OVMS3-idf/components/esp32/esp_timer_esp32.c

407 lines
16 KiB
C
Raw Normal View History

// Copyright 2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_err.h"
#include "esp_timer.h"
#include "esp_system.h"
#include "esp_task.h"
#include "esp_attr.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_clk.h"
#include "esp_timer_impl.h"
#include "soc/frc_timer_reg.h"
#include "soc/rtc.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/semphr.h"
/**
* @file esp_timer_esp32.c
* @brief Implementation of chip-specific part of esp_timer
*
* This implementation uses FRC2 (legacy) timer of the ESP32. This timer is
* a 32-bit up-counting timer, with a programmable compare value (called 'alarm'
* hereafter). When the timer reaches compare value, interrupt is raised.
* The timer can be configured to produce an edge or a level interrupt.
*
* In this implementation the timer is used for two purposes:
* 1. To generate interrupts at certain moments the upper layer of esp_timer
* uses this to trigger callbacks of esp_timer objects.
*
* 2. To keep track of time relative to application start. This facility is
* used both by the upper layer of esp_timer and by time functions, such as
* gettimeofday.
*
* Whenever an esp_timer timer is armed (configured to fire once or
* periodically), timer_insert function of the upper layer calls
* esp_timer_impl_set_alarm to enable the interrupt at the required moment.
* This implementation sets up the timer interrupt to fire at the earliest of
* two moments:
* a) the time requested by upper layer
* b) the time when the timer count reaches 0xffffffff (i.e. is about to overflow)
*
* Whenever the interrupt fires and timer overflow is detected, interrupt hander
* increments s_time_base_us variable, which is used for timekeeping.
*
* When the interrupt fires, the upper layer is notified, and it dispatches
* the callbacks (if any timers have expired) and sets new alarm value (if any
* timers are still active).
*
* At any point in time, esp_timer_impl_get_time will return the current timer
* value (expressed in microseconds) plus s_time_base_us. To account for the
* case when the timer counter has overflown, but the interrupt has not fired
* yet (for example, because interupts are temporarily disabled),
* esp_timer_impl_get_time will also check timer overflow flag, and will add
* s_timer_us_per_overflow to the returned value.
*
*/
/* Timer is clocked from APB. To allow for integer scaling factor between ticks
* and microseconds, divider 1 is used. 16 or 256 would not work for APB
* frequencies such as 40 or 26 or 2 MHz.
*/
#define TIMER_DIV 1
#define TIMER_DIV_CFG FRC_TIMER_PRESCALER_1
/* ALARM_OVERFLOW_VAL is used as timer alarm value when there are not timers
* enabled which need to fire within the next timer overflow period. This alarm
* is used to perform timekeeping (i.e. to track timer overflows).
* Due to the 0xffffffff cannot recognize the real overflow or the scenario that
* ISR happens follow set_alarm, so change the ALARM_OVERFLOW_VAL to resolve this problem.
* Set it to 0xefffffffUL. The remain 0x10000000UL(about 3 second) is enough to handle ISR.
*/
#define DEFAULT_ALARM_OVERFLOW_VAL 0xefffffffUL
/* Provision to set lower overflow value for unit testing. Lowering the
* overflow value helps check for race conditions which occur near overflow
* moment.
*/
#ifndef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
#define ALARM_OVERFLOW_VAL DEFAULT_ALARM_OVERFLOW_VAL
#else
static uint32_t s_alarm_overflow_val = DEFAULT_ALARM_OVERFLOW_VAL;
#define ALARM_OVERFLOW_VAL (s_alarm_overflow_val)
#endif
static const char* TAG = "esp_timer_impl";
// Interrupt handle retuned by the interrupt allocator
static intr_handle_t s_timer_interrupt_handle;
// Function from the upper layer to be called when the interrupt happens.
// Registered in esp_timer_impl_init.
static intr_handler_t s_alarm_handler;
// Time in microseconds from startup to the moment
// when timer counter was last equal to 0. This variable is updated each time
// when timer overflows, and when APB frequency switch is performed.
static uint64_t s_time_base_us;
// Number of timer ticks per microsecond. Calculated from APB frequency.
static uint32_t s_timer_ticks_per_us;
// Period between timer overflows, in microseconds.
