OVMS3-idf/components/esp32/hwcrypto/aes.c

627 lines
18 KiB
C
Raw Normal View History

/**
* \brief AES block cipher, ESP32 hardware accelerated version
* Based on mbedTLS FIPS-197 compliant version.
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Additions Copyright (C) 2016-2017, Espressif Systems (Shanghai) PTE Ltd
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
*
* http://csrc.nist.gov/encryption/aes/rijndael/Rijndael.pdf
* http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
*/
#include <string.h>
#include "mbedtls/aes.h"
#include "hwcrypto/aes.h"
#include "soc/dport_reg.h"
#include "soc/hwcrypto_reg.h"
#include <sys/lock.h>
#include <freertos/FreeRTOS.h>
#include "soc/cpu.h"
#include <stdio.h>
#include "driver/periph_ctrl.h"
/* AES uses a spinlock mux not a lock as the underlying block operation
only takes 208 cycles (to write key & compute block), +600 cycles
for DPORT protection but +3400 cycles again if you use a full sized lock.
For CBC, CFB, etc. this may mean that interrupts are disabled for a longer
period of time for bigger lengths. However at the moment this has to happen
anyway due to DPORT protection...
*/
static portMUX_TYPE aes_spinlock = portMUX_INITIALIZER_UNLOCKED;
void esp_aes_acquire_hardware( void )
{
portENTER_CRITICAL(&aes_spinlock);
/* Enable AES hardware */
periph_module_enable(PERIPH_AES_MODULE);
}
void esp_aes_release_hardware( void )
{
/* Disable AES hardware */
periph_module_disable(PERIPH_AES_MODULE);
portEXIT_CRITICAL(&aes_spinlock);
}
void esp_aes_init( esp_aes_context *ctx )
{
bzero( ctx, sizeof( esp_aes_context ) );
}
void esp_aes_free( esp_aes_context *ctx )
{
if ( ctx == NULL ) {
return;
}
bzero( ctx, sizeof( esp_aes_context ) );
}
/*
* AES key schedule (same for encryption or decryption, as hardware handles schedule)
*
*/
int esp_aes_setkey( esp_aes_context *ctx, const unsigned char *key,
unsigned int keybits )
{
if (keybits != 128 && keybits != 192 && keybits != 256) {
return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
}
ctx->key_bytes = keybits / 8;
memcpy(ctx->key, key, ctx->key_bytes);
return 0;
}
/*
* Helper function to copy key from esp_aes_context buffer
* to hardware key registers.
*
* Call only while holding esp_aes_acquire_hardware().
*/
static inline void esp_aes_setkey_hardware( esp_aes_context *ctx, int mode)
{
const uint32_t MODE_DECRYPT_BIT = 4;
unsigned mode_reg_base = (mode == ESP_AES_ENCRYPT) ? 0 : MODE_DECRYPT_BIT;
for (int i = 0; i < ctx->key_bytes/4; ++i) {
DPORT_REG_WRITE(AES_KEY_BASE + i * 4, *(((uint32_t *)ctx->key) + i));
}
DPORT_REG_WRITE(AES_MODE_REG, mode_reg_base + ((ctx->key_bytes / 8) - 2));
}
/* Run a single 16 byte block of AES, using the hardware engine.
*
* Call only while holding esp_aes_acquire_hardware().
