmp++;
*p_worker1 -= 0x80;
*p_worker1 <<= 8;
*p_worker2 = *(UINT8 *)p_src_tmp++;
*p_worker2 -= 0x80;
*p_worker2 <<= 8;
do {
*p_dst_tmp++ = *p_worker1;
*p_dst_tmp++ = *p_worker2;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples--;
dst_samples--;
} while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples);
bta_av_sbc_ups_cb.cur_pos += dst_sps;
}
if (bta_av_sbc_ups_cb.cur_pos == (INT32)dst_sps) {
bta_av_sbc_ups_cb.cur_pos = 0;
}
*p_ret = ((char *)p_src_tmp - (char *)p_src);
return ((char *)p_dst_tmp - (char *)p_dst);
}
/*******************************************************************************
**
** Function bta_av_sbc_up_sample_8m (8bits-mono)
**
** Description Given the source (p_src) audio data and
** source speed (src_sps, samples per second),
** This function converts it to audio data in the desired format
**
** p_src: the data buffer that holds the source audio data
** p_dst: the data buffer to hold the converted audio data
** src_samples: The number of source samples (number of bytes)
** dst_samples: The size of p_dst (number of bytes)
**
** Returns The number of bytes used in p_dst
** The number of bytes used in p_src (in *p_ret)
**
*******************************************************************************/
int bta_av_sbc_up_sample_8m (void *p_src, void *p_dst,
UINT32 src_samples, UINT32 dst_samples,
UINT32 *p_ret)
{
UINT8 *p_src_tmp = (UINT8 *)p_src;
INT16 *p_dst_tmp = (INT16 *)p_dst;
INT16 *p_worker = &bta_av_sbc_ups_cb.worker1;
UINT32 src_sps = bta_av_sbc_ups_cb.src_sps;
UINT32 dst_sps = bta_av_sbc_ups_cb.dst_sps;
while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples) {
*p_dst_tmp++ = *p_worker;
*p_dst_tmp++ = *p_worker;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples -= 4;
}
bta_av_sbc_ups_cb.cur_pos = dst_sps;
while (src_samples-- && dst_samples) {
*p_worker = *(UINT8 *)p_src_tmp++;
*p_worker -= 0x80;
*p_worker <<= 8;
do {
*p_dst_tmp++ = *p_worker;
*p_dst_tmp++ = *p_worker;
bta_av_sbc_ups_cb.cur_pos -= src_sps;
dst_samples -= 4;
} while (bta_av_sbc_ups_cb.cur_pos > 0 && dst_samples);
bta_av_sbc_ups_cb.cur_pos += dst_sps;
}
if (bta_av_sbc_ups_cb.cur_pos == (INT32)dst_sps) {
bta_av_sbc_ups_cb.cur_pos = 0;
}
*p_ret = ((char *)p_src_tmp - (char *)p_src);
return ((char *)p_dst_tmp - (char *)p_dst);