// Equal to 2^32 / s_timer_ticks_per_us.
static uint32_t s_timer_us_per_overflow;
// When frequency switch happens, timer counter is reset to 0, s_time_base_us
// is updated, and alarm value is re-calculated based on the new APB frequency.
// However because the frequency switch can happen before the final
// interrupt handler is invoked, interrupt handler may see a different alarm
// value than the one which caused an interrupt. This can cause interrupt handler
// to consider that the interrupt has happened due to timer overflow, incrementing
// s_time_base_us. To avoid this, frequency switch hook sets this flag if
// it needs to set timer alarm value to ALARM_OVERFLOW_VAL. Interrupt hanler
// will not increment s_time_base_us if this flag is set.
static bool s_mask_overflow;
//The timer_overflow_happened read alarm register to tell if overflow happened.
//However, there is a monent that overflow happens, and before ISR function called
//alarm register is set to another value, then you call timer_overflow_happened,
//it will return false.
//So we store the overflow value when new alarm is to be set.
static bool s_overflow_happened;
#ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
// If DFS is enabled, upon the first frequency change this value is set to the
// difference between esp_timer value and RTC timer value. On every subsequent
// frequency change, s_time_base_us is adjusted to maintain the same difference
// between esp_timer and RTC timer. (All mentioned values are in microseconds.)
static uint64_t s_rtc_time_diff = 0;
#endif
// Spinlock used to protect access to static variables above and to the hardware
// registers.
portMUX_TYPE s_time_update_lock = portMUX_INITIALIZER_UNLOCKED;
//Use FRC_TIMER_LOAD_VALUE(1) instead of UINT32_MAX, convenience to change FRC TIMER for future
#define TIMER_IS_AFTER_OVERFLOW(a) (ALARM_OVERFLOW_VAL < (a) && (a) <= FRC_TIMER_LOAD_VALUE(1))
// Check if timer overflow has happened (but was not handled by ISR yet)
static inline bool IRAM_ATTR timer_overflow_happened()
{
if (s_overflow_happened) {
return true;
}
return ((REG_READ(FRC_TIMER_CTRL_REG(1)) & FRC_TIMER_INT_STATUS) != 0 &&
((REG_READ(FRC_TIMER_ALARM_REG(1)) == ALARM_OVERFLOW_VAL && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))) && !s_mask_overflow) ||
(!TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_ALARM_REG(1))) && TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))))));
}
static inline void IRAM_ATTR timer_count_reload(void)
{
//this function should be only called the real overflow happened. And the count cannot be very approach to 0xffffffff.
assert(TIMER_IS_AFTER_OVERFLOW(REG_READ(FRC_TIMER_COUNT_REG(1))));
/* Restart the timer count by current time count minus ALARM_OVERFLOW_VAL(0xefffffff), it may cause error, if current tick is near boundary.
* But even if the error happen 100% per overflow(the distance of each real overflow is about 50 second),
* the error is 0.0125us*N per 50s(the FRC time clock is 80MHz), the N is the ticks run by the line following,
* Normally, N is less than 10, assume N is 10, so the error accumulation is only 6.48ms per month.
* In fact, if the CPU frequency is large than 80MHz. The error accumulation will be more less than 6.48ms per month.
* so It can be adopted.
*/
REG_WRITE(FRC_TIMER_LOAD_REG(1), REG_READ(FRC_TIMER_COUNT_REG(1)) - ALARM_OVERFLOW_VAL);
}
void esp_timer_impl_lock()
{
portENTER_CRITICAL(&s_time_update_lock);
}
void esp_timer_impl_unlock()
{
portEXIT_CRITICAL(&s_time_update_lock);
}
uint64_t IRAM_ATTR esp_timer_impl_get_time()
{
uint32_t timer_val;
uint64_t time_base;
uint32_t ticks_per_us;
bool overflow;
do {
/* Read all values needed to calculate current time */
timer_val = REG_READ(FRC_TIMER_COUNT_REG(1));
time_base = s_time_base_us;
overflow = timer_overflow_happened();
ticks_per_us = s_timer_ticks_per_us;
/* Read them again and compare */
/* In this function, do not call timer_count_reload() when overflow is ture.