*/
static inline void esp_aes_block(const void *input, void *output)
{
const uint32_t *input_words = (const uint32_t *)input;
uint32_t *output_words = (uint32_t *)output;
uint32_t *mem_block = (uint32_t *)AES_TEXT_BASE;
for(int i = 0; i < 4; i++) {
mem_block[i] = input_words[i];
}
DPORT_REG_WRITE(AES_START_REG, 1);
while (DPORT_REG_READ(AES_IDLE_REG) != 1) { }
esp_dport_access_read_buffer(output_words, (uint32_t)&mem_block[0], 4);
}
/*
* AES-ECB block encryption
*/
int esp_internal_aes_encrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
esp_aes_block(input, output);
esp_aes_release_hardware();
return 0;
}
void esp_aes_encrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_internal_aes_encrypt(ctx, input, output);
}
/*
* AES-ECB block decryption
*/
int esp_internal_aes_decrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, ESP_AES_DECRYPT);
esp_aes_block(input, output);
esp_aes_release_hardware();
return 0;
}
void esp_aes_decrypt( esp_aes_context *ctx,
const unsigned char input[16],
unsigned char output[16] )
{
esp_internal_aes_decrypt(ctx, input, output);
}
/*
* AES-ECB block encryption/decryption
*/
int esp_aes_crypt_ecb( esp_aes_context *ctx,
int mode,
const unsigned char input[16],
unsigned char output[16] )
{
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, mode);
esp_aes_block(input, output);
esp_aes_release_hardware();
return 0;
}
/*
* AES-CBC buffer encryption/decryption
*/
int esp_aes_crypt_cbc( esp_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int i;
uint32_t *output_words = (uint32_t *)output;
const uint32_t *input_words = (const uint32_t *)input;
uint32_t *iv_words = (uint32_t *)iv;
unsigned char temp[16];
if ( length % 16 ) {
return ( ERR_ESP_AES_INVALID_INPUT_LENGTH );
}
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, mode);
if ( mode == ESP_AES_DECRYPT ) {
while ( length > 0 ) {
memcpy(temp, input_words, 16);
esp_aes_block(input_words, output_words);
for ( i = 0; i < 4; i++ ) {
output_words[i] = output_words[i] ^ iv_words[i];
}
memcpy( iv_words, temp, 16 );
input_words += 4;
output_words += 4;
length -= 16;
}
} else { // ESP_AES_ENCRYPT
while ( length > 0 ) {
for ( i = 0; i < 4; i++ ) {
output_words[i] = input_words[i] ^ iv_words[i];
}
esp_aes_block(output_words, output_words);
memcpy( iv_words, output_words, 16 );
input_words += 4;
output_words += 4;
length -= 16;
}
}
esp_aes_release_hardware();
return 0;
}
/*
* AES-CFB128 buffer encryption/decryption
*/
int esp_aes_crypt_cfb128( esp_aes_context *ctx,
int mode,
size_t length,
size_t *iv_off,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
int c;
size_t n = *iv_off;
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
if ( mode == ESP_AES_DECRYPT ) {
while ( length-- ) {
if ( n == 0 ) {
esp_aes_block(iv, iv );
}
c = *input++;
*output++ = (unsigned char)( c ^ iv[n] );
iv[n] = (unsigned char) c;
n = ( n + 1 ) & 0x0F;
}
} else {
while ( length-- ) {
if ( n == 0 ) {
esp_aes_block(iv, iv );
}
iv[n] = *output++ = (unsigned char)( iv[n] ^ *input++ );
n = ( n + 1 ) & 0x0F;
}
}
*iv_off = n;
esp_aes_release_hardware();
return 0;
}
/*
* AES-CFB8 buffer encryption/decryption
*/
int esp_aes_crypt_cfb8( esp_aes_context *ctx,
int mode,
size_t length,
unsigned char iv[16],
const unsigned char *input,
unsigned char *output )
{
unsigned char c;
unsigned char ov[17];
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
while ( length-- ) {
memcpy( ov, iv, 16 );
esp_aes_block(iv, iv);
if ( mode == ESP_AES_DECRYPT ) {
ov[16] = *input;
}
c = *output++ = (unsigned char)( iv[0] ^ *input++ );
if ( mode == ESP_AES_ENCRYPT ) {
ov[16] = c;
}
memcpy( iv, ov + 1, 16 );
}
esp_aes_release_hardware();
return 0;
}
/*
* AES-CTR buffer encryption/decryption
*/
int esp_aes_crypt_ctr( esp_aes_context *ctx,
size_t length,
size_t *nc_off,
unsigned char nonce_counter[16],
unsigned char stream_block[16],
const unsigned char *input,
unsigned char *output )
{
int c, i;
size_t n = *nc_off;
esp_aes_acquire_hardware();
esp_aes_setkey_hardware(ctx, ESP_AES_ENCRYPT);
while ( length-- ) {
if ( n == 0 ) {
esp_aes_block(nonce_counter, stream_block);
for ( i = 16; i > 0; i-- )
if ( ++nonce_counter[i - 1] != 0 ) {
break;
}
}
c = *input++;
*output++ = (unsigned char)( c ^ stream_block[n] );
n = ( n + 1 ) & 0x0F;
}
*nc_off = n;
esp_aes_release_hardware();
return 0;
}
/* Below XTS implementation is copied aes.c of mbedtls library.