}
/*******************************************************************************
**
** Function bta_av_sbc_cfg_for_cap
**
** Description Determine the preferred SBC codec configuration for the
** given codec capabilities. The function is passed the
** preferred codec configuration and the peer codec
** capabilities for the stream. The function attempts to
** match the preferred capabilities with the configuration
** as best it can. The resulting codec configuration is
** returned in the same memory used for the capabilities.
**
** Returns 0 if ok, nonzero if error.
** Codec configuration in p_cap.
**
*******************************************************************************/
UINT8 bta_av_sbc_cfg_for_cap(UINT8 *p_peer, tA2D_SBC_CIE *p_cap, tA2D_SBC_CIE *p_pref)
{
UINT8 status = A2D_SUCCESS;
tA2D_SBC_CIE peer_cie;
UNUSED(p_cap);
/* parse peer capabilities */
if ((status = A2D_ParsSbcInfo(&peer_cie, p_peer, TRUE)) != 0) {
return status;
}
/* Check if the peer supports our channel mode */
if (peer_cie.ch_mode & p_pref->ch_mode) {
peer_cie.ch_mode = p_pref->ch_mode;
} else {
APPL_TRACE_ERROR("bta_av_sbc_cfg_for_cap: ch_mode(0x%02X) not supported", p_pref->ch_mode);
return A2D_FAIL;
}
/* Check if the peer supports our sampling freq */
if (peer_cie.samp_freq & p_pref->samp_freq) {
peer_cie.samp_freq = p_pref->samp_freq;
} else {
APPL_TRACE_ERROR("bta_av_sbc_cfg_for_cap: samp_freq(0x%02X) not supported", p_pref->samp_freq);
return A2D_FAIL;
}
/* Check if the peer supports our block len */
if (peer_cie.block_len & p_pref->block_len) {
peer_cie.block_len = p_pref->block_len;
} else {
APPL_TRACE_ERROR("bta_av_sbc_cfg_for_cap: block_len(0x%02X) not supported", p_pref->block_len);
return A2D_FAIL;
}
/* Check if the peer supports our num subbands */
if (peer_cie.num_subbands & p_pref->num_subbands) {
peer_cie.num_subbands = p_pref->num_subbands;
} else {
APPL_TRACE_ERROR("bta_av_sbc_cfg_for_cap: num_subbands(0x%02X) not supported", p_pref->num_subbands);
return A2D_FAIL;
}
/* Check if the peer supports our alloc method */
if (peer_cie.alloc_mthd & p_pref->alloc_mthd) {
peer_cie.alloc_mthd = p_pref->alloc_mthd;
} else {
APPL_TRACE_ERROR("bta_av_sbc_cfg_for_cap: alloc_mthd(0x%02X) not supported", p_pref->alloc_mthd);
return A2D_FAIL;
}
/* max bitpool */
if (p_pref->max_bitpool != 0 && p_pref->max_bitpool < peer_cie.max_bitpool) {
peer_cie.max_bitpool = p_pref->max_bitpool;
}
/* min bitpool */
if (p_pref->min_bitpool != 0 && p_pref->min_bitpool > peer_cie.min_bitpool) {
peer_cie.min_bitpool = p_pref->min_bitpool;
}
if (status == A2D_SUCCESS) {
/* build configuration */
A2D_BldSbcInfo(A2D_MEDIA_TYPE_AUDIO, &peer_cie, p_peer);
}
return status;
}
/*******************************************************************************
**
** Function bta_av_sbc_cfg_matches_cap
**
** Description This function checks whether an SBC codec configuration
** matched with capabilities. Here we check subset.
**
** Returns 0 if ok, nonzero if error.
**
*******************************************************************************/
UINT8 bta_av_sbc_cfg_matches_cap(UINT8 *p_cfg, tA2D_SBC_CIE *p_cap)
{
UINT8 status = 0;
tA2D_SBC_CIE cfg_cie;
/* parse configuration */
if ((status = A2D_ParsSbcInfo(&cfg_cie, p_cfg, TRUE)) != 0) {
APPL_TRACE_ERROR(" bta_av_sbc_cfg_matches_cap Parsing Failed %d", status);
return status;
}
/* verify that each parameter is in range */
