OVMS3-idf/components/bt/esp_ble_mesh/mesh_core/include/health_srv.h

94 lines
2.6 KiB
C
Raw Normal View History

component/ble_mesh: ESP BLE Mesh release 1. BLE Mesh Core * Provisioning: Node Role * Advertising and GATT bearer * Authentication OOB * Provisioning: Provisioner Role * Advertising and GATT bearer * Authentication OOB * Networking * Relay * Segmentation and Reassembly * Key Refresh * IV Update * Proxy Support * Multiple Client Models Run Simultaneously * Support multiple client models send packets to different nodes simultaneously * No blocking between client model and server * NVS Storage * Store Provisioning Data of BLE Mesh Nodes in Flash 2. BLE Mesh Applications * BLE Mesh Node & Provisioner * Node Example * Provisioner Example * Node + Generic OnOff Client Example * Fast Provisioning * Vendor Fast Prov Server Model * Vendor Fast Prov Client Model * Examples * Wi-Fi & BLE Mesh Coexistence * Example * BLE Mesh Console Commands * Example 3. BLE Mesh Models * Foundation Models * Configuration Server Model * Configuration Client Model * Health Server Model * Health Client Model * Generic Client Models * Generic OnOff Client * Generic Level Client * Generic Location Client * Generic Default Transition Timer Client * Generic Power OnOff Client * Generic Power Level Client * Generic Battery Client * Generic Property Client * Generic Server Models * Generic OnOff Server (Example) * Lighting Client Models * Light Lightness Client * Light CTL Client * Light HSL Client * Light xyL Client * Light LC Client * Sensor Client Model * Sensor Client * Time and Scenes Client Models * Time Client * Scene Client * Scheduler Client
2019-01-07 07:16:47 +00:00
/** @file
* @brief Bluetooth Mesh Health Server Model APIs.
*/
/*
* Copyright (c) 2017 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef _BLE_MESH_HEALTH_SRV_H_
#define _BLE_MESH_HEALTH_SRV_H_
#include "mesh_access.h"
#include "mesh_kernel.h"
/**
* @brief Bluetooth Mesh Health Server Model
* @defgroup bt_mesh_health_srv Bluetooth Mesh Health Server Model
* @ingroup bt_mesh
* @{
*/
struct bt_mesh_health_srv_cb {
/* Fetch current faults */
int (*fault_get_cur)(struct bt_mesh_model *model, u8_t *test_id,
u16_t *company_id, u8_t *faults,
u8_t *fault_count);
/* Fetch registered faults */
int (*fault_get_reg)(struct bt_mesh_model *model, u16_t company_id,
u8_t *test_id, u8_t *faults,
u8_t *fault_count);
/* Clear registered faults */
int (*fault_clear)(struct bt_mesh_model *model, u16_t company_id);
/* Run a specific test */
int (*fault_test)(struct bt_mesh_model *model, u8_t test_id,
u16_t company_id);
/* Attention on */
void (*attn_on)(struct bt_mesh_model *model);
/* Attention off */
void (*attn_off)(struct bt_mesh_model *model);
};
/** @def BLE_MESH_HEALTH_PUB_DEFINE
*
* A helper to define a health publication context
*
* @param _name Name given to the publication context variable.
* @param _max_faults Maximum number of faults the element can have.
*/
#define BLE_MESH_HEALTH_PUB_DEFINE(_name, _max_faults) \
BLE_MESH_MODEL_PUB_DEFINE(_name, NULL, (1 + 3 + (_max_faults)))
/** Mesh Health Server Model Context */
struct bt_mesh_health_srv {
struct bt_mesh_model *model;
/* Optional callback struct */
const struct bt_mesh_health_srv_cb *cb;
/* Attention Timer state */
struct k_delayed_work attn_timer;
};
extern const struct bt_mesh_model_op bt_mesh_health_srv_op[];
/** @def BLE_MESH_MODEL_HEALTH_SRV
*
* Define a new health server model. Note that this API needs to be
* repeated for each element which the application wants to have a
* health server model on. Each instance also needs a unique
* bt_mesh_health_srv and bt_mesh_model_pub context.
*
* @param srv Pointer to a unique struct bt_mesh_health_srv.
* @param pub Pointer to a unique struct bt_mesh_model_pub.
*
* @return New mesh model instance.
*/
#define BLE_MESH_MODEL_HEALTH_SRV(srv, pub) \
BLE_MESH_MODEL(BLE_MESH_MODEL_ID_HEALTH_SRV, \
bt_mesh_health_srv_op, pub, srv)
int bt_mesh_fault_update(struct bt_mesh_elem *elem);
/**
* @}
*/
#endif /* __BLE_MESH_HEALTH_SRV_H */