* When MBEDTLS_AES_ALT is defined mbedtls expects alternate
* definition of XTS functions to be available. Even if this
* could have been avoided, it is done for consistency reason.
*/
void esp_aes_xts_init( esp_aes_xts_context *ctx )
{
esp_aes_init( &ctx->crypt );
esp_aes_init( &ctx->tweak );
}
void esp_aes_xts_free( esp_aes_xts_context *ctx )
{
esp_aes_free( &ctx->crypt );
esp_aes_free( &ctx->tweak );
}
static int esp_aes_xts_decode_keys( const unsigned char *key,
unsigned int keybits,
const unsigned char **key1,
unsigned int *key1bits,
const unsigned char **key2,
unsigned int *key2bits )
{
const unsigned int half_keybits = keybits / 2;
const unsigned int half_keybytes = half_keybits / 8;
switch( keybits )
{
case 256: break;
case 512: break;
default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH );
}
*key1bits = half_keybits;
*key2bits = half_keybits;
*key1 = &key[0];
*key2 = &key[half_keybytes];
return 0;
}
int esp_aes_xts_setkey_enc( mbedtls_aes_xts_context *ctx,
const unsigned char *key,
unsigned int keybits)
{
int ret;
const unsigned char *key1, *key2;
unsigned int key1bits, key2bits;
ret = esp_aes_xts_decode_keys( key, keybits, &key1, &key1bits,
&key2, &key2bits );
if( ret != 0 )
return( ret );
/* Set the tweak key. Always set tweak key for the encryption mode. */
ret = esp_aes_setkey( &ctx->tweak, key2, key2bits );
if( ret != 0 )
return( ret );
/* Set crypt key for encryption. */
return esp_aes_setkey( &ctx->crypt, key1, key1bits );
}
int esp_aes_xts_setkey_dec( mbedtls_aes_xts_context *ctx,
const unsigned char *key,
unsigned int keybits)
{
int ret;
const unsigned char *key1, *key2;
unsigned int key1bits, key2bits;
ret = esp_aes_xts_decode_keys( key, keybits, &key1, &key1bits,
&key2, &key2bits );
if( ret != 0 )
return( ret );
/* Set the tweak key. Always set tweak key for encryption. */
ret = esp_aes_setkey( &ctx->tweak, key2, key2bits );
if( ret != 0 )
return( ret );
/* Set crypt key for decryption. */
return esp_aes_setkey( &ctx->crypt, key1, key1bits );
}
/* Endianess with 64 bits values */
#ifndef GET_UINT64_LE
#define GET_UINT64_LE(n,b,i) \
{ \
(n) = ( (uint64_t) (b)[(i) + 7] << 56 ) \
| ( (uint64_t) (b)[(i) + 6] << 48 ) \
| ( (uint64_t) (b)[(i) + 5] << 40 ) \
| ( (uint64_t) (b)[(i) + 4] << 32 ) \
| ( (uint64_t) (b)[(i) + 3] << 24 ) \
| ( (uint64_t) (b)[(i) + 2] << 16 ) \
| ( (uint64_t) (b)[(i) + 1] << 8 ) \
| ( (uint64_t) (b)[(i) ] ); \
}
#endif
#ifndef PUT_UINT64_LE
#define PUT_UINT64_LE(n,b,i) \
{ \
(b)[(i) + 7] = (unsigned char) ( (n) >> 56 ); \
(b)[(i) + 6] = (unsigned char) ( (n) >> 48 ); \
(b)[(i) + 5] = (unsigned char) ( (n) >> 40 ); \
(b)[(i) + 4] = (unsigned char) ( (n) >> 32 ); \
(b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) ] = (unsigned char) ( (n) ); \
}
#endif
typedef unsigned char esp_be128[16];
/*
* GF(2^128) multiplication function
*
* This function multiplies a field element by x in the polynomial field
* representation. It uses 64-bit word operations to gain speed but compensates
* for machine endianess and hence works correctly on both big and little
* endian machines.