APPL_TRACE_DEBUG(" FREQ peer: 0%x, capability 0%x", cfg_cie.samp_freq, p_cap->samp_freq);
APPL_TRACE_DEBUG(" CH_MODE peer: 0%x, capability 0%x", cfg_cie.ch_mode, p_cap->ch_mode);
APPL_TRACE_DEBUG(" BLOCK_LEN peer: 0%x, capability 0%x", cfg_cie.block_len, p_cap->block_len);
APPL_TRACE_DEBUG(" SUB_BAND peer: 0%x, capability 0%x", cfg_cie.num_subbands, p_cap->num_subbands);
APPL_TRACE_DEBUG(" ALLOC_MTHD peer: 0%x, capability 0%x", cfg_cie.alloc_mthd, p_cap->alloc_mthd);
APPL_TRACE_DEBUG(" MAX_BitPool peer: 0%x, capability 0%x", cfg_cie.max_bitpool, p_cap->max_bitpool);
APPL_TRACE_DEBUG(" Min_bitpool peer: 0%x, capability 0%x", cfg_cie.min_bitpool, p_cap->min_bitpool);
/* sampling frequency */
if ((cfg_cie.samp_freq & p_cap->samp_freq) == 0) {
status = A2D_NS_SAMP_FREQ;
}
/* channel mode */
else if ((cfg_cie.ch_mode & p_cap->ch_mode) == 0) {
status = A2D_NS_CH_MODE;
}
/* block length */
else if ((cfg_cie.block_len & p_cap->block_len) == 0) {
status = A2D_BAD_BLOCK_LEN;
}
/* subbands */
else if ((cfg_cie.num_subbands & p_cap->num_subbands) == 0) {
status = A2D_NS_SUBBANDS;
}
/* allocation method */
else if ((cfg_cie.alloc_mthd & p_cap->alloc_mthd) == 0) {
status = A2D_NS_ALLOC_MTHD;
}
/* max bitpool */
else if (cfg_cie.max_bitpool > p_cap->max_bitpool) {
status = A2D_NS_MAX_BITPOOL;
}
/* min bitpool */
else if (cfg_cie.min_bitpool < p_cap->min_bitpool) {
status = A2D_NS_MIN_BITPOOL;
}
return status;
}
/*******************************************************************************
**
** Function bta_av_sbc_cfg_in_cap
**
** Description This function checks whether an SBC codec configuration
** is allowable for the given codec capabilities.
**
** Returns 0 if ok, nonzero if error.
**
*******************************************************************************/
UINT8 bta_av_sbc_cfg_in_cap(UINT8 *p_cfg, tA2D_SBC_CIE *p_cap)
{
UINT8 status = 0;
tA2D_SBC_CIE cfg_cie;
/* parse configuration */
if ((status = A2D_ParsSbcInfo(&cfg_cie, p_cfg, FALSE)) != 0) {
return status;
}
/* verify that each parameter is in range */
/* sampling frequency */
if ((cfg_cie.samp_freq & p_cap->samp_freq) == 0) {
status = A2D_NS_SAMP_FREQ;
}
/* channel mode */
else if ((cfg_cie.ch_mode & p_cap->ch_mode) == 0) {
status = A2D_NS_CH_MODE;
}
/* block length */
else if ((cfg_cie.block_len & p_cap->block_len) == 0) {
status = A2D_BAD_BLOCK_LEN;
}
/* subbands */
else if ((cfg_cie.num_subbands & p_cap->num_subbands) == 0) {
status = A2D_NS_SUBBANDS;
}
/* allocation method */
else if ((cfg_cie.alloc_mthd & p_cap->alloc_mthd) == 0) {
status = A2D_NS_ALLOC_MTHD;
}
/* max bitpool */
else if (cfg_cie.max_bitpool > p_cap->max_bitpool) {
status = A2D_NS_MAX_BITPOOL;
}
/* min bitpool */
else if (cfg_cie.min_bitpool < p_cap->min_bitpool) {
status = A2D_NS_MIN_BITPOOL;
}
return status;
}
/*******************************************************************************
**
** Function bta_av_sbc_bld_hdr
**
** Description This function builds the packet header for MPF1.
**
** Returns void
**
*******************************************************************************/
void bta_av_sbc_bld_hdr(BT_HDR *p_buf, UINT16 fr_per_pkt)
{
UINT8 *p;
p_buf->offset -= BTA_AV_SBC_HDR_SIZE;
p = (UINT8 *) (p_buf + 1) + p_buf->offset;
p_buf->len += BTA_AV_SBC_HDR_SIZE;
A2D_BldSbcMplHdr(p, FALSE, FALSE, FALSE, (UINT8) fr_per_pkt);
}
#endif /* #if defined(BTA_AV_INCLUDED) && (BTA_AV_INCLUDED == TRUE) */