* Because there's remain count enough to allow FRC_TIMER_COUNT_REG grow
*/
if (REG_READ(FRC_TIMER_COUNT_REG(1)) > timer_val &&
time_base == *((volatile uint64_t*) &s_time_base_us) &&
ticks_per_us == *((volatile uint32_t*) &s_timer_ticks_per_us) &&
overflow == timer_overflow_happened()) {
break;
}
/* If any value has changed (other than the counter increasing), read again */
} while(true);
uint64_t result = time_base
+ timer_val / ticks_per_us;
return result;
}
void IRAM_ATTR esp_timer_impl_set_alarm(uint64_t timestamp)
{
portENTER_CRITICAL(&s_time_update_lock);
// Alarm time relative to the moment when counter was 0
uint64_t time_after_timebase_us = timestamp - s_time_base_us;
// Adjust current time if overflow has happened
bool overflow = timer_overflow_happened();
uint64_t cur_count = REG_READ(FRC_TIMER_COUNT_REG(1));
if (overflow) {
assert(time_after_timebase_us > s_timer_us_per_overflow);
time_after_timebase_us -= s_timer_us_per_overflow;
s_overflow_happened = true;
}
// Calculate desired timer compare value (may exceed 2^32-1)
uint64_t compare_val = time_after_timebase_us * s_timer_ticks_per_us;
uint32_t alarm_reg_val = ALARM_OVERFLOW_VAL;
// Use calculated alarm value if it is less than ALARM_OVERFLOW_VAL.
// Note that if by the time we update ALARM_REG, COUNT_REG value is higher,
// interrupt will not happen for another ALARM_OVERFLOW_VAL timer ticks,
// so need to check if alarm value is too close in the future (e.g. <2 us away).
const uint32_t offset = s_timer_ticks_per_us * 2;
if (compare_val < ALARM_OVERFLOW_VAL) {
if (compare_val < cur_count + offset) {
compare_val = cur_count + offset;
if (compare_val > ALARM_OVERFLOW_VAL) {
compare_val = ALARM_OVERFLOW_VAL;
}
}
alarm_reg_val = (uint32_t) compare_val;
}
REG_WRITE(FRC_TIMER_ALARM_REG(1), alarm_reg_val);
portEXIT_CRITICAL(&s_time_update_lock);
}
static void IRAM_ATTR timer_alarm_isr(void *arg)
{
portENTER_CRITICAL_ISR(&s_time_update_lock);
// Timekeeping: adjust s_time_base_us if counter has passed ALARM_OVERFLOW_VAL
if (timer_overflow_happened()) {
timer_count_reload();
s_time_base_us += s_timer_us_per_overflow;
s_overflow_happened = false;
}
s_mask_overflow = false;
// Clear interrupt status
REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
// Set alarm to the next overflow moment. Later, upper layer function may
// call esp_timer_impl_set_alarm to change this to an earlier value.
REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
portEXIT_CRITICAL_ISR(&s_time_update_lock);
// Call the upper layer handler
(*s_alarm_handler)(arg);
}
void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us)
{
portENTER_CRITICAL_ISR(&s_time_update_lock);
/* Bail out if the timer is not initialized yet */
if (s_timer_interrupt_handle == NULL) {
portEXIT_CRITICAL_ISR(&s_time_update_lock);
return;
}
uint32_t new_ticks_per_us = apb_ticks_per_us / TIMER_DIV;
uint32_t alarm = REG_READ(FRC_TIMER_ALARM_REG(1));
uint32_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
uint64_t ticks_to_alarm = alarm - count;
uint64_t new_ticks = (ticks_to_alarm * new_ticks_per_us) / s_timer_ticks_per_us;
uint32_t new_alarm_val;
if (alarm > count && new_ticks <= ALARM_OVERFLOW_VAL) {
new_alarm_val = new_ticks;
} else {
new_alarm_val = ALARM_OVERFLOW_VAL;
if (alarm != ALARM_OVERFLOW_VAL) {
s_mask_overflow = true;
}
}
REG_WRITE(FRC_TIMER_ALARM_REG(1), new_alarm_val);
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
s_time_base_us += count / s_timer_ticks_per_us;
#ifdef CONFIG_PM_DFS_USE_RTC_TIMER_REF
// Due to the extra time required to read RTC time, don't attempt this
// adjustment when switching to a higher frequency (which usually
// happens in an interrupt).