*/
static void esp_gf128mul_x_ble( unsigned char r[16],
const unsigned char x[16] )
{
uint64_t a, b, ra, rb;
GET_UINT64_LE( a, x, 0 );
GET_UINT64_LE( b, x, 8 );
ra = ( a << 1 ) ^ 0x0087 >> ( 8 - ( ( b >> 63 ) << 3 ) );
rb = ( a >> 63 ) | ( b << 1 );
PUT_UINT64_LE( ra, r, 0 );
PUT_UINT64_LE( rb, r, 8 );
}
/*
* AES-XTS buffer encryption/decryption
*/
int esp_aes_crypt_xts( mbedtls_aes_xts_context *ctx,
int mode,
size_t length,
const unsigned char data_unit[16],
const unsigned char *input,
unsigned char *output )
{
int ret;
size_t blocks = length / 16;
size_t leftover = length % 16;
unsigned char tweak[16];
unsigned char prev_tweak[16];
unsigned char tmp[16];
/* Sectors must be at least 16 bytes. */
if( length < 16 )
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
/* NIST SP 80-38E disallows data units larger than 2**20 blocks. */
if( length > ( 1 << 20 ) * 16 )
return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
/* Compute the tweak. */
ret = esp_aes_crypt_ecb( &ctx->tweak, MBEDTLS_AES_ENCRYPT,
data_unit, tweak );
if( ret != 0 )
return( ret );
while( blocks-- )
{
size_t i;
if( leftover && ( mode == MBEDTLS_AES_DECRYPT ) && blocks == 0 )
{
/* We are on the last block in a decrypt operation that has
* leftover bytes, so we need to use the next tweak for this block,
* and this tweak for the lefover bytes. Save the current tweak for
* the leftovers and then update the current tweak for use on this,
* the last full block. */
memcpy( prev_tweak, tweak, sizeof( tweak ) );
esp_gf128mul_x_ble( tweak, tweak );
}
for( i = 0; i < 16; i++ )
tmp[i] = input[i] ^ tweak[i];
ret = esp_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp );
if( ret != 0 )
return( ret );
for( i = 0; i < 16; i++ )
output[i] = tmp[i] ^ tweak[i];
/* Update the tweak for the next block. */
esp_gf128mul_x_ble( tweak, tweak );
output += 16;
input += 16;
}
if( leftover )
{
/* If we are on the leftover bytes in a decrypt operation, we need to
* use the previous tweak for these bytes (as saved in prev_tweak). */
unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
/* We are now on the final part of the data unit, which doesn't divide
* evenly by 16. It's time for ciphertext stealing. */
size_t i;
unsigned char *prev_output = output - 16;
/* Copy ciphertext bytes from the previous block to our output for each
* byte of cyphertext we won't steal. At the same time, copy the
* remainder of the input for this final round (since the loop bounds
* are the same). */
for( i = 0; i < leftover; i++ )
{
output[i] = prev_output[i];
tmp[i] = input[i] ^ t[i];
}
/* Copy ciphertext bytes from the previous block for input in this
* round. */
for( ; i < 16; i++ )
tmp[i] = prev_output[i] ^ t[i];
ret = esp_aes_crypt_ecb( &ctx->crypt, mode, tmp, tmp );
if( ret != 0 )
return ret;
/* Write the result back to the previous block, overriding the previous
* output we copied. */
for( i = 0; i < 16; i++ )
prev_output[i] = tmp[i] ^ t[i];
}
return( 0 );
}