if (new_ticks_per_us < s_timer_ticks_per_us) {
uint64_t rtc_time = esp_clk_rtc_time();
uint64_t new_rtc_time_diff = s_time_base_us - rtc_time;
if (s_rtc_time_diff != 0) {
uint64_t correction = new_rtc_time_diff - s_rtc_time_diff;
s_time_base_us -= correction;
} else {
s_rtc_time_diff = new_rtc_time_diff;
}
}
#endif // CONFIG_PM_DFS_USE_RTC_TIMER_REF
s_timer_ticks_per_us = new_ticks_per_us;
s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / new_ticks_per_us;
portEXIT_CRITICAL_ISR(&s_time_update_lock);
}
void esp_timer_impl_advance(int64_t time_us)
{
assert(time_us > 0 && "negative adjustments not supported yet");
portENTER_CRITICAL(&s_time_update_lock);
uint64_t count = REG_READ(FRC_TIMER_COUNT_REG(1));
/* Trigger an ISR to handle past alarms and set new one.
* ISR handler will run once we exit the critical section.
*/
REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
s_time_base_us += count / s_timer_ticks_per_us + time_us;
s_overflow_happened = false;
portEXIT_CRITICAL(&s_time_update_lock);
}
esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler)
{
s_alarm_handler = alarm_handler;
esp_err_t err = esp_intr_alloc(ETS_TIMER2_INTR_SOURCE,
ESP_INTR_FLAG_INTRDISABLED | ESP_INTR_FLAG_IRAM,
&timer_alarm_isr, NULL, &s_timer_interrupt_handle);
if (err != ESP_OK) {
ESP_EARLY_LOGE(TAG, "esp_intr_alloc failed (0x%0x)", err);
return err;
}
uint32_t apb_freq = rtc_clk_apb_freq_get();
s_timer_ticks_per_us = apb_freq / 1000000 / TIMER_DIV;
assert(s_timer_ticks_per_us > 0
&& apb_freq % TIMER_DIV == 0
&& "APB frequency does not result in a valid ticks_per_us value");
s_timer_us_per_overflow = ALARM_OVERFLOW_VAL / s_timer_ticks_per_us;
s_time_base_us = 0;
REG_WRITE(FRC_TIMER_ALARM_REG(1), ALARM_OVERFLOW_VAL);
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
REG_WRITE(FRC_TIMER_CTRL_REG(1),
TIMER_DIV_CFG | FRC_TIMER_ENABLE | FRC_TIMER_LEVEL_INT);
REG_WRITE(FRC_TIMER_INT_REG(1), FRC_TIMER_INT_CLR);
ESP_ERROR_CHECK( esp_intr_enable(s_timer_interrupt_handle) );
return ESP_OK;
}
void esp_timer_impl_deinit()
{
esp_intr_disable(s_timer_interrupt_handle);
REG_WRITE(FRC_TIMER_CTRL_REG(1), 0);
REG_WRITE(FRC_TIMER_ALARM_REG(1), 0);
REG_WRITE(FRC_TIMER_LOAD_REG(1), 0);
esp_intr_free(s_timer_interrupt_handle);
s_timer_interrupt_handle = NULL;
}
// FIXME: This value is safe for 80MHz APB frequency.
// Should be modified to depend on clock frequency.
uint64_t IRAM_ATTR esp_timer_impl_get_min_period_us()
{
return 50;
}
#ifdef ESP_TIMER_DYNAMIC_OVERFLOW_VAL
uint32_t esp_timer_impl_get_overflow_val()
{
return s_alarm_overflow_val;
}
void esp_timer_impl_set_overflow_val(uint32_t overflow_val)
{
s_alarm_overflow_val = overflow_val;
/* update alarm value */
esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000);
}
#endif // ESP_TIMER_DYNAMIC_OVERFLOW_VAL